Articles | Volume 16, issue 2
https://doi.org/10.5194/bg-16-541-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-541-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence
Wiebke Münchberger
CORRESPONDING AUTHOR
Ecohydrology and Biogeochemistry Research Group, Institute of
Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149
Münster, Germany
Biodiversity and Ecosystem Research Group, Institute of Landscape
Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster,
Germany
Klaus-Holger Knorr
CORRESPONDING AUTHOR
Ecohydrology and Biogeochemistry Research Group, Institute of
Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149
Münster, Germany
Christian Blodau
Ecohydrology and Biogeochemistry Research Group, Institute of
Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149
Münster, Germany
deceased, July 2016
Verónica A. Pancotto
Centro Austral de Investigaciones Científicas (CADIC-CONICET), B.
Houssay 200, 9410 Ushuaia, Tierra del Fuego, Argentina
Instituto de Ciencias Polares y Ambiente (ICPA-UNTDF), Fuegia Basket,
9410 Ushuaia, Tierra del Fuego, Argentina
Till Kleinebecker
Biodiversity and Ecosystem Research Group, Institute of Landscape
Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster,
Germany
Institute of Landscape Ecology and Resources Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
Related authors
No articles found.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-57, https://doi.org/10.5194/bg-2023-57, 2023
Preprint under review for BG
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Henning Teickner and Klaus-Holger Knorr
SOIL, 8, 699–715, https://doi.org/10.5194/soil-8-699-2022, https://doi.org/10.5194/soil-8-699-2022, 2022
Short summary
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Leandra Stephanie Emilia Praetzel, Nora Plenter, Sabrina Schilling, Marcel Schmiedeskamp, Gabriele Broll, and Klaus-Holger Knorr
Biogeosciences, 17, 5057–5078, https://doi.org/10.5194/bg-17-5057-2020, https://doi.org/10.5194/bg-17-5057-2020, 2020
Short summary
Short summary
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab experiments to determine spatial patterns and drivers of CO2 and CH4 emission and sediment gas production within a lake. The observed high spatial variability of emissions and production could be explained by the degradability of the sediment organic matter. We did not see correlations between production and emissions and suggest on-site flux measurements as the most accurate way for determing emissions.
Wolfgang Knierzinger, Ruth Drescher-Schneider, Klaus-Holger Knorr, Simon Drollinger, Andreas Limbeck, Lukas Brunnbauer, Felix Horak, Daniela Festi, and Michael Wagreich
E&G Quaternary Sci. J., 69, 121–137, https://doi.org/10.5194/egqsj-69-121-2020, https://doi.org/10.5194/egqsj-69-121-2020, 2020
Short summary
Short summary
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the ombrotrophic Pürgschachen Moor. Pronounced increases in cultural indicators suggest significant human activity in the Bronze Age and in the period of the late La Tène culture. We found strong, climate-controlled interrelations between the pollen record, the humification degree and the ash content. Human activity is reflected in the pollen record and by heavy metals.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
Sina Berger, Leandra S. E. Praetzel, Marie Goebel, Christian Blodau, and Klaus-Holger Knorr
Biogeosciences, 15, 885–903, https://doi.org/10.5194/bg-15-885-2018, https://doi.org/10.5194/bg-15-885-2018, 2018
Tanja Broder, Klaus-Holger Knorr, and Harald Biester
Hydrol. Earth Syst. Sci., 21, 2035–2051, https://doi.org/10.5194/hess-21-2035-2017, https://doi.org/10.5194/hess-21-2035-2017, 2017
Short summary
Short summary
This study elucidates controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices (SUVA254, SR and FI) and PARAFAC modeling of EEMs. DOM quality depended clearly on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated most variability in headwater DOM quantity and quality.
