Articles | Volume 17, issue 12
https://doi.org/10.5194/bg-17-3165-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-3165-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bottom-water deoxygenation at the Peruvian margin during the last deglaciation recorded by benthic foraminifera
NIOZ Royal Netherlands Institute for Sea Research, and Utrecht
University, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands
Joachim Schönfeld
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Anthony E. Rathburn
Department of Geological Sciences, California State University,
Bakersfield, CA 93311, USA
Maria-Elena Pérez
Department of Palaeontology, Natural History Museum, London, UK
Jorge Cardich
Instituto del Mar del Peru (IMARPE), A. Gamarra y Gral. Valle,
Chucuito, Callao 01, Peru
Nicolaas Glock
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Related authors
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Nicolaas Glock
Biogeosciences, 20, 3423–3447, https://doi.org/10.5194/bg-20-3423-2023, https://doi.org/10.5194/bg-20-3423-2023, 2023
Short summary
Short summary
Ocean deoxygenation due to climate warming is an evolving threat for organisms that are not well adapted to O2 depletion, such as many pelagic fish species. Other better-adapted organisms, such as some benthic foraminifera species, might benefit from ocean deoxygenation. Benthic foraminifera are a group of marine protists and can have specific adaptations to O2 depletion such as the ability to respire nitrate instead of O2. This paper reviews the current state of knowledge about these organisms.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Francisco Javier Briceño-Zuluaga, Abdelfettah Sifeddine, Sandrine Caquineau, Jorge Cardich, Renato Salvatteci, Dimitri Gutierrez, Luc Ortlieb, Federico Velazco, Hugues Boucher, and Carine Machado
Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, https://doi.org/10.5194/cp-12-787-2016, 2016
Short summary
Short summary
Comparison between records reveals a coherent match between the meridional displacement of the ITCZ-SPSH system and the regional fluvial and aeolian terrigenous input variability. The aeolian input intensity and the anoxic conditions recorded by marine sediments showed a close link that suggests a common mechanism associated with SPSH displacement. Changes in sediment discharge to the continental shelf are linked to the southward displacement of the ITCZ-SPSH and Walker circulation.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
N. Glock, V. Liebetrau, and A. Eisenhauer
Biogeosciences, 11, 7077–7095, https://doi.org/10.5194/bg-11-7077-2014, https://doi.org/10.5194/bg-11-7077-2014, 2014
Short summary
Short summary
Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ with bottom water oxygenation ([O2]BW), and evaluates foraminiferal I/Ca ratios as a possible redox proxy. All species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans is this trend not significant. The highest significance has been found for Uvigerina striata.
K. Haynert, J. Schönfeld, R. Schiebel, B. Wilson, and J. Thomsen
Biogeosciences, 11, 1581–1597, https://doi.org/10.5194/bg-11-1581-2014, https://doi.org/10.5194/bg-11-1581-2014, 2014
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
N. Glock, J. Schönfeld, A. Eisenhauer, C. Hensen, J. Mallon, and S. Sommer
Biogeosciences, 10, 4767–4783, https://doi.org/10.5194/bg-10-4767-2013, https://doi.org/10.5194/bg-10-4767-2013, 2013
Joachim Schönfeld, Elena Golikova, Sergei Korsun, and Silvia Spezzaferri
J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, https://doi.org/10.1144/jmpaleo2012-022, 2013
Related subject area
Paleobiogeoscience: Proxy use, Development & Validation
Deep-sea stylasterid δ18O and δ13C maps inform sampling scheme for paleotemperature reconstructions
A long-term drought reconstruction based on oxygen isotope tree ring data
Mg/Ca and δ18O in multiple species of planktonic foraminifera from 15 Ma to Recent
Disentangling influences of climate variability and lake-system evolution on climate proxies derived from isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs): the 250 kyr Lake Chala record
Electron backscatter diffraction analysis unveils foraminiferal calcite microstructure and processes of diagenetic alteration
Quantifying the δ15N trophic offset in a cold-water scleractinian coral (CWC): implications for the CWC diet and coral δ15N as a marine N cycle proxy
Stable oxygen isotopes of crocodilian tooth enamel allow tracking Plio-Pleistocene evolution of freshwater environments and climate in the Shungura Formation (Turkana Depression, Ethiopia)
Reviews and syntheses: Review of proxies for low-oxygen paleoceanographic reconstructions
Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type
Single-species dinoflagellate cyst carbon isotope fractionation in core-top sediments: environmental controls, CO2 dependency and proxy potential
Past fire dynamics inferred from polycyclic aromatic hydrocarbons and monosaccharide anhydrides in a stalagmite from the archaeological site of Mayapan, Mexico
Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach
Biomarker characterization of the North Water Polynya, Baffin Bay: implications for local sea ice and temperature proxies
