Articles | Volume 17, issue 10
https://doi.org/10.5194/bg-17-2825-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2825-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)
Hannah K. Donald
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, SO14 3ZH, UK
Gavin L. Foster
CORRESPONDING AUTHOR
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, SO14 3ZH, UK
Nico Fröhberg
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, SO14 3ZH, UK
George E. A. Swann
School of Geography, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK
Alex J. Poulton
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre,
Southampton, SO14 3ZH, UK
The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK
C. Mark Moore
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, SO14 3ZH, UK
Matthew P. Humphreys
NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean
Systems (OCS), and Utrecht University, P.O. Box 59, 1790 AB Den Burg (Texel),
the Netherlands
Related authors
No articles found.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Matthew P. Humphreys
Ocean Sci., 20, 1325–1350, https://doi.org/10.5194/os-20-1325-2024, https://doi.org/10.5194/os-20-1325-2024, 2024
Short summary
Short summary
The ocean takes up carbon dioxide (CO2) from the atmosphere, slowing climate change. This CO2 uptake is controlled by a property called ƒCO2. Seawater ƒCO2 changes as seawater warms or cools, although by an uncertain amount; measurements and calculations give inconsistent results. Here, we work out how ƒCO2 should, in theory, respond to temperature. This matches field data and model calculations but still has discrepancies with scarce laboratory results, which need more measurements to resolve.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
EGUsphere, https://doi.org/10.5194/egusphere-2024-990, https://doi.org/10.5194/egusphere-2024-990, 2024
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change the Southern Ocean will be warmer, more acidic, more productive and have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters, we propose ways of reducing this uncertainty.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot
Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, https://doi.org/10.5194/gmd-15-15-2022, 2022
Short summary
Short summary
The ocean helps to mitigate our impact on Earth's climate by absorbing about a quarter of the carbon dioxide (CO2) released by human activities each year. However, once absorbed, chemical reactions between CO2 and water reduce seawater pH (
ocean acidification), which may have adverse effects on marine ecosystems. Our Python package, PyCO2SYS, models the chemical reactions of CO2 in seawater, allowing us to quantify the corresponding changes in pH and related chemical properties.
Luca Possenti, Ingunn Skjelvan, Dariia Atamanchuk, Anders Tengberg, Matthew P. Humphreys, Socratis Loucaides, Liam Fernand, and Jan Kaiser
Ocean Sci., 17, 593–614, https://doi.org/10.5194/os-17-593-2021, https://doi.org/10.5194/os-17-593-2021, 2021
Short summary
Short summary
A Seaglider was deployed for 8 months in the Norwegian Sea mounting an oxygen and, for the first time, a CO2 optode and a chlorophyll fluorescence sensor. The oxygen and CO2 data were used to assess the spatial and temporal variability and calculate the net community production, N(O2) and N(CT). The dataset was used to calculate net community production from inventory changes, air–sea flux, diapycnal mixing and entrainment.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Joost de Vries, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee
Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, https://doi.org/10.5194/bg-18-1161-2021, 2021
Short summary
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Angela A. Bahamondes Dominguez, Anna E. Hickman, Robert Marsh, and C. Mark Moore
Geosci. Model Dev., 13, 4019–4040, https://doi.org/10.5194/gmd-13-4019-2020, https://doi.org/10.5194/gmd-13-4019-2020, 2020
Short summary
Short summary
The central Celtic Sea has previously been studied with a 1-D model called S2P3, showing discrepancies between observations and the model results due to poor representation of some processes. Therefore, the S2P3 model was developed to include zooplankton and phytoplankton cells' adaptation to changes in irradiance. Results demonstrate that better agreement with biological observations can be achieved when the model includes these processes and is adequately constrained.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Pieter Demuynck, Toby Tyrrell, Alberto Naveira Garabato, Mark Christopher Moore, and Adrian Peter Martin
Biogeosciences, 17, 2289–2314, https://doi.org/10.5194/bg-17-2289-2020, https://doi.org/10.5194/bg-17-2289-2020, 2020
Short summary
Short summary
The availability of macronutrients N and Si is of key importance to sustain life in the Southern Ocean. N and Si are available in abundance at the southern boundary of the Southern Ocean due to constant supply from the deep ocean. In the more northern regions of the Southern Ocean, a decline in macronutrient concentration is noticed, especially strong for Si rather than N. This paper uses a simplified biogeochemical model to investigate processes responsible for this decline in concentration.
Frances E. Hopkins, Philip D. Nightingale, John A. Stephens, C. Mark Moore, Sophie Richier, Gemma L. Cripps, and Stephen D. Archer
Biogeosciences, 17, 163–186, https://doi.org/10.5194/bg-17-163-2020, https://doi.org/10.5194/bg-17-163-2020, 2020
Short summary
Short summary
We investigated the effects of ocean acidification (OA) on the production of climate active gas dimethylsulfide (DMS) in polar waters. We found that polar DMS production was unaffected by OA – in contrast to temperate waters, where large increases in DMS occurred. The regional differences in DMS response may reflect natural variability in community adaptation to ambient carbonate chemistry and should be taken into account in predicting the influence of future DMS emissions on Earth's climate.