H. Biester, K.-H. Knorr, J. Schellekens, A. Basler, and Y.-M. Hermanns
Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014, https://doi.org/10.5194/bg-11-2691-2014, 2014
S. Strohmeier, K.-H. Knorr, M. Reichert, S. Frei, J. H. Fleckenstein, S. Peiffer, and E. Matzner
Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, https://doi.org/10.5194/bg-10-905-2013, 2013
K.-H. Knorr
Biogeosciences, 10, 891–904, https://doi.org/10.5194/bg-10-891-2013, https://doi.org/10.5194/bg-10-891-2013, 2013
C. Estop-Aragonés, K.-H. Knorr, and C. Blodau
Biogeosciences, 10, 421–436, https://doi.org/10.5194/bg-10-421-2013, https://doi.org/10.5194/bg-10-421-2013, 2013
Related subject area
Biogeochemistry: Wetlands
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Cutting peatland CO2 emissions with water management practices
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index assay
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Origin, transport, and retention of fluvial sedimentary organic matter in South Africa's largest freshwater wetland, Mkhuze Wetland System
Peat macropore networks – new insights into episodic and hotspot methane emission
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures
Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog
Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands
Interacting effects of vegetation components and water level on methane dynamics in a boreal fen
Low methane emissions from a boreal wetland constructed on oil sand mine tailings
Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine
Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Modelling long-term blanket peatland development in eastern Scotland
Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina
Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog
Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland
Rhizosphere to the atmosphere: contrasting methane pathways, fluxes, and geochemical drivers across the terrestrial–aquatic wetland boundary
Multi-year effect of wetting on CH4 flux at taiga–tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4
Fluvial organic carbon fluxes from oil palm plantations on tropical peatland
Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight
Response of hydrology and CO2 flux to experimentally altered rainfall frequency in a temperate poor fen, southern Ontario, Canada
Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter
Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia
Small spatial variability in methane emission measured from a wet patterned boreal bog
Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands
Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models
Geomorphic influences on the contribution of vegetation to soil C accumulation and accretion in Spartina alterniflora marshes
Southern Hemisphere bog persists as a strong carbon sink during droughts
The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023, https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Short summary
Mangroves are blue carbon ecosystems known to store large amounts of organic carbon in the sediments. This study is a first attempt to apply a chronosequence (or space-for-time substitution) approach to evaluate the distribution and accumulation rate of carbon in a 30-year-old (maximum age) restored mangrove forest. Using this approach, the contribution of restored or planted mangroves to sedimentary organic carbon presents an increasing pattern with mangrove age.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022, https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-189, https://doi.org/10.5194/bg-2022-189, 2022
Revised manuscript accepted for BG
Short summary
Short summary
In order to gain a first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles. We used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystem. The central finding is warming strongly increases the initial rate of labile litter decomposition, but has less consistent effects on the stabilization of this material.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021, https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, https://doi.org/10.5194/bg-17-901-2020, 2020
Short summary
Short summary
Many wetland systems exhibit lumpy, or uneven, soil surfaces where higher points are called hummocks and lower points are called hollows. We found that, while hummocks extended only ~ 20 cm above hollow surfaces, they exhibited distinct plant communities, plant growth, and soil properties. Differences between hummocks and hollows were the greatest in wetter sites, supporting the hypothesis that plants create and maintain their own hummocks in response to saturated soil conditions.
Terhi Riutta, Aino Korrensalo, Anna M. Laine, Jukka Laine, and Eeva-Stiina Tuittila
Biogeosciences, 17, 727–740, https://doi.org/10.5194/bg-17-727-2020, https://doi.org/10.5194/bg-17-727-2020, 2020
Short summary
Short summary
We studied the role of plant species groups in peatland methane fluxes under natural conditions and lowered water level. At a natural water level, sedges and mosses increased the fluxes. At a lower water level, the impact of plant groups on the fluxes was small. Only at a high water level did vegetation regulate the fluxes. The results are relevant for assessing peatland methane fluxes in a changing climate, as peatland water level and vegetation are predicted to change.
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary
Short summary
Natural and restored wetlands typically emit methane to the atmosphere. However, we found that a wetland constructed after oil sand mining in boreal Canada using organic soils from local peatlands had negligible emissions of methane in its first 3 years. Methane production was likely suppressed due to an abundance of alternate inorganic electron acceptors. Methane emissions may increase in the future if the alternate electron acceptors continue to decrease.
