Articles | Volume 16, issue 18
Research article
26 Sep 2019
Research article |  | 26 Sep 2019

Trend analysis of the airborne fraction and sink rate of anthropogenically released CO2

Mikkel Bennedsen, Eric Hillebrand, and Siem Jan Koopman

Related authors

Using rapid damage observations from social media for Bayesian updating of hurricane vulnerability functions: A case study of Hurricane Dorian
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2020
Revised manuscript not accepted
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824,,, 2024
Short summary
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435,,, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forest and grasslands in European temperate zone
Kinga Kulesza and Agata Hościło
EGUsphere,,, 2023
Short summary
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175,,, 2023
Short summary
Direct foliar phosphorus uptake from wildfire ash
Anton Lokshin, Daniel Palchan, and Avner Gross
EGUsphere,,, 2023
Short summary

Cited articles

Atkinson, A. C., Koopman, S. J., and Shephard, N.: Detecting shocks: Outliers and breaks in time series, J. Econometrics, 80, 387–422, 1997. a
Bacastow, R. and Keeling, C. D.: Atmospheric Carbon Dioxide and radiocarbon in the natural cycle: II. Changes from A. D. 1700 to 2070 as deduced from a geochemical model, in: Carbon and the biosphere conference proceedings; Upton, New York, USA, 86–135, Brookhaven Symposia in Biology, 1973. a, b
Bacastow, R. B. and Keeling, C. D.: Models to predict future atmospheric CO2 concentrations, in: Workshop on the global effects of carbon dioxide from fossil fuels, 72–90, US Department of Energy, 1979. a
Ballantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wanninkhof, R., Anderegg, W., Cooper, L. A., DeGrandpre, M., Tans, P. P., Miller, J. B., Alden, C., and White, J. W. C.: Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty, Biogeosciences, 12, 2565–2584,, 2015. a, b, c, d, e
Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National Fossil-Fuel CO2 Emissions, oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, available at: (last access: 28 June 2017), 2018. a
Short summary
Is the fraction of anthropogenically released CO2 that remains in the atmosphere increasing? Is the rate at which the ocean and land sinks take up CO2 from the atmosphere decreasing? We analyse these questions by means of a statistical dynamic multivariate model from which we estimate the unobserved trend processes together with the parameters that govern them. We find no statistical evidence of an increasing airborne fraction, but we do find statistical evidence of a decreasing sink rate.
Final-revised paper