Articles | Volume 17, issue 5
https://doi.org/10.5194/bg-17-1261-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-1261-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)?
Sten Anslan
Zoological Institute, Technische Universität Braunschweig,
Mendelssohnstr. 4, 38106 Braunschweig, Germany
Institute of Geosystems and Bioindication, Technische Universität
Braunschweig, Langer Kamp 19C, 38106 Braunschweig, Germany
Mina Azizi Rad
Institute of Geosystems and Bioindication, Technische Universität
Braunschweig, Langer Kamp 19C, 38106 Braunschweig, Germany
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Johannes Buckel
Institute for Geophysics and Extraterrestrial Physics, Technische
Universität Braunschweig, Mendelssohnstraße 3, 38106 Braunschweig,
Germany
Paula Echeverria Galindo
Institute of Geosystems and Bioindication, Technische Universität
Braunschweig, Langer Kamp 19C, 38106 Braunschweig, Germany
Jinlei Kai
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Wengang Kang
Institute of Geosystems and Bioindication, Technische Universität
Braunschweig, Langer Kamp 19C, 38106 Braunschweig, Germany
Laura Keys
Institute for Geography, Friedrich-Schiller-Universität Jena,
Löbdergraben 32, 07743 Jena, Germany
Philipp Maurischat
Institute of Soil Science, Leibniz Universität Hannover,
Herrenhäuser Str. 2, 30419 Hanover, Germany
Felix Nieberding
CORRESPONDING AUTHOR
Institute of Geosystems and Bioindication, Technische Universität
Braunschweig, Langer Kamp 19C, 38106 Braunschweig, Germany
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Eike Reinosch
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Bienroder Weg 81, 38106 Braunschweig, Germany
Handuo Tang
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Tuong Vi Tran
Institute of Fluid Mechanics and Environmental Physics in Civil
Engineering, Leibniz Universität Hannover, Appelstraße 9A, 30167
Hanover, Germany
Yuyang Wang
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Antje Schwalb
Institute of Geosystems and Bioindication, Technische Universität
Braunschweig, Langer Kamp 19C, 38106 Braunschweig, Germany
Related authors
No articles found.
Nithin D. Pillai, Christian Wille, Felix Nieberding, Manuel Helbig, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2025-530, https://doi.org/10.5194/egusphere-2025-530, 2025
Preprint archived
Short summary
Short summary
The Tibetan Plateau is warming rapidly, affecting carbon cycles in its ecosystems. Using two measurement heights (3 m and 19 m) in an alpine steppe near Nam Co, we explored how spatial scale impacts CO2 fluxes. CO2 fluxes varied with spatial scale due to landscape heterogeneity. This variability shows that the measurement scale can shift the ecosystem's carbon balance from CO2 sink to either carbon neutral or CO2 source, highlighting the importance of considering spatial scale in carbon studies.
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Steffen Kutterolf, Mark Brenner, Robert A. Dull, Armin Freundt, Jens Kallmeyer, Sebastian Krastel, Sergei Katsev, Elodie Lebas, Axel Meyer, Liseth Pérez, Juanita Rausch, Armando Saballos, Antje Schwalb, and Wilfried Strauch
Sci. Dril., 32, 73–84, https://doi.org/10.5194/sd-32-73-2023, https://doi.org/10.5194/sd-32-73-2023, 2023
Short summary
Short summary
The NICA-BRIDGE workshop proposes a milestone-driven three-phase project to ICDP and later ICDP/IODP involving short- and long-core drilling in the Nicaraguan lakes and in the Pacific Sandino Basin to (1) reconstruct tropical climate and environmental changes and their external controlling mechanisms over several million years, (2) assess magnitudes and recurrence times of multiple natural hazards, and (3) provide
baselineenvironmental data for monitoring lake conditions.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Cited articles
Adamczyk, S.: Vegetationsgeschichtliche Untersuchung zur Geschichte des
menschlichen Eingriffs in den Haushalt der Natur Ost-, Zentral-Tibets und
West-Sichuans, sowie zum Problem der eiszeitlichen Waldrefugien,
Dissertation, Institut für Botanik, Universität Hohenheim,
Hohenheim, 2010.
Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A.,
Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C.,
Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H., and
Hoorn, C.: Geological and climatic influences on mountain biodiversity,
Nat. Geosci., 11, 718–725, https://doi.org/10.1038/s41561-018-0236-z, 2018.
Babel, W., Biermann, T., Coners, H., Falge, E., Seeber, E., Ingrisch, J.,
Schleuß, P.-M., Gerken, T., Leonbacher, J., Leipold, T.,
Willinghöfer, S., Schützenmeister, K., Shibistova, O., Becker, L.,
Hafner, S., Spielvogel, S., Li, X., Xu, X., Sun, Y., Zhang, L., Yang, Y.,
Ma, Y., Wesche, K., Graf, H., Leuschner, C., Guggenberger, G., Kuzyakov, Y.,
Miehe, G., and Foken, T.: Pasture degradation modifies the water and carbon
cycles of the Tibetan highlands, Biogeosciences, 11, 6633–6656,
https://doi.org/10.5194/bg-11-6633-2014, 2014.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.:
Impacts of climate change on the future of biodiversity, Ecol. Lett.,
15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion,
F., Huintjes, E., and Schneider, C.: A glacier inventory for the western
Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes
1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Callieri, C., Hernández-Avilés, S., Salcher, M. M., Fontaneto, D.,
and Bertoni, R.: Distribution patterns and environmental correlates of
Thaumarchaeota abundance in six deep subalpine lakes, Aquat. Sci., 78,
215–225, https://doi.org/10.1007/s00027-015-0418-3, 2016.
Cao, J., Adamowski, J. F., Deo, R. C., Xu, X., Gong, Y., and Feng, Q.:
Grassland Degradation on the Qinghai-Tibetan Plateau: Reevaluation of
Causative Factors, Rangeland Ecol. Manag., 72, 988–995,
https://doi.org/10.1016/j.rama.2019.06.001, 2019.
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D.:
Rapid range shifts of species associated with high levels of climate
warming, Science, 333, 1024–1026,
https://doi.org/10.1126/science.1206432, 2011.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res., 112,
169, https://doi.org/10.1029/2006JF000631, 2007.