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Kevan J. Minick, Bhaskar Mitra, Asko Noormets, and John S. King
Biogeosciences, 16, 4671–4686, https://doi.org/10.5194/bg-16-4671-2019, https://doi.org/10.5194/bg-16-4671-2019, 2019
Short summary
Short summary
Sea level rise alters hydrology and vegetation in coastal wetlands. We studied effects of freshwater, saltwater, and wood on soil microbial activity in a freshwater forested wetland. Saltwater reduced CO2/CH4 production compared to freshwater, suggesting large changes in greenhouse gas production and microbial activity are possible due to saltwater intrusion into freshwater wetlands but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019, https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Short summary
We investigated the potential for chemical reduction of nitrite into nitrous oxide (N2O) in soils from tropical peat. Among treatments, irradiation resulted in the lowest biological interference and least change of native soil chemistry (iron and organic matter). Nitrite depletion was as high in live or irradiated soils, and N2O production was significant in all tests. Thus, nonbiological production of N2O may be widely underestimated in wetlands and tropical peatlands.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
Luke C. Jeffrey, Damien T. Maher, Scott G. Johnston, Kylie Maguire, Andrew D. L. Steven, and Douglas R. Tait
Biogeosciences, 16, 1799–1815, https://doi.org/10.5194/bg-16-1799-2019, https://doi.org/10.5194/bg-16-1799-2019, 2019
Short summary
Short summary
Wetlands represent the largest natural source of methane (CH4), so understanding CH4 drivers is important for management and climate models. We compared several CH4 pathways of a remediated subtropical Australian wetland. We found permanently inundated sites emitted more CH4 than seasonally inundated sites and that the soil properties of each site corresponded to CH4 emissions. This suggests that selective wetland remediation of favourable soil types may help to mitigate unwanted CH4 emissions.
Ryo Shingubara, Atsuko Sugimoto, Jun Murase, Go Iwahana, Shunsuke Tei, Maochang Liang, Shinya Takano, Tomoki Morozumi, and Trofim C. Maximov
Biogeosciences, 16, 755–768, https://doi.org/10.5194/bg-16-755-2019, https://doi.org/10.5194/bg-16-755-2019, 2019
Short summary
Short summary
(1) Wetting event with extreme precipitation increased methane emission from wetland, especially two summers later, despite the decline in water level after the wetting. (2) Isotopic compositions of methane in soil pore water suggested enhancement of production and less significance of oxidation in the following two summers after the wetting event. (3) Duration of water saturation in the active layer may be important for predicting methane emission after a wetting event in permafrost ecosystems.
Sarah Cook, Mick J. Whelan, Chris D. Evans, Vincent Gauci, Mike Peacock, Mark H. Garnett, Lip Khoon Kho, Yit Arn Teh, and Susan E. Page
Biogeosciences, 15, 7435–7450, https://doi.org/10.5194/bg-15-7435-2018, https://doi.org/10.5194/bg-15-7435-2018, 2018
Short summary
Short summary
This paper presents the first comprehensive assessment of fluvial organic carbon loss from oil palm plantations on tropical peat: a carbon loss pathway previously unaccounted for from carbon budgets. Carbon in the water draining four plantations in Sarawak was monitored across a 1-year period. Greater fluvial carbon losses were linked to sites with lower water tables. These data will be used to complete the carbon budget from these ecosystems and assess the full impact of this land conversion.
Ariane Arias-Ortiz, Pere Masqué, Jordi Garcia-Orellana, Oscar Serrano, Inés Mazarrasa, Núria Marbà, Catherine E. Lovelock, Paul S. Lavery, and Carlos M. Duarte
Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, https://doi.org/10.5194/bg-15-6791-2018, 2018
Short summary
Short summary
Efforts to include tidal marsh, mangrove and seagrass ecosystems in existing carbon mitigation strategies are limited by a lack of estimates of carbon accumulation rates (CARs). We discuss the use of 210Pb dating to determine CARs in these habitats, which are often composed of heterogeneous sediments and affected by sedimentary processes. Results show that obtaining reliable geochronologies in these systems is ambitious, but estimates of mean 100-year CARs are mostly secure within 20 % error.
Danielle D. Radu and Tim P. Duval
Biogeosciences, 15, 3937–3951, https://doi.org/10.5194/bg-15-3937-2018, https://doi.org/10.5194/bg-15-3937-2018, 2018
Short summary
Short summary
Climate change can shift rainfall into fewer, more intense events with longer dry periods, leading to changes in peatland hydrology and carbon cycling. We manipulated rain events over three peatland plant types (moss, sedge, and shrub). We found increasing regime intensity led to drier surface soils and deeper water tables, reducing plant carbon uptake. Mosses became sources of CO2 after >3 consecutive dry days. This study shows peatlands may become smaller sinks for carbon due to rain changes.