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019, https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
Short summary
The carbon isotopes in algae can be used to predict food sources and environmental change. We explore how dissolved carbon is taken up by algae in the South Atlantic Ocean and how this affects their carbon isotope signature. We find that cell size controls isotope fractionation. We use our results to investigate how climate change may impact the carbon isotopes in algae. We suggest a shift to smaller algae in this region would decrease the carbon isotope ratio at the base of the food web.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Yingxu Wu, Mathis P. Hain, Matthew P. Humphreys, Sue Hartman, and Toby Tyrrell
Biogeosciences, 16, 2661–2681, https://doi.org/10.5194/bg-16-2661-2019, https://doi.org/10.5194/bg-16-2661-2019, 2019
Short summary
Short summary
This study takes advantage of the GLODAPv2 database to investigate the processes driving the surface ocean dissolved inorganic carbon distribution, with the focus on its latitudinal gradient between the polar oceans and the low-latitude oceans. Based on our quantitative study, we find that temperature-driven CO2 gas exchange and high-latitude upwelling of DIC- and TA-rich deep waters are the two major drivers, with the importance of the latter not having been previously realized.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Janet E. Burke, Willem Renema, Michael J. Henehan, Leanne E. Elder, Catherine V. Davis, Amy E. Maas, Gavin L. Foster, Ralf Schiebel, and Pincelli M. Hull
Biogeosciences, 15, 6607–6619, https://doi.org/10.5194/bg-15-6607-2018, https://doi.org/10.5194/bg-15-6607-2018, 2018
Short summary
Short summary
Metabolic rates are sensitive to environmental conditions and can skew geochemical measurements. However, there is no way to track these rates through time. Here we investigate the controls of test porosity in planktonic foraminifera (organisms commonly used in paleoclimate studies) as a potential proxy for metabolic rate. We found that the porosity varies with body size and temperature, two key controls on metabolic rate, and that it can respond to rapid changes in ambient temperature.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Rowan Dejardin, Sev Kender, Claire S. Allen, Melanie J. Leng, George E. A. Swann, and Victoria L. Peck
J. Micropalaeontol., 37, 25–71, https://doi.org/10.5194/jm-37-25-2018, https://doi.org/10.5194/jm-37-25-2018, 2018
Helen E. K. Smith, Alex J. Poulton, Rebecca Garley, Jason Hopkins, Laura C. Lubelczyk, Dave T. Drapeau, Sara Rauschenberg, Ben S. Twining, Nicholas R. Bates, and William M. Balch
Biogeosciences, 14, 4905–4925, https://doi.org/10.5194/bg-14-4905-2017, https://doi.org/10.5194/bg-14-4905-2017, 2017
Short summary
Short summary
The Great Calcite Belt (GCB), a region of high calcite concentration from coccolithophores, covers 60 % of the Southern Ocean area. We examined the influence of temperature, macronutrients, and carbonate chemistry on the distribution of mineralizing phytoplankton in the GCB. Coccolithophores occupy a niche in the Southern Ocean after the diatom spring bloom depletes silicic acid. No single environmental variable holds a dominant influence over phytoplankton biogeography in summer GCB conditions.
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017, https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Short summary
It is still unclear whether foraminifera (calcifying plankton that play an important role in cycling carbon) will have difficulty in making their shells in more acidic oceans, with different studies often reporting apparently conflicting results. We used live lab cultures, mathematical models, and fossil measurements to test this question, and found low pH does reduce calcification. However, we find this response is likely size-dependent, which may have obscured this response in other studies.
Rosie M. Sheward, Alex J. Poulton, Samantha J. Gibbs, Chris J. Daniels, and Paul R. Bown
Biogeosciences, 14, 1493–1509, https://doi.org/10.5194/bg-14-1493-2017, https://doi.org/10.5194/bg-14-1493-2017, 2017
Short summary
Short summary
Our culture experiments on modern Coccolithophores find that physiology regulates shifts in the geometry of their carbonate shells (coccospheres) between growth phases. This provides a tool to access growth information in modern and past populations. Directly comparing modern species with fossil coccospheres derives a new proxy for investigating the physiology that underpins phytoplankton responses to environmental change through geological time.
Glaucia M. Fragoso, Alex J. Poulton, Igor M. Yashayaev, Erica J. H. Head, and Duncan A. Purdie
Biogeosciences, 14, 1235–1259, https://doi.org/10.5194/bg-14-1235-2017, https://doi.org/10.5194/bg-14-1235-2017, 2017
Short summary
Short summary
This research describes a detailed analysis of current distributions of spring phytoplankton communities in the Labrador Sea based on 10 years of observations. Phytoplankton community composition varied mainly according to the contrasting hydrographical zones of the Labrador Sea. The taxonomic distinctions of these communities influenced the photosynthetic and biochemical signatures of near-surface waters, which may have a profound impact on the carbon cycle in high-latitude seas.
Rosanna Greenop, Mathis P. Hain, Sindia M. Sosdian, Kevin I. C. Oliver, Philip Goodwin, Thomas B. Chalk, Caroline H. Lear, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 13, 149–170, https://doi.org/10.5194/cp-13-149-2017, https://doi.org/10.5194/cp-13-149-2017, 2017
Short summary
Short summary
Understanding the boron isotopic composition of seawater (δ11Bsw) is key to calculating absolute estimates of CO2 using the boron isotope pH proxy. Here we use the boron isotope gradient, along with an estimate of pH gradient, between the surface and deep ocean to show that the δ11Bsw varies by ~ 2 ‰ over the past 23 million years. This new record has implications for both δ11Bsw and CO2 records and understanding changes in the ocean isotope composition of a number of ions through time.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Anastasia Charalampopoulou, Alex J. Poulton, Dorothee C. E. Bakker, Mike I. Lucas, Mark C. Stinchcombe, and Toby Tyrrell
Biogeosciences, 13, 5917–5935, https://doi.org/10.5194/bg-13-5917-2016, https://doi.org/10.5194/bg-13-5917-2016, 2016
Short summary
Short summary
Coccolithophores are global calcifiers, potentially impacted by ocean acidity. Data from the Southern Ocean is scarce, though latitudinal gradients of acidity exist. We made measurements of calcification, species composition and physiochemical environment between America and the Antarctic Peninsula. Calcification and cell calcite declined to the south, though rates of coccolith production did not. Declining temperature and irradiance were more important in driving latitudinal changes than pH.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Xiaobo Jin, Chuanlian Liu, Alex J. Poulton, Minhan Dai, and Xianghui Guo
Biogeosciences, 13, 4843–4861, https://doi.org/10.5194/bg-13-4843-2016, https://doi.org/10.5194/bg-13-4843-2016, 2016
Short summary
Short summary
The vertical structure of the coccolithophore community in the water column was controlled by trophic conditions, which were regulated by mesoscale eddies across the South China Sea basin. Three key species (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) contributed roughly half of the surface ocean coccolith-calcite concentrations. E. huxleyi coccolith length is influenced by light and nutrients through the regulation of growth rates.