Chesworth, W., Camps Arbestain, M., Macías, F., Spaargaren, O., Mualem,
Y., Morel-Seytoux, H. J., Horwath, W. R., Almendros, G., Grossl, P. R.,
Sparks, D. L., Fairbridge, R. W., Singer, A., Eswaran, H., and Micheli, E.:
Classification of Soils: World Reference Base (WRB) for soil resources, in:
Encyclopedia of Soil Science, edited by: Chesworth, W., Encyclopedia of Earth
Sciences Series, Springer, Dordrecht, 120–122, 2008.
Clewing, C., Albrecht, C., and Wilke, T.: A Complex System of Glacial Sub-Refugia Drives Endemic Freshwater Biodiversity on the Tibetan Plateau, PloS One, 11, e0160286, https://doi.org/10.1371/journal.pone.0160286, 2016.
Cuo, L. and Zhang, Y.: Spatial patterns of wet season precipitation vertical
gradients on the Tibetan Plateau and the surroundings, Sci. Rep.,
7, 5057, https://doi.org/10.1038/s41598-017-05345-6, 2017.
Deng, T., Wang, X., Fortelius, M., Li, Q., Wang, Y., Tseng, Z. J., Takeuchi,
G. T., Saylor, J. E., Säilä, L. K., and Xie, G.: Out of Tibet:
Pliocene woolly rhino suggests high-plateau origin of Ice Age
megaherbivores, Science, 333, 1285–1288,
https://doi.org/10.1126/science.1206594, 2011.
Deng, T., Wu, F., Zhou, Z., and Su, T.: Tibetan Plateau: An evolutionary
junction for the history of modern biodiversity, Sci. China Earth Sci., 63, 172–187, https://doi.org/10.1007/s11430-019-9507-5, 2019.
Deng, Y., Cui, X., Lüke, C., and Dumont, M. G.: Aerobic methanotroph
diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau,
Environ. Microbiol. Rep., 5, 566–574,
https://doi.org/10.1111/1758-2229.12046, 2013.
Dong, S., Peng, F., You, Q., Guo, J., and Xue, X.: Lake dynamics and its
relationship to climate change on the Tibetan Plateau over the last four
decades, Reg. Environ. Change, 18, 477–487, https://doi.org/10.1007/s10113-017-1211-8,
2018.
Dorji, T., Hopping, K. A., Wang, S., Piao, S., Tarchen, T., and Klein, J.
A.: Grazing and spring snow counteract the effects of warming on an alpine
plant community in Tibet through effects on the dominant species,
Agr. Forest Meteorol., 263, 188–197,
https://doi.org/10.1016/j.agrformet.2018.08.017, 2018.
Dorji, T., Moe, S. R., Klein, J. A., and Totland, Ø.: Plant Species
Richness, Evenness, and Composition along Environmental Gradients in an
Alpine Meadow Grazing Ecosystem in Central Tibet, China, Arctic, Antarctic
Alpine Res., 46, 308–326, https://doi.org/10.1657/1938-4246-46.2.308, 2014.
Dorji, T., Totland, O., Moe, S. R., Hopping, K. A., Pan, J., and Klein, J.
A.: Plant functional traits mediate reproductive phenology and success in
response to experimental warming and snow addition in Tibet, Glob. Change
Biol., 19, 459–472, https://doi.org/10.1111/gcb.12059, 2013.
Du, Y., Huang, Z., Xie, M., Farooq, A., and Chen, C.: Temporal Variations in
the Quantity of Groundwater Flow in Nam Co Lake, Water, 10, 941,
https://doi.org/10.3390/w10070941, 2018.
Ebersbach, J., Schnitzler, J., Favre, A., and Muellner-Riehl, A. N.:
Evolutionary radiations in the species-rich mountain genus Saxifraga L, BMC
Evol. Biol., 17, 119, https://doi.org/10.1186/s12862-017-0967-2, 2017.
Favre, A., Päckert, M., Pauls, S. U., Jähnig, S. C., Uhl, D.,
Michalak, I., and Muellner-Riehl, A. N.: The role of the uplift of the
Qinghai-Tibetan Plateau for the evolution of Tibetan biotas, Biol.
Rev. Camb. Philos., 90, 236–253,
https://doi.org/10.1111/brv.12107, 2015.
Frauenfelder, R. and Kääb, A. (Eds.): Glacier mapping from
multitemporal optical remote sensing data within the Brahmaputra river
basin: Proceedings of the 33rd International Symposium on Remote Sensing of
Environment, 4–8, 2009.
Frenzel, P., Wrozyna, C., Xie, M., Zhu, L., and Schwalb, A.: Palaeo-water
depth estimation for a 600-year record from Nam Co (Tibet) using an
ostracod-based transfer function, Quaternary Int., 218, 157–165,
https://doi.org/10.1016/j.quaint.2009.06.010, 2010.
Fürstenberg, S., Frenzel, P., Peng, P., Henkel, K., and Wrozyna, C.:
Phenotypical variation in Leucocytherella sinensis Huang, 1982 (Ostracoda):
a new proxy for palaeosalinity in Tibetan lakes, Hydrobiologia, 751, 55–72,
https://doi.org/10.1007/s10750-014-2171-3, 2015.
Ganjurjav, H., Gao, Q., Gornish, E. S., Schwartz, M. W., Liang, Y., Cao, X.,
Zhang, W., Zhang, Y., Li, W., Wan, Y., Li, Y., Danjiu, L., Guo, H., and Lin,
E.: Differential response of alpine steppe and alpine meadow to climate
warming in the central Qinghai–Tibetan Plateau, Agr. Forest
Meteorol., 223, 233–240, https://doi.org/10.1016/j.agrformet.2016.03.017, 2016.
Glassman, S. I., Weihe, C., Li, J., Albright, M. B. N., Looby, C. I.,
Martiny, A. C., Treseder, K. K., Allison, S. D., and Martiny, J. B. H.:
Decomposition responses to climate depend on microbial community
composition, P. Natl. Acad. Sci. USA, 115, 11994–11999, https://doi.org/10.1073/pnas.1811269115, 2018.
Gu, S., Tang, Y., Du, M., Kato, T., Li, Y., Cui, X., and Zhao, X.:
Short-term variation of CO2 flux in relation to environmental controls
in an alpine meadow on the Qinghai-Tibetan Plateau, J. Geophys. Res., 108,
711, https://doi.org/10.1029/2003JD003584, 2003.