Peter Mueller, Lisa M. Schile-Beers, Thomas J. Mozdzer, Gail L. Chmura, Thomas Dinter, Yakov Kuzyakov, Alma V. de Groot, Peter Esselink, Christian Smit, Andrea D'Alpaos, Carles Ibáñez, Magdalena Lazarus, Urs Neumeier, Beverly J. Johnson, Andrew H. Baldwin, Stephanie A. Yarwood, Diana I. Montemayor, Zaichao Yang, Jihua Wu, Kai Jensen, and Stefanie Nolte
Biogeosciences, 15, 3189–3202, https://doi.org/10.5194/bg-15-3189-2018, https://doi.org/10.5194/bg-15-3189-2018, 2018
Karel Castro-Morales, Thomas Kleinen, Sonja Kaiser, Sönke Zaehle, Fanny Kittler, Min Jung Kwon, Christian Beer, and Mathias Göckede
Biogeosciences, 15, 2691–2722, https://doi.org/10.5194/bg-15-2691-2018, https://doi.org/10.5194/bg-15-2691-2018, 2018
Short summary
Short summary
We present year-round methane emissions from wetlands in Northeast Siberia that were simulated with a land surface model. Ground-based flux measurements from the same area were used for evaluation of the model results, finding a best agreement with the observations in the summertime emissions that take place in this region predominantly through plants. During winter, methane emissions through the snow contribute 4 % of the total annual methane budget, but these are still underestimated.
Aino Korrensalo, Elisa Männistö, Pavel Alekseychik, Ivan Mammarella, Janne Rinne, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018, https://doi.org/10.5194/bg-15-1749-2018, 2018
Short summary
Short summary
We measured methane fluxes of a boreal bog from six different plant community types in 2012–2014. We found only little variation in methane fluxes among plant community types. Peat temperature as well as both leaf area of plant species with air channels and of all vegetation are important factors controlling the fluxes. We also detected negative net fluxes indicating methane consumption each year. Our results can be used to improve the models of peatland methane dynamics under climate change.
Magnus Gålfalk, Martin Karlson, Patrick Crill, Philippe Bousquet, and David Bastviken
Biogeosciences, 15, 1549–1557, https://doi.org/10.5194/bg-15-1549-2018, https://doi.org/10.5194/bg-15-1549-2018, 2018
Short summary
Short summary
We describe a quick in situ method for mapping ground surface cover, calculating areas of each surface type in a 10 x 10 m plot for each measurement. The method is robust, weather-independent, easily carried out, and uses wide-field imaging with a standard remote-controlled camera mounted on a very long extendible monopod from a height of 3–4.5 m. The method enables collection of detailed field reference data, critical in many remote sensing applications, such as wetland mapping.
Olli Peltola, Maarit Raivonen, Xuefei Li, and Timo Vesala
Biogeosciences, 15, 937–951, https://doi.org/10.5194/bg-15-937-2018, https://doi.org/10.5194/bg-15-937-2018, 2018
Short summary
Short summary
Emission via bubbling, i.e. ebullition, is one of the main CH4 emission pathways from wetlands to the atmosphere, yet it is still coarsely represented in wetland CH4 models. In this study three ebullition modelling approaches are evaluated. Modeled annual CH4 emissions were similar, whereas temporal variability in CH4 emissions varied an order of magnitude between the approaches. Hence realistic description of ebullition is needed when models are compared to and calibrated against measurements.
Tracy Elsey-Quirk and Viktoria Unger
Biogeosciences, 15, 379–397, https://doi.org/10.5194/bg-15-379-2018, https://doi.org/10.5194/bg-15-379-2018, 2018
Short summary
Short summary
Salt marshes have high rates of plant productivity and carbon accumulation. For this study, we found that differences in environmental conditions between estuary types were important in determining the source and stability of soil organic carbon. Specifically, sediment availability was extremely important in promoting high plant productivity and carbon accumulation in an estuary which was sediment-limited. In a sediment-rich estuary vegetation–soil-carbon relationships were weaker.
Jordan P. Goodrich, David I. Campbell, and Louis A. Schipper
Biogeosciences, 14, 4563–4576, https://doi.org/10.5194/bg-14-4563-2017, https://doi.org/10.5194/bg-14-4563-2017, 2017
Jonathan P. Ritson, Richard E. Brazier, Nigel J. D. Graham, Chris Freeman, Michael R. Templeton, and Joanna M. Clark
Biogeosciences, 14, 2891–2902, https://doi.org/10.5194/bg-14-2891-2017, https://doi.org/10.5194/bg-14-2891-2017, 2017
Short summary
Short summary
Peatlands are a globally important store of carbon; however increased droughts in the future may affect their ability to sequester carbon. Using laboratory simulations we show that droughts, through exposure to oxygen, greatly increase the quantity and alter the quality of dissolved organic carbon (DOC) released from peat. Catchment management which keeps water tables high to limit oxygen exposure is therefore likely to deliver positive water quality outcomes.