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Daniel J. Lunt, Alex Farnsworth, Claire Loptson, Gavin L. Foster, Paul Markwick, Charlotte L. O'Brien, Richard D. Pancost, Stuart A. Robinson, and Neil Wrobel
Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, https://doi.org/10.5194/cp-12-1181-2016, 2016
Short summary
Short summary
We explore the influence of changing geography from the period ~ 150 million years ago to ~ 35 million years ago, using a set of 19 climate model simulations. We find that without any CO2 change, the global mean temperature is remarkably constant, but that regionally there are significant changes in temperature which we link back to changes in ocean circulation. Finally, we explore the implications of our findings for the interpretation of geological indicators of past temperatures.
V. N. Panizzo, G. E. A. Swann, A. W. Mackay, E. Vologina, M. Sturm, V. Pashley, and M. S. A. Horstwood
Biogeosciences, 13, 147–157, https://doi.org/10.5194/bg-13-147-2016, https://doi.org/10.5194/bg-13-147-2016, 2016
Short summary
Short summary
Lake Baikal, Siberia, is the world's most voluminous lake. Diatoms are the most dominant primary producers in the lake and form the basis of the food chain. This paper investigated the productivity of these organisms over the course of a year with a view to understanding their preservation in sediments and their value for reconstructing past productivity in the lake. This is important when recent climate change and the pressures of pollution are having demonstrable impacts in the region.
M. P. Humphreys, E. P. Achterberg, A. M. Griffiths, A. McDonald, and A. J. Boyce
Earth Syst. Sci. Data, 7, 127–135, https://doi.org/10.5194/essd-7-127-2015, https://doi.org/10.5194/essd-7-127-2015, 2015
Short summary
Short summary
We present measurements of the stable carbon isotope composition of seawater dissolved inorganic carbon. The samples were collected during two research cruises in boreal summer 2012 in the northeastern Atlantic and Nordic Seas. The results can be used to investigate the marine carbon cycle, providing information about biological productivity and oceanic uptake of anthropogenic carbon dioxide.
K. R. Hendry, G. E. A. Swann, M. J. Leng, H. J. Sloane, C. Goodwin, J. Berman, and M. Maldonado
Biogeosciences, 12, 3489–3498, https://doi.org/10.5194/bg-12-3489-2015, https://doi.org/10.5194/bg-12-3489-2015, 2015
Short summary
Short summary
The stable isotope composition of benthic sponge silica skeletons (spicules) has been shown to be a source of useful palaeoceanographic information about past deep seawater chemistry. Here, we investigate the biological vital effects on silica stable isotope composition in a Southern Ocean carnivorous sponge, Asbestopluma sp. We find significant variations in isotopic composition within the specimen – in both silicon and oxygen isotopes – that appear to be related to unusual spicule growth.
C. J. Daniels, A. J. Poulton, M. Esposito, M. L. Paulsen, R. Bellerby, M. St John, and A. P. Martin
Biogeosciences, 12, 2395–2409, https://doi.org/10.5194/bg-12-2395-2015, https://doi.org/10.5194/bg-12-2395-2015, 2015
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
C. J. Daniels, R. M. Sheward, and A. J. Poulton
Biogeosciences, 11, 6915–6925, https://doi.org/10.5194/bg-11-6915-2014, https://doi.org/10.5194/bg-11-6915-2014, 2014
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
J. R. Young, A. J. Poulton, and T. Tyrrell
Biogeosciences, 11, 4771–4782, https://doi.org/10.5194/bg-11-4771-2014, https://doi.org/10.5194/bg-11-4771-2014, 2014
S. Richier, E. P. Achterberg, C. Dumousseaud, A. J. Poulton, D. J. Suggett, T. Tyrrell, M. V. Zubkov, and C. M. Moore
Biogeosciences, 11, 4733–4752, https://doi.org/10.5194/bg-11-4733-2014, https://doi.org/10.5194/bg-11-4733-2014, 2014
A. J. Poulton, M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young
Biogeosciences, 11, 3919–3940, https://doi.org/10.5194/bg-11-3919-2014, https://doi.org/10.5194/bg-11-3919-2014, 2014
Related subject area
Paleobiogeoscience: Proxy use, Development & Validation
A long-term drought reconstruction based on oxygen isotope tree ring data
Disentangling influences of climate variability and lake-system evolution on climate proxies derived from isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs): the 250 kyr Lake Chala record
Electron backscatter diffraction analysis unveils foraminiferal calcite microstructure and processes of diagenetic alteration
Quantifying the δ15N trophic offset in a cold-water scleractinian coral (CWC): implications for the CWC diet and coral δ15N as a marine N cycle proxy
Stable oxygen isotopes of crocodilian tooth enamel allow tracking Plio-Pleistocene evolution of freshwater environments and climate in the Shungura Formation (Turkana Depression, Ethiopia)
Reviews and syntheses: Review of proxies for low-oxygen paleoceanographic reconstructions
Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type
Single-species dinoflagellate cyst carbon isotope fractionation in core-top sediments: environmental controls, CO2 dependency and proxy potential
Past fire dynamics inferred from polycyclic aromatic hydrocarbons and monosaccharide anhydrides in a stalagmite from the archaeological site of Mayapan, Mexico
Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach
Biomarker characterization of the North Water Polynya, Baffin Bay: implications for local sea ice and temperature proxies
Technical note: No impact of alkenone extraction on foraminiferal stable isotope, trace element and boron isotope geochemistry
Deep-sea stylasterid δ18O and δ13C maps inform sampling scheme for paleotemperature reconstructions
Experimental burial diagenesis of aragonitic biocarbonates: from organic matter loss to abiogenic calcite formation
A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – records of seasonal water temperature variability
Performance of temperature and productivity proxies based on long-chain alkane-1, mid-chain diols at test: a 5-year sediment trap record from the Mauritanian upwelling