Hafner, S., Unteregelsbacher, S., Seeber, E., Lena, B., Xu, X., Li, X.,
Guggenberger, G., Miehe, G., and Kuzyakov, Y.: Effect of grazing on carbon
stocks and assimilate partitioning in a Tibetan montane pasture revealed by
13CO2 pulse labeling, Glob. Change Biol., 18, 528–538,
https://doi.org/10.1111/j.1365-2486.2011.02557.x, 2012.
Harris, R. B.: Rangeland degradation on the Qinghai-Tibetan plateau: A
review of the evidence of its magnitude and causes, J. Arid
Environ., 74, 1–12, https://doi.org/10.1016/j.jaridenv.2009.06.014, 2010.
He, D., Chen, Y., Liu, C., Tao, J., Ding, C., and Chen, Y.: Comparative
phylogeography and evolutionary history of schizothoracine fishes in the
Changtang Plateau and their implications for the lake level and Pleistocene
climate fluctuations, Ecol. Evol., 6, 656–674, 2016.
Herber, J., Klotz, F., Frommeyer, B., Weis, S., Straile, D., Kolar, A., Sikorski, J., Egert, M., Dannenmann, M., and Pester, M.: A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance, Environmental microbiology, 22, 212–228, https://doi.org/10.1111/1462-2920.14840, 2020.
Herrmann, M., Lu, X., Berking, J., Schütt, B., Yao, T., and Mosbrugger,
V.: Reconstructing Holocene vegetation and climate history of Nam Co area
(Tibet), using pollen and other palynomorphs, Quaternary Int., 218,
45–57, https://doi.org/10.1016/j.quaint.2009.05.007, 2010.
Hoorn, C., Mosbrugger, V., Mulch, A., and Antonelli, A.: Biodiversity from
mountain building, Nat. Geosci., 6, https://doi.org/10.1038/ngeo1742, 2013.
Hopping, K. A., Yangzong, C., and Klein, J. A.: Local knowledge production,
transmission, and the importance of village leaders in a network of Tibetan
pastoralists coping with environmental change, Ecol. Soc., 21, 25,
https://doi.org/10.5751/ES-08009-210125, 2016.
Hu, A., Yao, T., Jiao, N., Liu, Y., Yang, Z. A. O., and Liu, X.: Community
structures of ammonia-oxidising archaea and bacteria in high-altitude lakes
on the Tibetan Plateau, Freshwater Biol., 55, 2375–2390, 2010.
Huang, S., Liu, Y., Hu, A., Liu, X., Chen, F., Yao, T., and Jiao, N.:
Genetic diversity of picocyanobacteria in Tibetan lakes: Assessing the
endemic and universal distributions, Appl. Environ. Microbiol.,
80, 7640–7650, https://doi.org/10.1128/AEM.02611-14, 2014.
IPCC: Climate change 2013: The physical science basis; Working Group I
contribution to the fifth assessment report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Elektronische Ressource, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 1535 pp., 2013.
Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-filled seamless
SRTM data v4, International Centre for Tropical Agriculture (CIAT), 2008.
Ji, Q., Yang, T.-b., Dong, J., and He, Y.: Glacier variations in response to
climate change in the eastern Nyainqêntanglha Range, Tibetan Plateau
from 1999 to 2015, Arctic, Antarctic Alpine Res., 50, e1435844,
https://doi.org/10.1080/15230430.2018.1435844, 2018.
Jiang, L., Nielsen, K., Andersen, O. B., and Bauer-Gottwein, P.: Monitoring
recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn
mode data, J. Hydrol., 544, 109–124,
https://doi.org/10.1016/j.jhydrol.2016.11.024, 2017.
Johansson, U. S., Alström, P., Olsson, U., Ericson, P. G. P., Sundberg,
P., and Price, T. D.: Build-up of the Himalayan avifauna through
immigration: a biogeographical analysis of the Phylloscopus and Seicercus
warblers, Evolution, 61, 324–333, 2007.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in
soils, Soil Biol. Biochem., 52, 29–32,
https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kaiser, K., Miehe, G., Barthelmes, A., Ehrmann, O., Scharf, A., Schult, M.,
Schlütz, F., Adamczyk, S., and Frenzel, B.: Turf-bearing topsoils on the
central Tibetan Plateau, China: Pedology, botany, geochronology, CATENA, 73,
300–311, https://doi.org/10.1016/j.catena.2007.12.001, 2008.
Kasper, T., Frenzel, P., Haberzettl, T., Schwarz, A., Daut, G., Meschner,
S., Wang, J., Zhu, L., and Mäusbacher, R.: Interplay between redox
conditions and hydrological changes in sediments from Lake Nam Co (Tibetan
Plateau) during the past 4000 cal BP inferred from geochemical and
micropaleontological analyses, Palaeogeogr. Palaeocl., 392, 261–271, https://doi.org/10.1016/j.palaeo.2013.09.027, 2013.
Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X.:
Temperature and biomass influences on interannual changes in CO2 exchange in
an alpine meadow on the Qinghai-Tibetan Plateau, Glob. Change Biol., 12,
1285–1298, https://doi.org/10.1111/j.1365-2486.2006.01153.x, 2006.
Kato, T., Tang, Y., Song, G., Hirota, M., Cui, X., Du, M., Li, Y., Zhao, X.,
and Oikawa, T.: Seasonal patterns of gross primary production and ecosystem
respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, J.
Geophys. Res., 109, 711, https://doi.org/10.1029/2003JD003951, 2004.
Kato, T., Yamada, K., Tang, Y., Yoshida, N., and Wada, E.: Stable carbon
isotopic evidence of methane consumption and production in three alpine
ecosystems on the Qinghai–Tibetan Plateau, Atmos. Environ., 77,
338–347, https://doi.org/10.1016/j.atmosenv.2013.05.010, 2013.
Keil, A., Berking, J., Mügler, I., Schütt, B., Schwalb, A., and
Steeb, P.: Hydrological and geomorphological basin and catchment
characteristics of Lake Nam Co, South-Central Tibet, Quaternary
Int., 218, 118–130, https://doi.org/10.1016/j.quaint.2009.02.022, 2010.