Cited articles
Agethen, S., Sander, M., Waldemer, C., and Knorr, K.-H.: Plant rhizosphere
oxidation reduces methane production and emission in rewetted peatlands,
Soil Biol. Biochem., 125, 125–135, 2018.
Arsenault, J., Talbot, J., and Moore, T. R.: Environmental controls of C, N
and P biogeochemistry in peatland pools, Sci. Total Environ., 631–632,
714–722, 2018.
Aselmann, I. and Crutzen, P. J.: Global distribution of natural freshwater
wetlands and rice paddies, their net primary productivity, seasonality and
possible methane emissions, J. Atmos. Chem., 8, 307–358, 1989.
Baird, A. J., Milner, A. M., Blundell, A., Swindles, G. T., and Morris, P.
J.: Microform-scale variations in peatland permeability and their
ecohydrological implications, J. Ecol., 104, 531–544, 2016.
Beer, J. and Blodau, C.: Transport and thermodynamics constrain belowground
carbon turnover in a northern peatland, Geochim. Cosmochim. Ac., 71, 2989–3002,
2007.
Beer, J., Lee, K., Whiticar, M., and Blodau, C.: Geochemical controls on
anaerobic organic matter decomposition in a northern peatland, Limnol. Oceanogr., 53, 1393–1407, 2008.
Benavides, J. C., Vitt, D. H., and Wieder, R. K.: The influence of climate
change on recent peat accumulation patterns of Distichia muscoides cushion
bogs in the high-elevation tropical Andes of Colombia, J. Geophys. Res.-Biogeo., 118, 1627–1635, 2013.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of
measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43,
1500–1510, 1998.
Berger, S., Praetzel, L. S. E., Goebel, M., Blodau, C., and Knorr, K.-H.:
Differential response of carbon cycling to long-term nutrient input and
altered hydrological conditions in a continental Canadian peatland,
Biogeosciences, 15, 885–903, https://doi.org/10.5194/bg-15-885-2018, 2018.
Blodau, C.: Carbon cycling in peatlands – A review of processes and
controls, Environ. Rev., 10, 111–134, 2002.
Blodau, C. and Moore, T. R.: Experimental response of peatland carbon
dynamics to a water table fluctuation, Aquat. Sci., 65, 47–62, 2003.
Bonaiuti, S., Blodau, C., and Knorr, K.-H.: Transport, anoxia and
end-product accumulation control carbon dioxide and methane production and
release in peat soils, Biogeochemistry, 133, 219–239, 2017.
Borromei, A. M., Ponce, J. F., Coronato, A., Candel, M. S., Olivera, D., and
Okuda, M.: Reconstrucción de la vegetación posglacial y su
relación con el ascenso relativo del nivel del mar en el extremo este
del canal Beagle, Tierra del Fuego, Argentina, Andean Geol., 41, 362–379,
2014.
Boucher, F. C., Lavergne, S., Basile, M., Choler, P., and Aubert, S.:
Evolution and biogeography of the cushion life form in angiosperms,
Perspect. Plant Ecol., 20, 22–31, 2016.
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Sea spray, trace
elements, and decomposition patterns as possible constraints on the
evolution of CH4 and CO2 concentrations and isotopic signatures in oceanic
ombrotrophic bogs, Biogeochemistry, 122, 327–342, 2015.
Burger, M., Berger, S., Spangenberg, I., and Blodau, C.: Summer fluxes of
methane and carbon dioxide from a pond and floating mat in a continental
Canadian peatland, Biogeosciences, 13, 3777–3791,
https://doi.org/10.5194/bg-13-3777-2016, 2016.
Chasar, L. S., Chanton, J. P., Glaser, P. H., and Siegel, D. I.: Methane
concentration and stable isotope distribution as evidence of rhizospheric
processes: Comparison of a fen and bog in the Glacial Lake Agassiz Peatland
complex, Ann. Bot.-London, 86, 655–663, 2000.
Colmer, T. D.: Long-distance transport of gases in plants: a perspective on
internal aeration and radial oxygen loss from roots, Plant. Cell.
Environ., 26, 17–36, 2003.
Conrad, R.: Quantification of methanogenic pathways using stable carbon
isotopic signatures: a review and a proposal, Org. Geochem., 36, 739–752,
2005.