Validation of a coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach based on a climate chamber experiment
Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga
Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera
Calibration of Mg ∕ Ca and Sr ∕ Ca in coastal marine ostracods as a proxy for temperature
Technical note: Accelerate coccolith size separation via repeated centrifugation
Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees
Modern calibration of Poa flabellata (tussac grass) as a new paleoclimate proxy in the South Atlantic
Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients
Bottom-water deoxygenation at the Peruvian margin during the last deglaciation recorded by benthic foraminifera
Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”
Evaluation of bacterial glycerol dialkyl glycerol tetraether and 2H–18O biomarker proxies along a central European topsoil transect
Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia
Organic-carbon-rich sediments: benthic foraminifera as bio-indicators of depositional environments
Strong correspondence between nitrogen isotope composition of foliage and chlorin across a rainfall gradient: implications for paleo-reconstruction of the nitrogen cycle
Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals
Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations
Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study
Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
Long-chain diols in settling particles in tropical oceans: insights into sources, seasonality and proxies
Multi-trace-element sea surface temperature coral reconstruction for the southern Mozambique Channel reveals teleconnections with the tropical Atlantic
Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth
Mg ∕ Ca and δ18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits
Manganese incorporation in living (stained) benthic foraminiferal shells: a bathymetric and in-sediment study in the Gulf of Lions (NW Mediterranean)
Effects of light and temperature on Mg uptake, growth, and calcification in the proxy climate archive Clathromorphum compactum
A systematic look at chromium isotopes in modern shells – implications for paleo-environmental reconstructions
Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification
Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin
Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi
Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers
Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences
The effects of environment on Arctica islandica shell formation and architecture
Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic
Viorica Nagavciuc, Gerhard Helle, Maria Rădoane, Cătălin-Constantin Roibu, Mihai-Gabriel Cotos, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2144, https://doi.org/10.5194/egusphere-2024-2144, 2024
Short summary
Short summary
We reconstructed drought conditions for the past 200 years using δ18O in oak tree ring cellulose from Romania, revealing periods of both extreme wetness (e.g., 1905–1915) and dryness (e.g., 1818–1835). The most severe droughts occurred in the 19th and 21st centuries. The study suggests a connection between drought patterns and large-scale atmospheric circulation. This research highlights the potential of tree rings to improve our understanding of long-term climate variability in Europe.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Josie L. Mottram, Anne M. Gothmann, Maria G. Prokopenko, Austin Cordova, Veronica Rollinson, Katie Dobkowski, and Julie Granger
Biogeosciences, 21, 1071–1091, https://doi.org/10.5194/bg-21-1071-2024, https://doi.org/10.5194/bg-21-1071-2024, 2024
Short summary
Short summary
Knowledge of ancient ocean N cycling can help illuminate past climate change. Using field and lab studies, this work ground-truths a promising proxy for marine N cycling, the N isotope composition of cold-water coral (CWC) skeletons. Our results estimate N turnover in CWC tissue; quantify the isotope effects between CWC tissue, diet, and skeleton; and suggest that CWCs possibly feed mainly on metazoan zooplankton, suggesting that the marine N proxy may be sensitive to the food web structure.
Axelle Gardin, Emmanuelle Pucéat, Géraldine Garcia, Jean-Renaud Boisserie, Adélaïde Euriat, Michael M. Joachimski, Alexis Nutz, Mathieu Schuster, and Olga Otero
Biogeosciences, 21, 437–454, https://doi.org/10.5194/bg-21-437-2024, https://doi.org/10.5194/bg-21-437-2024, 2024
Short summary
Short summary
We introduce a novel approach using stable oxygen isotopes from crocodilian fossil teeth to unravel palaeohydrological changes in past continental contexts. Applying it to the Plio-Pleistocene Ethiopian Shungura Formation, we found a significant increase in δ18O in the last 3 million years, likely due to monsoonal shifts and reduced rainfall, and that the local diversity of waterbodies (lakes, rivers, ponds) became restricted.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Claudia Voigt, Anne Alexandre, Ilja M. Reiter, Jean-Philippe Orts, Christine Vallet-Coulomb, Clément Piel, Jean-Charles Mazur, Julie C. Aleman, Corinne Sonzogni, Helene Miche, and Jérôme Ogée
Biogeosciences, 20, 2161–2187, https://doi.org/10.5194/bg-20-2161-2023, https://doi.org/10.5194/bg-20-2161-2023, 2023
Short summary
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
Theresa M. King and Brad E. Rosenheim
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-180, https://doi.org/10.5194/bg-2022-180, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Corals can record ocean properties such as temperature in their skeletons. These records are useful for where and when we have no instrumental record like in the distant past. However, coral growth must be understood to interpret these records. Here, we analyze slices of a branching deep sea coral from Antarctica to determine how to best sample these corals for past climate work. We recommend sampling from the innermost portion of coral skeleton for accurate temperature reconstructions.