Klein, J. A., Harte, J., and Zhao, X.-Q.: Experimental warming causes large
and rapid species loss, dampened by simulated grazing, on the Tibetan
Plateau, Ecol. Lett., 7, 1170–1179, https://doi.org/10.1111/j.1461-0248.2004.00677.x,
2004.
Klein, J. A., Harte, J., and Zhao, X.-Q.: Decline in Medicinal and Forage
Species with Warming is Mediated by Plant Traits on the Tibetan Plateau,
Ecosystems, 11, 775–789, https://doi.org/10.1007/s10021-008-9160-1, 2008.
Kong, P., Na, C., Brown, R., Fabel, D., Freeman, S., Xiao, W., and Wang, Y.:
Cosmogenic 10Be and 26Al dating of paleolake shorelines in Tibet, J.
Asian Earth Sci., 41, 263–273, https://doi.org/10.1016/j.jseaes.2011.02.016, 2011.
Lami, A., Turner, S., Musazzi, S., Gerli, S., Guilizzoni, P., Rose, N. L.,
Yang, H., Wu, G., and Yang, R.: Sedimentary evidence for recent increases in
production in Tibetan plateau lakes, Hydrobiologia, 648, 175–187,
https://doi.org/10.1007/s10750-010-0263-2, 2010.
Lazhu, Yang, K., Wang, J., Lei, Y., Chen, Y., Zhu, L., Ding, B., and Qin,
J.: Quantifying evaporation and its decadal change for Lake Nam Co, central
Tibetan Plateau, J. Geophys. Res.-Atmos., 121, 7578–7591, 2016.
Lehmkuhl, F., Klinge, M., and Lang, A.: Late Quaternary glacier advances,
lake level fluctuations and aeolian sedimentation in Southern Tibet,
Z. Geomorphol. Supp., 126, 183–218, 2002.
Lei, F., Qu, Y., and Song, G.: Species diversification and phylogeographical
patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and
Quaternary glaciations, Curr. Zool., 60, 149–161, 2014.
Lei, Y., Yao, T., Bird, B. W., Yang, K., Zhai, J., and Sheng, Y.: Coherent
lake growth on the central Tibetan Plateau since the 1970s: Characterization
and attribution, J. Hydrol., 483, 61–67,
https://doi.org/10.1016/j.jhydrol.2013.01.003, 2013.
Li, B., Jing, K., Zhang, Q., Yang, Y., Yin, Z., and Wang, F.: Formation and
Evolution of the Drainage Systems in Xizang Area, Beijing, 9 pp., 1981.
Li, G. and Lin, H.: Recent decadal glacier mass balances over the Western
Nyainqentanglha Mountains and the increase in their melting contribution to
Nam Co Lake measured by differential bistatic SAR interferometry, Global
Planet. Change, 149, 177–190, https://doi.org/10.1016/j.gloplacha.2016.12.018, 2017.
Li, J., Yan, D., Pendall, E., Pei, J., Noh, N. J., He, J.-S., Li, B., Nie,
M., and Fang, C.: Depth dependence of soil carbon temperature sensitivity
across Tibetan permafrost regions, Soil Biol. Biochem., 126,
82–90, 2018.
Li, M., Kang, S., Zhu, L., You, Q., Zhang, Q., and Wang, J.: Mineralogy and
geochemistry of the Holocene lacustrine sediments in Nam Co, Tibet,
Quaternary Int., 187, 105–116, 2008a.
Li, Q.: Spatial variability and long-term change in pollen diversity in Nam
Co catchment (central Tibetan Plateau): Implications for alpine vegetation
restoration from a paleoecological perspective, Sci. China Earth Sci., 61,
270–284, https://doi.org/10.1007/s11430-017-9133-0, 2018.
Li, Q., Lu, H., Zhu, L., Wu, N., Wang, J., and Lu, X.: Pollen-inferred
climate changes and vertical shifts of alpine vegetation belts on the
northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau)
since 8.4 kyr BP, The Holocene, 21, 939–950, https://doi.org/10.1177/0959683611400218,
2011.
Li, X. and Cheng, G.: A GIS-aided response model of high-altitude permafrost
to global change, Sci. China Ser. D, 42, 72–79, https://doi.org/10.1007/BF02878500, 1999.
Li, Y., Luo, T., and Lu, Q.: Plant height as a simple predictor of the root
to shoot ratio: Evidence from alpine grasslands on the Tibetan Plateau,
J. Veg. Sci., 19, 245–252, https://doi.org/10.3170/2007-8-18365,
2008b.
Liao, J., Shen, G., and Li, Y.: Lake variations in response to climate
change in the Tibetan Plateau in the past 40 years, Int. J.
Digit. Earth, 6, 534–549, https://doi.org/10.1080/17538947.2012.656290, 2013.
Liu, S., Schleuss, P.-M., and Kuzyakov, Y.: Carbon and Nitrogen Losses from
Soil Depend on Degradation of Tibetan Kobresia Pastures, Land Degrad.
Develop., 28, 1253–1262, https://doi.org/10.1002/ldr.2522, 2017a.
Liu, W.-S., Dong, M., Song, Z.-P., and Wei, W.: Genetic diversity pattern of
Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau,
Ann. Appl. Biol., 154, 57–65,
https://doi.org/10.1111/j.1744-7348.2008.00274.x, 2009.
Liu, Y., Fan, J., Shi, Z., Yang, X., and Harris, W.: Relationships between
plateau pika (Ochotona curzoniae) densities and biomass and biodiversity
indices of alpine meadow steppe on the Qinghai–Tibet Plateau China,
Ecol. Eng., 102, 509–518, https://doi.org/10.1016/j.ecoleng.2017.02.026,
2017b.
López-Pujol, J., Zhang, F.-M., Sun, H.-Q., Ying, T.-S., and Ge, S.:
Centres of plant endemism in China: places for survival or for speciation?,
J. Biogeogr., 38, 1267–1280, 2011.
Ma, N., Szilagyi, J., Niu, G.-Y., Zhang, Y., Zhang, T., Wang, B., and Wu,
Y.: Evaporation variability of Nam Co Lake in the Tibetan Plateau and its
role in recent rapid lake expansion, J. Hydrol., 537, 27–35,
https://doi.org/10.1016/j.jhydrol.2016.03.030, 2016.