Coombes, L. and Ramsay, P. M.: Vegetation of a cushion mire at 3600 m on
Volcán Chiles, Ecuador, in: The Ecology of Volcán Chiles. High
altitude ecosystems on the Ecuador Colombia border, edited by: Ramsay, P.
M., Pebble & Shell Publications, Plymouth, UK, 47–54, 2001.
Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H.,
and Chanton, J. P.: Partitioning pathways of CO2 production in peatlands
with stable carbon isotopes, Biogeochemistry, 114, 327–340, 2013.
Dullo, B. W., Grootjans, A. P., Roelofs, J. G. M., Senbeta, A. F., Fritz,
C., and Lamers, L. P. M.: Radial oxygen loss by the cushion plant Eriocaulon
schimperi prevents methane emissions from an East-African mountain mire,
Plant Biol., 19, 736–741, 2017.
Eckhardt, T. and Kutzbach, L.: MATLAB code to calculate gas fluxes from
chamber based methods. Institute of Soil Science, Hamburg, Germany,
https://doi.org/10.1594/PANGAEA.857799, last access: 17 July 2016.
Estop-Aragonés, C., Knorr, K.-H., and Blodau, C.: Belowground in situ redox
dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles
and flooding, Biogeosciences, 10, 421–436,
https://doi.org/10.5194/bg-10-421-2013, 2013.
Fechner-Levy, E. J. and Hemond, H. F.: Trapped methane volume and potential
effects on methane ebullition in a northern peatland, Limnol. Oceanogr., 41,
1375–1383, 1996.
Fonkén, M. S. M.: An introduction to the bofedales of the Peruvian High
Andes, Mires Peat, 15, 1–13. 2014.
Fritz, C.: Limits of Sphagnum bog growth in the New World: Biochemistry and
ecohydrology of peatlands in South America and New Zealand, PhD thesis,
Radboud University of Nijmegen/University of Groningen, the Netherlands, 193 pp., 2012.
Fritz, C., Pancotto, V. A., Elzenga, J. T. M., Visser, E. J. W., Grootjans,
A. P., Pol, A., Iturraspe, R., Roelofs, J. G. M., and Smolders, A. J. P.:
Zero methane emission bogs: extreme rhizosphere oxygenation by cushion
plants in Patagonia, New Phytol., 190, 398–408, 2011.
Gibson, N. and Kirkpatrick, J. B.: A Comparison of the Cushion
Plant-Communities of New-Zealand and Tasmania, New. Zeal. J. Bot., 23, 549–566,
1985.
González Garraza, G., Pancotto, V. A., Mansilla, R., and Escobar, J.:
Importancia de la humedad en la caracterización de las comunidades
microalgales en turberas compactas de Tierra del Fuego, in: Resúmenes de
la Reunión Argentina de Ecología, XXVIII Reunión Argentina de
Ecología, Mar del Plata, Argentina, 29 October–2 November 2018, p. 353, 2018.
Goodrich, J. P., Campbell, D. I., Roulet, N. T., Clearwater, M. J., and
Schipper, L. A.: Overriding control of methane flux temporal variability by
water table dynamics in a Southern Hemisphere, raised bog, J. Geophys. Res.-Biogeo., 120, 819–831, 2015.
Grootjans, J., Iturraspe, R., Fritz, C., Moen, A., and Joosten, H.: Mires
and mire types of Peninsula Mitre, Tierra del Fuego, Argentina, Mires
Peat, 14, 1–20, 2014.
Hamilton, J. D., Kelly, C. A., Rudd, J. W. M., Hesslein, R. H., and Roulet,
N. T.: Flux to the atmosphere of CH4 and CO2 from wetland ponds on the
Hudson Bay lowlands (HBLs), J. Geophys. Res.-Atmos.,
99, 1495–1510, 1994.
Heimann, A., Jakobsen, R., and Blodau, C.: Energetic Constraints on
H2-Dependent Terminal Electron Accepting Processes in Anoxic Environments: A
Review of Observations and Model Approaches, Environ. Sci. Technol., 44, 24–33,
2010.
Heusser, C. J.: Paleoecology of a Donatia-Astelia Cushion Bog, Magellanic
Moorland-Sub-Antarctic Evergreen Forest Transition, Southern
Tierra-Del-Fuego, Argentina, Rev. Palaeobot. Palyno., 89, 429–440, 1995.
Hope, G. S.: Peat in the mountains of New Guinea, Mires Peat, 15, 1–21, 2014.