Pablo Forjanes, María Simonet Roda, Martina Greiner, Erika Griesshaber, Nelson A. Lagos, Sabino Veintemillas-Verdaguer, José Manuel Astilleros, Lurdes Fernández-Díaz, and Wolfgang W. Schmahl
Biogeosciences, 19, 3791–3823, https://doi.org/10.5194/bg-19-3791-2022, https://doi.org/10.5194/bg-19-3791-2022, 2022
Short summary
Short summary
Aragonitic skeletons are employed to decipher past climate dynamics and environmental change. Unfortunately, the information that these skeletons keep can be destroyed during diagenesis. In this work, we study the first changes undergone by aragonitic skeletons upon hydrothermal alteration. We observe that major changes occur from the very beginning of the alteration, even without mineralogical changes. These results have major implications for the use of these archives to understand the past.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
Johannes Hepp, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Mario Tuthorn, Bruno Glaser, Dieter Juchelka, Willibald Stichler, Roland Zech, and Michael Zech
Biogeosciences, 18, 5363–5380, https://doi.org/10.5194/bg-18-5363-2021, https://doi.org/10.5194/bg-18-5363-2021, 2021
Short summary
Short summary
Deriving more quantitative climate information like relative air humidity is one of the key challenges in paleostudies. Often only qualitative reconstructions can be done when single-biomarker-isotope data are derived from a climate archive. However, the coupling of hemicellulose-derived sugar with leaf-wax-derived n-alkane isotope results has the potential to overcome this limitation and allow a quantitative relative air humidity reconstruction.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Martin Tetard, Laetitia Licari, Ekaterina Ovsepyan, Kazuyo Tachikawa, and Luc Beaufort
Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, https://doi.org/10.5194/bg-18-2827-2021, 2021
Short summary
Short summary
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently expanding due to global warming. Investigation of their past behaviour will allow better understanding of these areas and better prediction of their future evolution. A new method to estimate past [O2] was developed based on morphometric measurements of benthic foraminifera. This method and two other approaches based on foraminifera assemblages and porosity were calibrated using 45 core tops worldwide.
Maximiliano Rodríguez and Christelle Not
Biogeosciences, 18, 1987–2001, https://doi.org/10.5194/bg-18-1987-2021, https://doi.org/10.5194/bg-18-1987-2021, 2021
Short summary
Short summary
Mg/Ca in calcium carbonate shells of marine organisms such as foraminifera and ostracods has been used as a proxy to reconstruct water temperature. Here we provide new Mg/Ca–temperature calibrations for two shallow marine species of ostracods. We show that the water temperature in spring produces the best calibrations, which suggests the potential use of ostracod shells to reconstruct this parameter at a seasonal scale.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Dulcinea V. Groff, David G. Williams, and Jacquelyn L. Gill
Biogeosciences, 17, 4545–4557, https://doi.org/10.5194/bg-17-4545-2020, https://doi.org/10.5194/bg-17-4545-2020, 2020
Short summary
Short summary
Tussock grasses that grow along coastlines of the Falkland Islands are slow to decay and build up thick peat layers over thousands of years. Grass fragments found in ancient peat can be used to reconstruct past climate because grasses can preserve a record of growing conditions in their leaves. We found that modern living tussock grasses in the Falkland Islands reliably record temperature and humidity in their leaves, and the peat they form can be used to understand past climate change.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Short summary
Boron isotope ratios (δ11B) of foraminifera are a promising proxy for seawater pH and can be used to constrain pCO2. In this study, we derived calibrations for new foraminiferal taxa which extend the application of the boron isotope proxy. We discuss the origin of different δ11B signatures in species and also discuss the potential of using multispecies δ11B analyses to constrain vertical pH and pCO2 gradients in ancient water columns to shed light on biogeochemical carbon cycling in the past.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Julian Struck, Marcel Bliedtner, Paul Strobel, Jens Schumacher, Enkhtuya Bazarradnaa, and Roland Zech
Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, https://doi.org/10.5194/bg-17-567-2020, 2020
Short summary
Short summary
We present leaf wax n-alkanes and their compound-specific (CS) δ13C isotopes from semi-arid and/or arid Mongolia to test their potential for paleoenvironmental reconstructions. Plants and topsoils were analysed and checked for climatic control. Chain-length variations are distinct between grasses and Caragana, which are not biased by climate. However CS δ13C is strongly correlated to climate, so n-alkanes and their CS δ13C show great potential for paleoenvironmental reconstruction in Mongolia.
Elena Lo Giudice Cappelli, Jessica Louise Clarke, Craig Smeaton, Keith Davidson, and William Edward Newns Austin
Biogeosciences, 16, 4183–4199, https://doi.org/10.5194/bg-16-4183-2019, https://doi.org/10.5194/bg-16-4183-2019, 2019
Short summary
Short summary
Fjords are known sinks of organic carbon (OC); however, little is known about the long-term fate of the OC stored in these sediments. The reason for this knowledge gap is the post-depositional degradation of OC. This study uses benthic foraminifera (microorganisms with calcite shells) to discriminate between post-depositional OC degradation and actual OC burial and accumulation in fjordic sediments, as foraminifera would only preserve the latter information in their assemblage composition.