Ma, Y., Wang, Y., Wu, R., Hu, Z., Yang, K., Li, M., Ma, W., Zhong, L., Sun,
F., Chen, X., Zhu, Z., Wang, S., and Ishikawa, H.: Recent advances on the
study of atmosphere-land interaction observations on the Tibetan Plateau,
Hydrol. Earth Syst. Sci., 13, 1103–1111, https://doi.org/10.5194/hess-13-1103-2009,
2009.
Miehe, G., Bach, K., Miehe, S., Kluge, J., Yongping, Y., La Duo, Co, S., and
Wesche, K.: Alpine steppe plant communities of the Tibetan highlands,
Appl. Veg. Sci., 14, 547–560,
https://doi.org/10.1111/j.1654-109X.2011.01147.x, 2011a.
Miehe, G., Miehe, S., Bach, K., Nölling, J., Hanspach, J., Reudenbach,
C., Kaiser, K., Wesche, K., Mosbrugger, V., Yang, Y. P., and Ma, Y.: Plant
communities of central Tibetan pastures in the Alpine Steppe/Kobresia
pygmaea ecotone, J. Arid Environ., 75, 711–723,
https://doi.org/10.1016/j.jaridenv.2011.03.001, 2011b.
Miehe, G., Miehe, S., Böhner, J., Kaiser, K., Hensen, I., Madsen, D.,
Liu, J., and Opgenoorth, L.: How old is the human footprint in the world's
largest alpine ecosystem? A review of multiproxy records from the Tibetan
Plateau from the ecologists' viewpoint, Quaternary Sci. Rev., 86,
190–209, https://doi.org/10.1016/j.quascirev.2013.12.004, 2014.
Miehe, G., Miehe, S., Kaiser, K., Jianquan, L., and Zhao, X.: Status and
Dynamics of the Kobresia pygmaea Ecosystem on the Tibetan Plateau, AMBIO, 37, 272–279,
https://doi.org/10.1579/0044-7447(2008)37[272:SADOTK]2.0.CO;2, 2008.
Miehe, G., Miehe, S., Schlütz, F., Kaiser, K., and La Duo:
Palaeoecological and experimental evidence of former forests and woodlands
in the treeless desert pastures of Southern Tibet (Lhasa, A.R. Xizang,
China), Palaeogeogr. Palaeocl., 242, 54–67,
https://doi.org/10.1016/j.palaeo.2006.05.010, 2006.
Miehe, G., Schleuss, P.-M., Seeber, E., Babel, W., Biermann, T., Braendle,
M., Chen, F., Coners, H., Foken, T., Gerken, T., Graf, H.-F., Guggenberger,
G., Hafner, S., Holzapfel, M., Ingrisch, J., Kuzyakov, Y., Lai, Z., Lehnert,
L., Leuschner, C., Li, X., Liu, J., Liu, S., Ma, Y., Miehe, S., Mosbrugger,
V., Noltie, H. J., Schmidt, J., Spielvogel, S., Unteregelsbacher, S., Wang,
Y., Willinghöfer, S., Xu, X., Yang, Y., Zhang, S., Opgenoorth, L., and
Wesche, K.: The Kobresia pygmaea ecosystem of the Tibetan highlands –
Origin, functioning and degradation of the world's largest pastoral alpine
ecosystem: Kobresia pastures of Tibet, Sci. Total Environ.,
648, 754–771, https://doi.org/10.1016/j.scitotenv.2018.08.164, 2019.
Mischke, S.: Quaternary Ostracods from the Tibetan Plateau and Their
Significance for Environmental and Climate-Change Studies, in: Ostracoda as
proxies for Quaternary climate change, 1st Edn., edited by: Horne, D. J.,
Developments in Quaternary Sciences, 17, Elsevier, Amsterdam, 263–279,
2012.
Mosbrugger, V., Favre, A., Muellner-Riehl, A., Päckert, M., and Mulch,
A.: Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region,
429 pp., 2018.
Nan, Z.: Prediction of permafrost distribution on the Qinghai-Tibet Plateau
in the next 50 and 100 years, Sci. China Ser. D, 48, 797–804,
https://doi.org/10.1360/03yd0258, 2005.
Nölling, J.: Satellitenbildgestützte Vegetationskartierung von
Hochweidegebieten des Tibetischen Plateaus auf Grundlage von plotbasierten
Vegetationsaufnahmen mit multivariater statistischer Analyse: Ein Beitrag
zum Umweltmonitoring, Diplomarbeit, Fachbereich Geographie, Universität
Marburg, Marburg, 159 pp., 2006.
Oheimb, P. V. von, Albrecht, C., Riedel, F., Bössneck, U., Zhang, H.,
and Wilke, T.: Testing the role of the Himalaya Mountains as a dispersal
barrier in freshwater gastropods (Gyraulus spp.), Biol. J. Linn. Soc. Lond., 109,
526–534, https://doi.org/10.1111/bij.12068, 2013.
Oheimb, P. V. von, Albrecht, C., Riedel, F., Du, L., Yang, J., Aldridge, D.
C., Bößneck, U., Zhang, H., and Wilke, T.: Freshwater biogeography
and limnological evolution of the tibetan plateau – insights from a
plateau-wide distributed gastropod taxon (Radix spp.), PloS One, 6, e26307,
https://doi.org/10.1371/journal.pone.0026307, 2011.
Ohtsuka, T., Hirota, M., Zhang, X., Shimono, A., Senga, Y., Du, M.,
Yonemura, S., Kawashima, S., and Tang, Y.: Soil organic carbon pools in
alpine to nival zones along an altitudinal gradient (4400–5300 m) on the
Tibetan Plateau, Polar Sci., 2, 277–285,
https://doi.org/10.1016/j.polar.2008.08.003, 2008.
Päckert, M., Martens, J., Sun, Y.-H., and Tietze, D. T.: Evolutionary
history of passerine birds (Aves: Passeriformes) from the Qinghai–Tibetan
plateau: From a pre-Quarternary perspective to an integrative biodiversity
assessment, J. Ornithol., 156, 355–365, 2015.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraër, M., Caceres, E. B.,
Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., and Liu, X. D.:
Elevation-dependent warming in mountain regions of the world, Nat. Clim.
Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
Qiu, J.: China: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a,
2008.
Qu, B., Sillanpää, M., Li, C., Kang, S., Stubbins, A., Yan, F., Aho,
K. S., Zhou, F., and Raymond, P. A.: Aged dissolved organic carbon exported
from rivers of the Tibetan Plateau, PloS One, 12, e0178166,
https://doi.org/10.1371/journal.pone.0178166, 2017.
R Core Team: R: A Language and Environment for Statistical Computing,
Vienna, Austria, available at: https://www.R-project.org/ (last access: 4 March 2020), 2019.
Renner, S. S.: Available data point to a 4-km-high Tibetan Plateau by 40 Ma,
but 100 molecular-clock papers have linked supposed recent uplift to young
node ages, J. Biogeogr., 43, 1479–1487, https://doi.org/10.1111/jbi.12755, 2016.
RStudio Team: RStudio: Integrated Development Environment for R, Boston, MA,
http://www.rstudio.com/ (last access: 4 March 2020), 2018.
Schlütz, F., Miehe, G., and Lehmkuhl, F.: Zur Geschichte des
größten alpinen Ökosystems der Erde: Palynologische
Untersuchungen zu den Kobresia-Matten SE-Tibets, Reinhardt Tüxen
gesellschaft, Hannover, 19, 14 pp., 2007.
Schütt, B., Berking, J., Frechen, M., Frenzel, P., Schwalb, A., and
Wrozyna, C.: Late Quaternary transition from lacustrine to a
fluvio-lacustrine environment in the north-western Nam Co, Tibetan Plateau,
China, Quaternary Int., 218, 104–117,
https://doi.org/10.1016/j.quaint.2009.05.009, 2010.
Shangguan, D. H., Liu, S. Y., Ding, L. F., Zhang, S.-q., Li, G., Zhang, Y.,
and Li, J.: Variation of glaciers in the Western Nyainqêntanglha range
of Tibetan Plateau during 1970–2000, J. Glaciol. Geocryol.,
30, 204–210, 2008.
Simpson, J. R., Cheng, X., and Miyazaki, A.: China's livestock and related
agriculture: Projections to 2025, CAB Internat, Wallingford, 474 pp., 1994.
Smith, J. R., Letten, A. D., Ke, P.-J., Anderson, C. B., Hendershot, J. N.,
Dhami, M. K., Dlott, G. A., Grainger, T. N., Howard, M. E., Morrison,
B.M.L., Routh, D., San Juan, P. A., Mooney, H. A., Mordecai, E. A.,
Crowther, T. W., and Daily, G. C.: A global test of ecoregions, Nat. Ecol. Evol., 2, 1889–1896,
https://doi.org/10.1038/s41559-018-0709-x, 2018.
Spencer, R. G. M., Guo, W., Raymond, P. A., Dittmar, T., Hood, E., Fellman,
J., and Stubbins, A.: Source and biolability of ancient dissolved organic
matter in glacier and lake ecosystems on the Tibetan Plateau, Geochim.
Cosmochim. Ac., 142, 64–74, https://doi.org/10.1016/j.gca.2014.08.006, 2014.
Tian, K., Liu, J., Kang, S., Campbell, I. B., Zhang, F., Zhang, Q., and Lu,
W.: Hydrothermal pattern of frozen soil in Nam Co lake basin, the Tibetan
Plateau, Environ. Geol., 57, 1775–1784, https://doi.org/10.1007/s00254-008-1462-2, 2009.
Unteregelsbacher, S., Hafner, S., Guggenberger, G., Miehe, G., Xu, X., Liu,
J., and Kuzyakov, Y.: Response of long-, medium- and short-term processes of
the carbon budget to overgrazing-induced crusts in the Tibetan Plateau,
Biogeochemistry, 111, 187–201, https://doi.org/10.1007/s10533-011-9632-9, 2012.
Velde, B.: Structure of surface cracks in soil and muds, Geoderma, 93,
101–124, https://doi.org/10.1016/S0016-7061(99)00047-6, 1999.
Vivian-Smith, G.: Microtopographic Heterogeneity and Floristic Diversity in
Experimental Wetland Communities, J. Ecol., 85, 71–82,
https://doi.org/10.2307/2960628, 1997.
Voelker, G., Semenov, G., Fadeev, I. V., Blick, A., and Drovetski, S. V.:
The biogeographic history of Phoenicurus redstarts reveals an allopatric
mode of speciation and an out-of-Himalayas colonization pattern, Syst.
Biodivers., 13, 296–305, 2015.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.
J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological
responses to recent climate change, Nature, 416, 389–395,
https://doi.org/10.1038/416389a, 2002.
Wang, G., Qian, J., Cheng, G., and Lai, Y.: Soil organic carbon pool of
grassland soils on the Qinghai-Tibetan Plateau and its global implication,
Sci. Total Environ., 291, 207–217,
https://doi.org/10.1016/S0048-9697(01)01100-7, 2002.
Wang, G., Wang, Y., Li, Y., and Cheng, H.: Influences of alpine ecosystem
responses to climatic change on soil properties on the Qinghai–Tibet
Plateau, China, CATENA, 70, 506–514, https://doi.org/10.1016/j.catena.2007.01.001,
2007.
Wang, J., Zhu, L., Daut, G., Ju, J., Lin, X., Wang, Y., and Zhen, X.:
Investigation of bathymetry and water quality of Lake Nam Co, the largest
lake on the central Tibetan Plateau, China, Limnology, 10, 149–158,
https://doi.org/10.1007/s10201-009-0266-8, 2009a.
Wang, L.: Meteorological observation data of Namuco multi circle
comprehensive observation and research station (2017–2018), National Tibetan
Plateau Data Center, available at: https://data.tpdc.ac.cn/en/data/3767cacc-96e3-48b2-b66c-dac92800ca69/ (last access: 4 March 2020), 2019.
Wang, L., Liu, H., Shao, Y., Liu, Y., and Sun, J.: Water and CO2 fluxes over
semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan
Plateau, Theor. Appl. Climatol., 131, 547–556, https://doi.org/10.1007/s00704-016-1997-1,
2018a.