Hornibrook, E. R. C., Longstaffe, F. J., and Fyfe, W. S.: Spatial
distribution of microbial methane production pathways in temperate zone
wetland soils: Stable carbon and hydrogen isotope evidence, Geochim. Cosmochim. Ac., 61, 745–753, 1997.
Hornibrook, E. R. C., Longstaffe, F. J., and Fyfe, W. S.: Evolution of
stable carbon isotope compositions for methane and carbon dioxide in
freshwater wetlands and other anaerobic environments, Geochim. Cosmochim. Ac.,
64, 1013–1027, 2000.
IPCC: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013
– The Physical Science Basis: Working Group I Contribution to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Change, I. P. o. C., Cambridge University Press, Cambridge, UK, 659–740,
2014.
Iturraspe, R.: Spatial analysis and description of eastern peatlands of
Tierra del Fuego, Argentina, in: Mires from pole to pole, edited by:
Lindholm, T., and Heikkilä, R., Finnish Environment Institute (SYKE),
Helsinki, Finland, 2012.
Jackowicz-Korczyński, M., Christensen, T. R., Bäckstrand, K., Crill,
P., Friborg, T., Mastepanov, M., and Ström, L.: Annual cycle of methane
emission from a subarctic peatland, J. Geophys. Res.-Biogeo., 115, https://doi.org/10.1029/2008JG000913, 2010.
Joabsson, A., Christensen, T. R., and Wallén, B.: Vascular plant
controls on methane emissions from northern peatforming wetlands, Trends
Ecol. Evol., 14, 385–388, 1999.
Kip, N., Fritz, C., Langelaan, E. S., Pan, Y., Bodrossy, L., Pancotto, V.,
Jetten, M. S. M., Smolders, A. J. P., and Op den Camp, H. J. M.:
Methanotrophic activity and diversity in different Sphagnum magellanicum
dominated habitats in the southernmost peat bogs of Patagonia,
Biogeosciences, 9, 47–55, https://doi.org/10.5194/bg-9-47-2012, 2012.
Kleinebecker, T., Hölzel, N., and Vogel, A.: Gradients of continentality
and moisture in South Patagonian ombrotrophic peatland vegetation, Folia
Geobot., 42, 363–382, 2007.
Kleinebecker, T., Hölzel, N., and Vogel, A.: South Patagonian
ombrotrophic bog vegetation reflects biogeochemical gradients at the
landscape level, J. Veg. Sci., 19, 151–160, 2008.
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., and Pfeiffer, E.-M.:
Regulation of methane production, oxidation, and emission by vascular plants
and bryophytes in ponds of the northeast Siberian polygonal tundra,
J. Geophys. Res.-Biogeo., 120, 2525–2541, 2015.
Knorr, K. H., Oosterwoud, M. R., and Blodau, C.: Experimental drought alters
rates of soil respiration and methanogenesis but not carbon exchange in soil
of a temperate fen, Soil Biol. Biochem., 40, 1781–1791, 2008a.
Knorr, K.-H., Glaser, B., and Blodau, C.: Fluxes and 13C isotopic composition
of dissolved carbon and pathways of methanogenesis in a fen soil exposed to
experimental drought, Biogeosciences, 5, 1457–1473,
https://doi.org/10.5194/bg-5-1457-2008, 2008b.
Knorr, K.-H., Lischeid, G., and Blodau, C.: Dynamics of redox processes in a
minerotrophic fen exposed to a water table manipulation, Geoderma, 153,
379–392, 2009.
Knorr, K.-H., Horn, M. A., and Borken, W.: Significant nonsymbiotic nitrogen
fixation in Patagonian ombrotrophic bogs, Global Change Biol., 21, 2357–2365,
2015.
Kotsyurbenko, O. R., Glagolev, M. V., Nozhevnikova, A. N., and Conrad, R.:
Competition between homoacetogenic bacteria and methanogenic archaea for
hydrogen at low temperature, Fems Microbiol. Ecol., 38, 153–159, 2001.
Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali,
N. J., Martikainen, P. J., Alm, J., and Wilmking, M.: CO2 flux determination
by closed-chamber methods can be seriously biased by inappropriate
application of linear regression, Biogeosciences, 4, 1005–1025,
https://doi.org/10.5194/bg-4-1005-2007, 2007.
Laine, A., Wilson, D., Kiely, G., and Byrne, K. A.: Methane flux dynamics in
an Irish lowland blanket bog, Plant Soil, 299, 181–193, 2007.