Sara K. E. Goulden, Naohiko Ohkouchi, Katherine H. Freeman, Yoshito Chikaraishi, Nanako O. Ogawa, Hisami Suga, Oliver Chadwick, and Benjamin Z. Houlton
Biogeosciences, 16, 3869–3882, https://doi.org/10.5194/bg-16-3869-2019, https://doi.org/10.5194/bg-16-3869-2019, 2019
Short summary
Short summary
We investigate whether soil organic compounds preserve information about nitrogen availability to plants. We isolate chlorophyll degradation products in leaves, litter, and soil and explore possible species and climate effects on preservation and interpretation. We find that compound-specific nitrogen isotope measurements in soil have potential as a new tool to reconstruct changes in nitrogen cycling on a landscape over time, avoiding issues that have limited other proxies.
Nicolai Schleinkofer, Jacek Raddatz, André Freiwald, David Evans, Lydia Beuck, Andres Rüggeberg, and Volker Liebetrau
Biogeosciences, 16, 3565–3582, https://doi.org/10.5194/bg-16-3565-2019, https://doi.org/10.5194/bg-16-3565-2019, 2019
Short summary
Short summary
In this study we tried to correlate Na / Ca ratios from cold-water corals with environmental parameters such as salinity, temperature and pH. We do not observe a correlation between Na / Ca ratios and seawater salinity, but we do observe a strong correlation with temperature. Na / Ca data from warm-water corals (Porites spp.) and bivalves (Mytilus edulis) support this correlation, indicating that similar controls on the incorporation of sodium exist in these aragonitic organisms.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019, https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Short summary
Here we report seasonally resolved sea surface temperature (SST) reconstructions for the southern Mozambique Channel in the SW Indian Ocean, a region located along the thermohaline ocean surface circulation route, based on multi-trace-element temperature proxy records preserved in two Porites sp. coral cores for the past 42 years. Particularly, we show the suitability of both separate and combined Sr / Ca and Li / Mg proxies for improved multielement SST reconstructions.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Siobhan Williams, Walter Adey, Jochen Halfar, Andreas Kronz, Patrick Gagnon, David Bélanger, and Merinda Nash
Biogeosciences, 15, 5745–5759, https://doi.org/10.5194/bg-15-5745-2018, https://doi.org/10.5194/bg-15-5745-2018, 2018
Robert Frei, Cora Paulukat, Sylvie Bruggmann, and Robert M. Klaebe
Biogeosciences, 15, 4905–4922, https://doi.org/10.5194/bg-15-4905-2018, https://doi.org/10.5194/bg-15-4905-2018, 2018
Short summary
Short summary
The reconstruction of paleo-redox conditions of seawater has the potential to link to climatic changes on land and therefore to contribute to our understanding of past climate change. The redox-sensitive chromium isotope system is applied to marine calcifiers in order to characterize isotope offsets that result from vital processes during calcification processes and which can be eventually used in fossil equivalents to reconstruct past seawater compositions.
Thomas M. DeCarlo, Michael Holcomb, and Malcolm T. McCulloch
Biogeosciences, 15, 2819–2834, https://doi.org/10.5194/bg-15-2819-2018, https://doi.org/10.5194/bg-15-2819-2018, 2018
Short summary
Short summary
Understanding the mechanisms of coral calcification is limited by the isolation of the calcifying environment. The boron systematics (B / Ca and δ11B) of aragonite have recently been developed as a proxy for the carbonate chemistry of the calcifying fluid, but a variety of approaches have been utilized. We assess the available experimental B / Ca partitioning data and present a computer code for deriving calcifying fluid carbonate chemistry from the boron systematics of coral skeletons.
Manuel Bringué, Robert C. Thunell, Vera Pospelova, James L. Pinckney, Oscar E. Romero, and Eric J. Tappa
Biogeosciences, 15, 2325–2348, https://doi.org/10.5194/bg-15-2325-2018, https://doi.org/10.5194/bg-15-2325-2018, 2018
Short summary
Short summary
We document 2.5 yr of dinoflagellate cyst production in the Cariaco Basin using a sediment trap record. Each species' production pattern is interpreted in the context of the physico-chemical (e.g., temperature, nutrients) and biological (other planktonic groups) environment. Most species respond positively to upwelling, but seem to be negatively impacted by an El Niño event with a 1-year lag. This work helps understanding dinoflagellate ecology and interpreting fossil assemblages in sediments.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
S. Nemiah Ladd, Nathalie Dubois, and Carsten J. Schubert
Biogeosciences, 14, 3979–3994, https://doi.org/10.5194/bg-14-3979-2017, https://doi.org/10.5194/bg-14-3979-2017, 2017
Short summary
Short summary
Hydrogen isotopes of lipids provide valuable information about microbial activity, climate, and environmental stress. We show that heavy hydrogen in fatty acids declines from spring to summer in a nutrient-rich and a nutrient-poor lake and that the effect is nearly 3 times as big in the former. This effect is likely a combination of increased biomass from algae, warmer temperatures, and higher algal growth rates.
Karoliina A. Koho, Lennart J. de Nooijer, Christophe Fontanier, Takashi Toyofuku, Kazumasa Oguri, Hiroshi Kitazato, and Gert-Jan Reichart
Biogeosciences, 14, 3067–3082, https://doi.org/10.5194/bg-14-3067-2017, https://doi.org/10.5194/bg-14-3067-2017, 2017
Short summary
Short summary
Here we report Mn / Ca ratios in living benthic foraminifera from the NE Japan margin. The results show that the Mn incorporation directly reflects the environment where the foraminifera calcify. Foraminifera that live deeper in sediment, under greater redox stress, generally incorporate more Mn into their carbonate skeletons. As such, foraminifera living close to the Mn reduction zone in sediment appear promising tools for paleoceanographic reconstructions of sedimentary redox conditions.