Wang, L. and Yi, C.: Properties and periglacial processes in alpine meadow
soils, western Nyainqentanglha Mountains, Tibet, Quaternary Int.,
236, 65–74, https://doi.org/10.1016/j.quaint.2010.06.003, 2011.
Wang, L., Yi, C., Xu, X., Schütt, B., Liu, K., and Zhou, L.: Soil
properties in two soil profiles from terraces of the Nam Co Lake in Tibet,
China, J. Mt. Sci., 6, 354–361, https://doi.org/10.1007/s11629-009-1017-3, 2009b.
Wang, R., Yang, X., Langdon, P., and Zhang, E.: Limnological responses to
warming on the Xizang Plateau, Tibet, over the past 200 years, J.
Paleolimnol., 45, 257–271, https://doi.org/10.1007/s10933-011-9496-y, 2011.
Wang, X., Siegert, F., Zhou, A.-G., and Franke, J.: Glacier and glacial lake
changes and their relationship in the context of climate change, Central
Tibetan Plateau 1972–2010, Glob. Planet. Change, 111, 246–257,
https://doi.org/10.1016/j.gloplacha.2013.09.011, 2013.
Wang, X., Wang, Y., Li, Q., Tseng, Z. J., Takeuchi, G. T., Deng, T., Xie,
G., Chang, M.-M., and Wang, N.: Cenozoic vertebrate evolution and
paleoenvironment in Tibetan Plateau: Progress and prospects, Gondwana
Res., 27, 1335–1354, 2015.
Wang, Y., Lehnert, L. W., Holzapfel, M., Schultz, R., Heberling, G.,
Görzen, E., Meyer, H., Seeber, E., Pinkert, S., Ritz, M., Fu, Y.,
Ansorge, H., Bendix, J., Seifert, B., Miehe, G., Long, R.-J., Yang, Y.-P.,
and Wesche, K.: Multiple indicators yield diverging results on grazing
degradation and climate controls across Tibetan pastures, Ecol.
Indic., 93, 1199–1208, https://doi.org/10.1016/j.ecolind.2018.06.021, 2018b.
Wang, Y. and Wesche, K.: Vegetation and soil responses to livestock grazing
in Central Asian grasslands: a review of Chinese literature, Biodivers.
Conserv., 25, 2401–2420, https://doi.org/10.1007/s10531-015-1034-1, 2016.
Wang, Y. and Wu, G.: Meteorological observation data from the integrated
observation and research station of multiple spheres in Namco (2005–2016),
National Tibetan Plateau Data Center,
https://doi.org/10.11888/AtmosPhys.tpe.00000049.file, 2018.
Wang, Y., Zhu, L. P., Wang, J. B., Ju, J. T., and Lin, X.: The spatial
distribution and sedimentary processes of organic matter in surface
sediments of Nam Co, Central Tibetan Plateau, Chin. Sci. Bull., 57,
4753–4764, https://doi.org/10.1007/s11434-012-5500-9, 2012.
Wei, D., Xu, R., Tenzin, T., Wang, Y., and Wang, Y.: Considerable methane
uptake by alpine grasslands despite the cold climate: in situ measurements
on the central Tibetan Plateau, 2008–2013, Glob. Change Biol., 21,
777–788, https://doi.org/10.1111/gcb.12690, 2015.
Wickham, H.: tidyverse: Easily Install and Load the “Tidyverse”,
available at: https://CRAN.R-project.org/package=tidyverse (last access: 4 March 2020), 2017.
Wrozyna, C., Frenzel, P., Daut, G., Mäusbacher, R., Zhu, L., and
Schwalb, A.: Holocene Lake-Level Changes of Lake Nam Co, Tibetan Plateau,
Deduced from Ostracod Assemblages and δ18O and δ13C
Signatures of Their Valves, Dev. Quaternary Sci., 17, 281 pp.,
2012.
Wrozyna, C., Frenzel, P., Steeb, P., Zhu, L., van Geldern, R., Mackensen,
A., and Schwalb, A.: Stable isotope and ostracode species assemblage
evidence for lake level changes of Nam Co, southern Tibet, during the past
600 years, Quaternary Int., 212, 2–13,
https://doi.org/10.1016/j.quaint.2008.12.010, 2010.
Wu, K., Liu, S., Guo, W., Wei, J., Xu, J., Bao, W., and Yao, X.: Glacier
change in the western Nyainqentanglha Range Tibetan Plateau using historical
maps and Landsat imagery, J. Mt. Sci., 13, 1358–1374, 2016.
Wu, Q., Zhang, T., and Liu, Y.: Permafrost temperatures and thickness on the
Qinghai-Tibet Plateau, Glob. Planet. Change, 72, 32–38,
https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Wu, Y., Zheng, H., Zhang, B., Chen, D., and Lei, L.: Long-Term Changes of
Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan
Plateau, J. Hydrometeor., 15, 1312–1322, https://doi.org/10.1175/JHM-D-13-093.1, 2014.
Wu, Y. and Zhu, L.: The response of lake-glacier variations to climate
change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000, J.
Geogr. Sci., 18, 177–189, https://doi.org/10.1007/s11442-008-0177-3, 2008.
Wünnemann, B., Yan, D., Andersen, N., Riedel, F., Zhang, Y., Sun, Q.,
and Hoelzmann, P.: A 14 ka high-resolution δ18O lake record reveals
a paradigm shift for the process-based reconstruction of hydroclimate on the
northern Tibetan Plateau, Quaternary Sci. Rev., 200, 65–84,
https://doi.org/10.1016/j.quascirev.2018.09.040, 2018.
Yan, Y., Ganjurjav, H., Hu, G., Liang, Y., Li, Y., He, S., Danjiu, L., Yang,
J., and Gao, Q.: Nitrogen deposition induced significant increase of N2O
emissions in an dry alpine meadow on the central Qinghai–Tibetan Plateau,
Agriculture, Ecosyst. Environ., 265, 45–53,
https://doi.org/10.1016/j.agee.2018.05.031, 2018.
Yang, M., Wang, S., Yao, T., Gou, X., Lu, A., and Guo, X.: Desertification
and its relationship with permafrost degradation in Qinghai-Xizang (Tibet)
plateau, Cold Reg. Sci. Technol., 39, 47–53,
https://doi.org/10.1016/j.coldregions.2004.01.002, 2004.
