Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Download
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Altmetrics
Final-revised paper
Preprint
BG | Articles | Volume 16, issue 17
Biogeosciences, 16, 3425–3437, 2019
https://doi.org/10.5194/bg-16-3425-2019
Biogeosciences, 16, 3425–3437, 2019
https://doi.org/10.5194/bg-16-3425-2019

Research article 12 Sep 2019

Research article | 12 Sep 2019

Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations

Mattia Greco et al.

Related authors

Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021,https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020,https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020,https://doi.org/10.5194/cp-16-2017-2020, 2020
The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020,https://doi.org/10.5194/essd-12-2261-2020, 2020
Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling factors
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020,https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary

Related subject area

Paleobiogeoscience: Proxy use, Development & Validation
Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021,https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020,https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Modern calibration of Poa flabellata (tussac grass) as a new paleoclimate proxy in the South Atlantic
Dulcinea V. Groff, David G. Williams, and Jacquelyn L. Gill
Biogeosciences, 17, 4545–4557, https://doi.org/10.5194/bg-17-4545-2020,https://doi.org/10.5194/bg-17-4545-2020, 2020
Short summary
Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020,https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Bottom-water deoxygenation at the Peruvian margin during the last deglaciation recorded by benthic foraminifera
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020,https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary

Cited articles

Agafonkin, V. and Thieurmel, B.: Package “suncalc”, version 0.5.0, available at: https://github.com/datastorm-open/suncalc (last access: 2 September 2019), 2018. 
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J.-É.: Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates, Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013. 
Bé, A. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in The Micropaleontology of Oceans, Cambridge University Press, Cambridge, 105–149, 1971. 
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.: Distribution of living planktonic foraminifera in the Ross Sea and the Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol., 73, 37–48, https://doi.org/10.1016/j.marmicro.2009.06.007, 2009. 
Berge, J., Cottier, F., Last, K. S., Varpe, Ø., Leu, E., Søreide, J., Eiane, K., Falk-Petersen, S., Willis, K., Nygård, H., Vogedes, D., Griffiths, C., Johnsen, G., Lorentzen, D., and Brierley, A. S.: Diel vertical migration of Arctic zooplankton during the polar night, Biol. Lett., 5, 69–72, https://doi.org/10.1098/rsbl.2008.0484, 2009. 
Publications Copernicus
Download
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Citation
Altmetrics
Final-revised paper
Preprint