Technical note: No impact of alkenone extraction on foraminiferal stable isotope, trace element and boron isotope geochemistry
Experimental burial diagenesis of aragonitic biocarbonates: from organic matter loss to abiogenic calcite formation
A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – records of seasonal water temperature variability
Performance of temperature and productivity proxies based on long-chain alkane-1, mid-chain diols at test: a 5-year sediment trap record from the Mauritanian upwelling
Validation of a coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach based on a climate chamber experiment
Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga
Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera
Calibration of Mg ∕ Ca and Sr ∕ Ca in coastal marine ostracods as a proxy for temperature
Technical note: Accelerate coccolith size separation via repeated centrifugation
Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees
Modern calibration of Poa flabellata (tussac grass) as a new paleoclimate proxy in the South Atlantic
Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients
The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)
Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”
Evaluation of bacterial glycerol dialkyl glycerol tetraether and 2H–18O biomarker proxies along a central European topsoil transect
Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia
Organic-carbon-rich sediments: benthic foraminifera as bio-indicators of depositional environments
Strong correspondence between nitrogen isotope composition of foliage and chlorin across a rainfall gradient: implications for paleo-reconstruction of the nitrogen cycle
Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals
Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations
Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study
Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
Long-chain diols in settling particles in tropical oceans: insights into sources, seasonality and proxies
Multi-trace-element sea surface temperature coral reconstruction for the southern Mozambique Channel reveals teleconnections with the tropical Atlantic
Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth
Mg ∕ Ca and δ18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits
Manganese incorporation in living (stained) benthic foraminiferal shells: a bathymetric and in-sediment study in the Gulf of Lions (NW Mediterranean)
Effects of light and temperature on Mg uptake, growth, and calcification in the proxy climate archive Clathromorphum compactum
A systematic look at chromium isotopes in modern shells – implications for paleo-environmental reconstructions
Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification
Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin
Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi
Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers
Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences
The effects of environment on Arctica islandica shell formation and architecture
Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
Theresa M. King, Brad E. Rosenheim, and Noel P. James
Biogeosciences, 21, 5361–5379, https://doi.org/10.5194/bg-21-5361-2024, https://doi.org/10.5194/bg-21-5361-2024, 2024
Short summary
Short summary
Corals can record ocean properties such as temperature in their skeletons. These records are useful for where and when we have no instrumental record like in the distant past. However, coral growth must be understood to interpret these records. Here, we analyze slices of a branching deep-sea coral from Antarctica to determine how to best sample these corals for past-climate work. We recommend sampling from the innermost portion of a coral skeleton for accurate temperature reconstructions.
Viorica Nagavciuc, Gerhard Helle, Maria Rădoane, Cătălin-Constantin Roibu, Mihai-Gabriel Cotos, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2144, https://doi.org/10.5194/egusphere-2024-2144, 2024
Short summary
Short summary
We reconstructed drought conditions for the past 200 years using δ18O in oak tree ring cellulose from Romania, revealing periods of both extreme wetness (e.g., 1905–1915) and dryness (e.g., 1818–1835). The most severe droughts occurred in the 19th and 21st centuries. The study suggests a connection between drought patterns and large-scale atmospheric circulation. This research highlights the potential of tree rings to improve our understanding of long-term climate variability in Europe.
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Josie L. Mottram, Anne M. Gothmann, Maria G. Prokopenko, Austin Cordova, Veronica Rollinson, Katie Dobkowski, and Julie Granger
Biogeosciences, 21, 1071–1091, https://doi.org/10.5194/bg-21-1071-2024, https://doi.org/10.5194/bg-21-1071-2024, 2024
Short summary
Short summary
Knowledge of ancient ocean N cycling can help illuminate past climate change. Using field and lab studies, this work ground-truths a promising proxy for marine N cycling, the N isotope composition of cold-water coral (CWC) skeletons. Our results estimate N turnover in CWC tissue; quantify the isotope effects between CWC tissue, diet, and skeleton; and suggest that CWCs possibly feed mainly on metazoan zooplankton, suggesting that the marine N proxy may be sensitive to the food web structure.