Yang, S., Dong, H., and Lei, F.: Phylogeography of regional fauna on the
Tibetan Plateau: a review, Prog. Nat. Sci., 19, 789–799, 2009.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm,
C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A
review of climatic controls on δ 18 O in precipitation over the
Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525–548,
https://doi.org/10.1002/rog.20023, 2013.
Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent Glacial Retreat and
Its Impact on Hydrological Processes on the Tibetan Plateau, China, and
Surrounding Regions, Arctic, Antarctic Alpine Res., 39, 642–650,
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2, 2007.
Yingfang, C., Xun, K., Xiaowei, G., Guangmin, C., and Du Yangong: Nitrous
Oxide Emission Rates over 10 Years in an Alpine Meadow on the Tibetan
Plateau, Pol. J. Environ. Stud., 27, 1353–1358, https://doi.org/10.15244/pjoes/76795,
2018.
Yu, F.-H., Li, P.-X., Li, S.-L., and He, W.-M.: Kobresia tibetica tussocks
facilitate plant species inside them and increase diversity and
reproduction, Basic Appl. Ecol., 11, 743–751,
https://doi.org/10.1016/j.baae.2010.09.005, 2010.
Zhang, B., Wu, Y., Zhu, L., Wang, J., Li, J., and Chen, D.: Estimation and
trend detection of water storage at Nam Co Lake, central Tibetan Plateau,
J. Hydrol., 405, 161–170, https://doi.org/10.1016/j.jhydrol.2011.05.018,
2011.
Zhang, G., Li, J., and Zheng, G.: Lake-area mapping in the Tibetan Plateau:
an evaluation of data and methods, Int. J. Remote Sens.,
38, 742–772, https://doi.org/10.1080/01431161.2016.1271478, 2017.
Zhang, P., Chen, Y.-Q., Zhou, H., Liu, Y.-F., Wang, X.-L., Papenfuss, T. J.,
Wake, D. B., and Qu, L.-H.: Phylogeny, evolution, and biogeography of
Asiatic Salamanders (Hynobiidae), P. Natl. Acad.
Sci. USA, 103, 7360–7365, 2006.
Zhang, T., Zhang, Y., Xu, M., Zhu, J., Chen, N., Jiang, Y., Huang, K., Zu,
J., Liu, Y., and Yu, G.: Water availability is more important than
temperature in driving the carbon fluxes of an alpine meadow on the Tibetan
Plateau, Agr. Forest Meteorol., 256-257, 22–31,
https://doi.org/10.1016/j.agrformet.2018.02.027, 2018.
Zhao, J., Li, R., Li, X., and Tian, L.: Environmental controls on soil
respiration in alpine meadow along a large altitudinal gradient on the
central Tibetan Plateau, CATENA, 159, 84–92,
https://doi.org/10.1016/j.catena.2017.08.007, 2017.
Zhao, J., Luo, T., Li, R., Wei, H., Li, X., Du, M., and Tang, Y.:
Precipitation alters temperature effects on ecosystem respiration in Tibetan
alpine meadows, Agr. Forest Meteorol., 252, 121–129,
https://doi.org/10.1016/j.agrformet.2018.01.014, 2018.
Zhou, H., Zhao, X., Tang, Y., Gu, S., and Zhou, L.: Alpine grassland
degradation and its control in the source region of the Yangtze and Yellow
Rivers, China, Grassl. Sci., 51, 191–203,
https://doi.org/10.1111/j.1744-697X.2005.00028.x, 2005.
Zhou, S., Kang, S., Chen, F., and Joswiak, D. R.: Water balance observations
reveal significant subsurface water seepage from Lake Nam Co, south-central
Tibetan Plateau, J. Hydrol., 491, 89–99,
https://doi.org/10.1016/j.jhydrol.2013.03.030, 2013.
Zhou, Y., Jiao, S., Li, N., Grace, J., Yang, M., Lu, C., Geng, X., Zhu, X.,
Zhang, L., and Lei, G.: Impact of plateau pikas (Ochotona curzoniae) on soil
properties and nitrous oxide fluxes on the Qinghai-Tibetan Plateau, PloS
One, 13, e0203691, https://doi.org/10.1371/journal.pone.0203691, 2018.
Zhu, D., Xitao, Z., Xiangang, M., Zhonghai, W. U., Zhenhan, W. U.,
Xiangyang, F., Zhaogang, S., Qisheng, L. I. U., and Meiling, Y.: Quaternary
Lake Deposits of Nam Co, Tibet, with a Discussion of the Connection of Nam
Co with Ring Co-Jiuru Co, Acta Geologica Sinica – English Edition, 76,
283–291, https://doi.org/10.1111/j.1755-6724.2002.tb00544.x, 2002.
Zhu, L., Lü, X., Wang, J., Peng, P., Kasper, T., Daut, G., Haberzettl,
T., Frenzel, P., Li, Q., Yang, R., Schwalb, A., and Mäusbacher, R.:
Climate change on the Tibetan Plateau in response to shifting atmospheric
circulation since the LGM, Sci. Rep., 5, 13318,
https://doi.org/10.1038/srep13318, 2015a.
Zhu, L., Peng, P., Xie, M., Wang, J., Frenzel, P., Wrozyna, C., and Schwalb,
A.: Ostracod-based environmental reconstruction over the last 8,400 years of
Nam Co Lake on the Tibetan plateau, Hydrobiologia, 648, 157–174,
https://doi.org/10.1007/s10750-010-0149-3, 2010a.
Zhu, L., Xie, M., and Wu, Y.: Quantitative analysis of lake area variations
and the influence factors from 1971 to 2004 in the Nam Co basin of the
Tibetan Plateau, Chin. Sci. Bull., 55, 1294–1303,
https://doi.org/10.1007/s11434-010-0015-8, 2010b.
Zhu, Z., Ma, Y., Li, M., Hu, Z., Xu, C., Zhang, L., Han, C., Wang, Y., and
Ichiro, T.: Carbon dioxide exchange between an alpine steppe ecosystem and
the atmosphere on the Nam Co area of the Tibetan Plateau, Agr.
Forest Meteorol., 203, 169–179, https://doi.org/10.1016/j.agrformet.2014.12.013,
2015b.
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global...
Altmetrics
Final-revised paper
Preprint