Lehmann, J., Münchberger, W., Knoth, C., Blodau, C., Nieberding, F.,
Prinz, T., Pancotto, V., and Kleinebecker, T.: High-Resolution
Classification of South Patagonian Peat Bog Microforms Reveals Potential
Gaps in Up-Scaled CH4 Fluxes by use of Unmanned Aerial System (UAS) and CIR
Imagery, Remote Sens.-Basel, 8, 173, 2016.
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden,
J., Roulet, N., Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon
cycle: from local processes to global implications – a synthesis,
Biogeosciences, 5, 1475–1491, https://doi.org/10.5194/bg-5-1475-2008, 2008.
Mainiero, R. and Kazda, M.: Effects of Carex rostrata on soil oxygen in
relation to soil moisture, Plant Soil, 270, 311–320, 2005.
Mikaloff Fletcher, S. E., Tans, P. P., Bruhwiler, L. M., Miller, J. B., and
Heimann, M.: CH4 sources estimated from atmospheric observations of CH4 and
its 13C∕12C isotopic ratios: 1. Inverse modeling of source processes, Global
Biogeochem. Cy., 18, 2004.
Paredes, N. I., Consolo, V. F., Pancotto, V. A., Fritz, C., Barrera, M. D.,
Arambarri, A. M., and Salerno, G. L.: Microfungal composition in an
Astelia-Donatia cushion peatland in Tierra del Fuego, Argentina, Darwinia,
2, 112–124, 2014.
Pelletier, L., Strachan, I. B., Garneau, M., and Roulet, N. T.: Carbon
release from boreal peatland open water pools: Implication for the
contemporary C exchange, J. Geophys. Res.-Biogeo.,
119, 207–222, 2014.
Popp, T. J., Chanton, J. P., Whiting, G. J., and Grant, N.: Methane stable
isotope distribution at a Carex dominated fen in north central Alberta,
Global Biogeochem. Cy., 13, 1063–1077, 1999.
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen,
J.-P., Tuittila, E.-S., and Vesala, T.: Annual cycle of methane emission
from a boreal fen measured by the eddy covariance technique, Tellus B, 59,
449–457, 2007.
Ruthsatz, B. and Villagran, C.: Vegetation Pattern and Soil Nutrients of a
Magellanic Moorland on the Cordillera-De-Piuchue, Chiloe Island, Chile, Rev.
Chil. Hist. Nat., 64, 461–478, 1991.
Sander, R.: Compilation of Henry's Law constants for inorganic and organic
species of potential importance in environmental chemistry, Max Planck
Institute of Chemistry, Mainz, Germany, available at:
http://satellite.mpic.de/henry_data/henry-3.0.pdf (last access: 1 June 2017), 1999
Schmidt, S. R., Kleinebecker, T., Vogel, A., and Holzel, N.: Interspecific
and geographical differences of plant tissue nutrient concentrations along
an environmental gradient in Southern Patagonia, Chile, Aquat. Bot., 92,
149–156, 2010.
Steinmann, P., Eilrich, B., Leuenberger, M., and Burns, S. J.: Stable carbon
isotope composition and concentrations of CO2 and CH4 in the deep catotelm
of a peat bog, Geochim. Cosmochim. Ac., 72, 6015–6026, 2008.
Stumm, W. and Morgan, J. J.: Aquatic chemistry. Chemical Equilibria and
Rates in Natural Waters, 3rd ed., Wiley, Hoboken, NJ, USA, 1996.
von Mering, S.: Tetroncium and its only species, T. magellanicum
(Juncaginaceae): distribution, ecology and lectotypification, Willdenowia,
43, 13–24, 2013.
Whalen, S. C.: Biogeochemistry of Methane Exchange between Natural Wetlands
and the Atmosphere, Environ. Eng. Sci., 22, 73–94, 2005.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine and freshwater environments: CO2 reduction vs. acetate
fermentation – Isotope evidence, Geochim. Cosmochim. Ac., 50, 693–709, 1986.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review,
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Short summary
Processes governing CH4 dynamics have been scarcely studied in southern hemispheric bogs. These can be dominated by cushion-forming plants with deep and dense roots suppressing emissions. Here we demonstrate how the spatial distribution of root activity drives a pronounced pattern of CH4 emissions, likewise also possible in densely rooted northern bogs. We conclude that presence of cushion vegetation as a proxy for negligible CH4 emissions from cushion bogs needs to be interpreted with caution.
Processes governing CH4 dynamics have been scarcely studied in southern hemispheric bogs. These...
Altmetrics
Final-revised paper
Preprint