Axelle Gardin, Emmanuelle Pucéat, Géraldine Garcia, Jean-Renaud Boisserie, Adélaïde Euriat, Michael M. Joachimski, Alexis Nutz, Mathieu Schuster, and Olga Otero
Biogeosciences, 21, 437–454, https://doi.org/10.5194/bg-21-437-2024, https://doi.org/10.5194/bg-21-437-2024, 2024
Short summary
Short summary
We introduce a novel approach using stable oxygen isotopes from crocodilian fossil teeth to unravel palaeohydrological changes in past continental contexts. Applying it to the Plio-Pleistocene Ethiopian Shungura Formation, we found a significant increase in δ18O in the last 3 million years, likely due to monsoonal shifts and reduced rainfall, and that the local diversity of waterbodies (lakes, rivers, ponds) became restricted.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Claudia Voigt, Anne Alexandre, Ilja M. Reiter, Jean-Philippe Orts, Christine Vallet-Coulomb, Clément Piel, Jean-Charles Mazur, Julie C. Aleman, Corinne Sonzogni, Helene Miche, and Jérôme Ogée
Biogeosciences, 20, 2161–2187, https://doi.org/10.5194/bg-20-2161-2023, https://doi.org/10.5194/bg-20-2161-2023, 2023
Short summary
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
Pablo Forjanes, María Simonet Roda, Martina Greiner, Erika Griesshaber, Nelson A. Lagos, Sabino Veintemillas-Verdaguer, José Manuel Astilleros, Lurdes Fernández-Díaz, and Wolfgang W. Schmahl
Biogeosciences, 19, 3791–3823, https://doi.org/10.5194/bg-19-3791-2022, https://doi.org/10.5194/bg-19-3791-2022, 2022
Short summary
Short summary
Aragonitic skeletons are employed to decipher past climate dynamics and environmental change. Unfortunately, the information that these skeletons keep can be destroyed during diagenesis. In this work, we study the first changes undergone by aragonitic skeletons upon hydrothermal alteration. We observe that major changes occur from the very beginning of the alteration, even without mineralogical changes. These results have major implications for the use of these archives to understand the past.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
Johannes Hepp, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Mario Tuthorn, Bruno Glaser, Dieter Juchelka, Willibald Stichler, Roland Zech, and Michael Zech
Biogeosciences, 18, 5363–5380, https://doi.org/10.5194/bg-18-5363-2021, https://doi.org/10.5194/bg-18-5363-2021, 2021
Short summary
Short summary
Deriving more quantitative climate information like relative air humidity is one of the key challenges in paleostudies. Often only qualitative reconstructions can be done when single-biomarker-isotope data are derived from a climate archive. However, the coupling of hemicellulose-derived sugar with leaf-wax-derived n-alkane isotope results has the potential to overcome this limitation and allow a quantitative relative air humidity reconstruction.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Martin Tetard, Laetitia Licari, Ekaterina Ovsepyan, Kazuyo Tachikawa, and Luc Beaufort
Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, https://doi.org/10.5194/bg-18-2827-2021, 2021
Short summary
Short summary
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently expanding due to global warming. Investigation of their past behaviour will allow better understanding of these areas and better prediction of their future evolution. A new method to estimate past [O2] was developed based on morphometric measurements of benthic foraminifera. This method and two other approaches based on foraminifera assemblages and porosity were calibrated using 45 core tops worldwide.
Maximiliano Rodríguez and Christelle Not
Biogeosciences, 18, 1987–2001, https://doi.org/10.5194/bg-18-1987-2021, https://doi.org/10.5194/bg-18-1987-2021, 2021
Short summary
Short summary
Mg/Ca in calcium carbonate shells of marine organisms such as foraminifera and ostracods has been used as a proxy to reconstruct water temperature. Here we provide new Mg/Ca–temperature calibrations for two shallow marine species of ostracods. We show that the water temperature in spring produces the best calibrations, which suggests the potential use of ostracod shells to reconstruct this parameter at a seasonal scale.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Dulcinea V. Groff, David G. Williams, and Jacquelyn L. Gill
Biogeosciences, 17, 4545–4557, https://doi.org/10.5194/bg-17-4545-2020, https://doi.org/10.5194/bg-17-4545-2020, 2020
Short summary
Short summary
Tussock grasses that grow along coastlines of the Falkland Islands are slow to decay and build up thick peat layers over thousands of years. Grass fragments found in ancient peat can be used to reconstruct past climate because grasses can preserve a record of growing conditions in their leaves. We found that modern living tussock grasses in the Falkland Islands reliably record temperature and humidity in their leaves, and the peat they form can be used to understand past climate change.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Short summary
Boron isotope ratios (δ11B) of foraminifera are a promising proxy for seawater pH and can be used to constrain pCO2. In this study, we derived calibrations for new foraminiferal taxa which extend the application of the boron isotope proxy. We discuss the origin of different δ11B signatures in species and also discuss the potential of using multispecies δ11B analyses to constrain vertical pH and pCO2 gradients in ancient water columns to shed light on biogeochemical carbon cycling in the past.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Julian Struck, Marcel Bliedtner, Paul Strobel, Jens Schumacher, Enkhtuya Bazarradnaa, and Roland Zech
Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, https://doi.org/10.5194/bg-17-567-2020, 2020
Short summary
Short summary
We present leaf wax n-alkanes and their compound-specific (CS) δ13C isotopes from semi-arid and/or arid Mongolia to test their potential for paleoenvironmental reconstructions. Plants and topsoils were analysed and checked for climatic control. Chain-length variations are distinct between grasses and Caragana, which are not biased by climate. However CS δ13C is strongly correlated to climate, so n-alkanes and their CS δ13C show great potential for paleoenvironmental reconstruction in Mongolia.