Stefania Milano, Gernot Nehrke, Alan D. Wanamaker Jr., Irene Ballesta-Artero, Thomas Brey, and Bernd R. Schöne
Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, https://doi.org/10.5194/bg-14-1577-2017, 2017
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Cited articles
Amo, Y. D. and Brzezinski, M. A.: The chemical form of dissolved Si taken
up by marine diatoms, J. Phycol., 35, 1162–1170,
https://doi.org/10.1046/j.1529-8817.1999.3561162.x, 1999.
Anagnostou, E., Huang, K.-F., You, C.-F., Sikes, E. L., and Sherrell, R. M.:
Evaluation of boron isotope ratio as a pH proxy in teh deep sea coral
Desmophyllum dianthus: Evidence of physiological pH adjustment, Earth
Planet. Sc. Lett., 349–350, 251–260, https://doi.org/10.1016/j.epsl.2012.07.006, 2012.
Branson, O.: Boron Incorporation into Marine CaCO3, in: Boron Isotopes: The
Fifth Element, edited by: Marschall, H. and Foster, G., Springer
International Publishing, Cham, 71–105, 2018.
Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H.,
Pfeffer, H., Dannel, F., and Romheld, V.: Boron in plant biology, Plant
Biol., 4, 205–223, 2002.
Carroll, R. L., Kuchenhoff, H., Lombard, F., and Stefanski, L. A.:
Asymptotics for the SIMEX Estimator in Nonlinear Measurement Error Models,
J. Am. Stat. Assoc., 91, 242–250, 1996.
Chalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F.,
Badger, M. P. S., Cherry, S. G., Hasenfratz, A. P., Haug, G. H., Jaccard, S.
L., Martínez-García, A., Pälike, H., Pancost, R. D., and
Wilson, P. A.: Causes of ice age intensification across the Mid-Pleistocene
Transition, P. Natl. Acad. Sci. USA, 114, 13114–13119,
https://doi.org/10.1073/pnas.1702143114, 2017.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in
synthetic seawater from 273.15 to 318.15 K, Deep-Sea Res. Pt. A, 37, 755–766,
https://doi.org/10.1016/0198-0149(90)90004-F, 1990.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): SOP 1: Water
sampling for the parameters of the oceanic carbon dioxide system, in Guide
to Best Practices for Ocean CO2 Measurements, PICES Special Publication
3, chap. 4, North Pacific Marine Science Organization, Sidney, BC, Canada,
2007.
Dordas, C. and Brown, P. H.: Permeability of boric acid across lipid
bilayers and factors affecting it, J. Membrane Biol., 175, 95–105, 2000.
Foster, G. L.: Seawater pH, pCO2 and variations in the Caribbean Sea
over the last 130 kyr: A boron isotope and B∕Ca study of planktic
foraminifera, Earth Planet. Sc. Lett., 271, 254–266, 2008.
Foster, G. L., Pogge von Strandmann, P. A. E., and Rae, J. W. B.: Boron and
magnesium isotopic composition of seawater, Geochem. Geophy.
Geosys., 11, Q08015, https://doi.org/10.1029/2010GC003201, 2010.
Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B.,
Burke, A., Foster, G. L., and Lear, C. H.: Deglacial upwelling, productivity
and CO2 outgassing in the North Pacific Ocean, Nat. Geosci., 11,
340–344, https://doi.org/10.1038/s41561-018-0108-6, 2018.
Guerrot, C., Milot, R., Robert, M., and Negrel, P.: Accurate and
high-precision determination of boron isotopic ratios at low concentration
by MC-ICP-MS (Neptune), Geostandards and Geoanlaytical Research, 35,
275–284, 2010.
Hasle, G. R. and Fryxell, G. A.: The genus Thalassiosira: some species with a linear areola array, in: Proceedings of the Fourth Symposium on Recent and Fossil Marine Diatoms, Oslo, 1976, edited by: Simonsen, R., Beihefte zur Nova Hedwigia 54, 15–66, 1977.
Hemming, N. G. and Hanson, G. N.: Boron isotopic composition and
concentration in modern marine carbonates, Geochim. Cosmochim. Ac.,
56, 537–543, 1992.
Hendry, K. R. and Andersen, M. B.: The zinc isotopic composition of
siliceous marine sponges: Investigating nature's sediment traps, Chem.
Geol., 354, 33–41, 2013.
Henehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C.,
Kurcera, M., Bostock, H. C., Martinez-Boti, M. A., Milton, J. A., Wilson, P.
A., Marshall, B., and Elliott, T.: Calibration of the boron isotope proxy in
the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2
reconstruction, Earth Planet. Sc. Lett., 364, 111–122,
https://doi.org/10.1016/j.epsl.2012.12.029, 2013.
Henehan, M. J., Foster, G. L., Bostock, H. C., Greenop, R., Marshall, B.,
and Wilson, P. A.: A new boron isotope-pH calibration for Orbulina universa,
with implications for understanding and accounting for vital effects, Earth
Planet. Sc. Lett., 454, 282–292, https://doi.org/10.1016/j.epsl.2016.09.024, 2016.
Hönisch, B. and Hemming, N. G.: Surface ocean pH response to variations in
pCO2 through two full glacial cycles, Earth Planet. Sc. Lett., 236,
305–314, 2005.
Hönisch, B., Hemming, G., Archer, D., Siddal, M., and McManus, J.: Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition, Science, 324, 1551–1554, 2009.
Horn, M. G., Robinson, R. S., Rynearson, T., and Sigman, D. M.: Nitrogen
isotopic relationship between diatom-bound and bulk organic matter of
cultured polar diatoms, Paleoceanography, 26, 1–12, 2011.