Elena Lo Giudice Cappelli, Jessica Louise Clarke, Craig Smeaton, Keith Davidson, and William Edward Newns Austin
Biogeosciences, 16, 4183–4199, https://doi.org/10.5194/bg-16-4183-2019, https://doi.org/10.5194/bg-16-4183-2019, 2019
Short summary
Short summary
Fjords are known sinks of organic carbon (OC); however, little is known about the long-term fate of the OC stored in these sediments. The reason for this knowledge gap is the post-depositional degradation of OC. This study uses benthic foraminifera (microorganisms with calcite shells) to discriminate between post-depositional OC degradation and actual OC burial and accumulation in fjordic sediments, as foraminifera would only preserve the latter information in their assemblage composition.
Sara K. E. Goulden, Naohiko Ohkouchi, Katherine H. Freeman, Yoshito Chikaraishi, Nanako O. Ogawa, Hisami Suga, Oliver Chadwick, and Benjamin Z. Houlton
Biogeosciences, 16, 3869–3882, https://doi.org/10.5194/bg-16-3869-2019, https://doi.org/10.5194/bg-16-3869-2019, 2019
Short summary
Short summary
We investigate whether soil organic compounds preserve information about nitrogen availability to plants. We isolate chlorophyll degradation products in leaves, litter, and soil and explore possible species and climate effects on preservation and interpretation. We find that compound-specific nitrogen isotope measurements in soil have potential as a new tool to reconstruct changes in nitrogen cycling on a landscape over time, avoiding issues that have limited other proxies.
Nicolai Schleinkofer, Jacek Raddatz, André Freiwald, David Evans, Lydia Beuck, Andres Rüggeberg, and Volker Liebetrau
Biogeosciences, 16, 3565–3582, https://doi.org/10.5194/bg-16-3565-2019, https://doi.org/10.5194/bg-16-3565-2019, 2019
Short summary
Short summary
In this study we tried to correlate Na / Ca ratios from cold-water corals with environmental parameters such as salinity, temperature and pH. We do not observe a correlation between Na / Ca ratios and seawater salinity, but we do observe a strong correlation with temperature. Na / Ca data from warm-water corals (Porites spp.) and bivalves (Mytilus edulis) support this correlation, indicating that similar controls on the incorporation of sodium exist in these aragonitic organisms.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019, https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Short summary
Here we report seasonally resolved sea surface temperature (SST) reconstructions for the southern Mozambique Channel in the SW Indian Ocean, a region located along the thermohaline ocean surface circulation route, based on multi-trace-element temperature proxy records preserved in two Porites sp. coral cores for the past 42 years. Particularly, we show the suitability of both separate and combined Sr / Ca and Li / Mg proxies for improved multielement SST reconstructions.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Siobhan Williams, Walter Adey, Jochen Halfar, Andreas Kronz, Patrick Gagnon, David Bélanger, and Merinda Nash
Biogeosciences, 15, 5745–5759, https://doi.org/10.5194/bg-15-5745-2018, https://doi.org/10.5194/bg-15-5745-2018, 2018
Robert Frei, Cora Paulukat, Sylvie Bruggmann, and Robert M. Klaebe
Biogeosciences, 15, 4905–4922, https://doi.org/10.5194/bg-15-4905-2018, https://doi.org/10.5194/bg-15-4905-2018, 2018
Short summary
Short summary
The reconstruction of paleo-redox conditions of seawater has the potential to link to climatic changes on land and therefore to contribute to our understanding of past climate change. The redox-sensitive chromium isotope system is applied to marine calcifiers in order to characterize isotope offsets that result from vital processes during calcification processes and which can be eventually used in fossil equivalents to reconstruct past seawater compositions.