Ishikawa, T. and Nakamura, E.: Boron isotope systematics of marine
sediments, Earth Planet. Sc. Lett., 117, 567–580, 1993.
Keller, M. D., Selvin, R. C., Claus, W., and Guillard, R. R. L.: Media for
the culture of oceanic ultraplankton, J. Phycol., 23, 633–638,
1987.
Kolodny, Y. and Chaussidon, M.: Boron isotopes in DSDP cherts:
Fractionation and diagenesis, Geol. Soc. S. P.,
9, 1–14, 2004.
Koning, E., Gehlen, M., Flank, A.-M., Calas, G., and Epping, E.: Rapid
post-mortem incorporation of aluminium in diatom frustules: evidence from
chemical and strutural analyses, Mar. Chem., 106, 208–222,
https://doi.org/10.1016/j.marchem.2006.06.009, 2007.
Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu,
Y.-M.: The universal ratio of boron to chlorinity for the North Pacific and
North Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811,
https://doi.org/10.1016/j.gca.2009.12.027, 2010.
Lemarchand, D., Gaillardet, J., Gopel, C., and Manhes, G.: An optimized
procedure for boron separation and mass spectrometry analysis for river
samples, Chem. Geol., 182, 323–334, 2002.
Leonardos, N. and Geider, R. J.: Elevated atmospheric carbon dioxide
increases organic carbon fixation by Emiliania huxleyi (haptophyta), under
nutrient-limited high-light conditions, J. Phycol., 41, 1196–1203,
https://doi.org/10.1111/j.1529-8817.2005.00152.x, 2005.
Lewin, J.: Boron as a growth requirement for diatoms, J. Phycol.,
2, 160–163, https://doi.org/10.1111/j.1529-8817.1966.tb04616.x, 1966.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 gas and seawater at
equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0,
2000.
Martin, J.: Glacial-interglacial CO2 change: The iron hypothesis,
Paleoceanography, 5, 1–13, 1990.
Martínez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J.,
Rae, J. W. B., Mortyn, P. G., and Vance, D.: Boron isotope evidence for
oceanic carbon dioxide leakage during the last deglaciation, Nature, 518,
219–222, https://doi.org/10.1038/nature14155, 2015.
Mejía, L. M., Isensee, K., Menendez-Vicente, A., Pisonero, J., Shimizu, N.,
Gonzalez, C., Monteleone, B. D., and Stoll, H.: B content and Si∕C ratios
from cultured diatoms (Thalassiosira pseudonana and Thalassiosira
weissflogii): Relationship to seawater pH and diatom carbon acquisition,
Geochim. Cosmochim. Ac., 123, 322–337, https://doi.org/10.1016/j.gca.2013.06.011,
2013.
Ni, Y., Foster, G. L., and Elliott, T.: The accuraccy of d11B measurements
of foraminifers, Chem. Geol., 274, 187–195, 2010.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations
over the past 60 million years, Nature, 406, 695–699, 2000.
Pfeffer, H., Daniel, F., and Romheld, V.: Boron compartmentation in roots of
sunflower plants of different boron status: A study using the stable
isotopes 10B and 11B adopting two independent approaches, Physiol. Plant.,
113, 346–351, 2001.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron
isotopes and B∕Ca in benthic foraminifera: proxies for the deep ocean
carbonate system, Earth Planet. Sc. Lett., 302, 403–413, 2011.
R Core Team: R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 24 March 2020), 2018.
Sigman, D. M. and Boyle, E. A.: Glacial/Interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869, 2000.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55,
https://doi.org/10.1038/nature09149, 2010.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and
Lear, C. H.: Constraining the evolution of Neogene ocean carbonate chemistry
using the boron isotope pH proxy, Earth Planet. Sc. Lett., 248, 362–376,
https://doi.org/10.1016/j.epsl.2018.06.017, 2018.
Swann, G. E. A., Pike, J., Snelling, A. M., Leng, M. J., and Williams, M.
C.: Seasonally resolved diatom δ18O records from the West
Antarctic Peninsula over the last deglaciation, Earth Planet. Sc. Lett.,
364, 12–23, https://doi.org/10.1016/j.epsl.2012.12.016, 2013.
Tipper, E. T., Galy, A., and Bickle, M.: Calcium and magnesium isotope
systematics in rivers draining the Himalaya-Tibetan-Plateau region:
Lithological or fractionation control?, Geochm. Cosmochi. Ac., 72,
1057–1075, 2008.
Tortell, P. D., Martin, C. L., and Corkum, M. E.: Inorganic carbon uptake
and intracellular assimilation by subarctic Pacific phytoplankton
assemblages, Limnol. Oceanogr., 51, 2102–2110,
https://doi.org/10.4319/lo.2006.51.5.2102, 2006.
van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W.
R.: MATLAB Program Developed for CO2 System Calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.
Department of Energy, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1,
2011.
Vogl, J. and Rosner, M.: Production and certificaiton of a unique set of
isotope and delta reference materials for boron isotope determination in
geochemical, environmental and industrial materials, Geostandards and
Geoanlaytical Research, 36, 161–175, 2012.
Vrieling, E. G., Gieskes, W. W. C., and Beelen, T. P. M.: Silicon deposition
in diatoms: control by pH inside the silicon deposition vesicle, J.
Phycol., 35, 548–559, https://doi.org/10.1046/j.1529-8817.1999.3530548.x, 1999.
Zeebe, R. E., Sanyal, A., Ortiz, J. D., and Wolf-Gladrow, D. A.: A
theoretical study of the kinetics of the boric acid-borate equilibrium in
seawater, Mar. Chem., 73, 113–124, 2001.
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here...
Altmetrics
Final-revised paper
Preprint