Thomas M. DeCarlo, Michael Holcomb, and Malcolm T. McCulloch
Biogeosciences, 15, 2819–2834, https://doi.org/10.5194/bg-15-2819-2018, https://doi.org/10.5194/bg-15-2819-2018, 2018
Short summary
Short summary
Understanding the mechanisms of coral calcification is limited by the isolation of the calcifying environment. The boron systematics (B / Ca and δ11B) of aragonite have recently been developed as a proxy for the carbonate chemistry of the calcifying fluid, but a variety of approaches have been utilized. We assess the available experimental B / Ca partitioning data and present a computer code for deriving calcifying fluid carbonate chemistry from the boron systematics of coral skeletons.
Manuel Bringué, Robert C. Thunell, Vera Pospelova, James L. Pinckney, Oscar E. Romero, and Eric J. Tappa
Biogeosciences, 15, 2325–2348, https://doi.org/10.5194/bg-15-2325-2018, https://doi.org/10.5194/bg-15-2325-2018, 2018
Short summary
Short summary
We document 2.5 yr of dinoflagellate cyst production in the Cariaco Basin using a sediment trap record. Each species' production pattern is interpreted in the context of the physico-chemical (e.g., temperature, nutrients) and biological (other planktonic groups) environment. Most species respond positively to upwelling, but seem to be negatively impacted by an El Niño event with a 1-year lag. This work helps understanding dinoflagellate ecology and interpreting fossil assemblages in sediments.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
S. Nemiah Ladd, Nathalie Dubois, and Carsten J. Schubert
Biogeosciences, 14, 3979–3994, https://doi.org/10.5194/bg-14-3979-2017, https://doi.org/10.5194/bg-14-3979-2017, 2017
Short summary
Short summary
Hydrogen isotopes of lipids provide valuable information about microbial activity, climate, and environmental stress. We show that heavy hydrogen in fatty acids declines from spring to summer in a nutrient-rich and a nutrient-poor lake and that the effect is nearly 3 times as big in the former. This effect is likely a combination of increased biomass from algae, warmer temperatures, and higher algal growth rates.
Karoliina A. Koho, Lennart J. de Nooijer, Christophe Fontanier, Takashi Toyofuku, Kazumasa Oguri, Hiroshi Kitazato, and Gert-Jan Reichart
Biogeosciences, 14, 3067–3082, https://doi.org/10.5194/bg-14-3067-2017, https://doi.org/10.5194/bg-14-3067-2017, 2017
Short summary
Short summary
Here we report Mn / Ca ratios in living benthic foraminifera from the NE Japan margin. The results show that the Mn incorporation directly reflects the environment where the foraminifera calcify. Foraminifera that live deeper in sediment, under greater redox stress, generally incorporate more Mn into their carbonate skeletons. As such, foraminifera living close to the Mn reduction zone in sediment appear promising tools for paleoceanographic reconstructions of sedimentary redox conditions.
Stefania Milano, Gernot Nehrke, Alan D. Wanamaker Jr., Irene Ballesta-Artero, Thomas Brey, and Bernd R. Schöne
Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, https://doi.org/10.5194/bg-14-1577-2017, 2017
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Cited articles
Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and
Trauth, M.: Scaling percentages and distributional patterns of benthic
foraminifera with flux rates of organic carbon, J. Foramin.
Res., 29, 173–185, 1999.
Alve, E. and Bernhard, J. M.: Vertical Migratory Response of Benthic
Foraminifera to Controlled Oxygen Concentrations in an Experimental
Mesocosm, Mar. Ecol. Prog. Ser., 116, 137–151, https://doi.org/10.3354/meps116137, 1995.
Baas, J. H., Schönfeld, J., and Zahn, R.: Mid-depth oxygen drawdown
during Heinrich events: evidence from benthic foraminiferal community
structure, trace-fossil tiering, and benthic δ13C at the
Portuguese Margin, Mar. Geol., 152, 25–55, 1998.
Balestra, B., Krupinski, N. B. Q., Erohina, T., Fessenden-Rahn, J., Rahn,
T., and Paytan, A.: Bottom-water oxygenation and environmental change in
Santa Monica Basin, Southern California during the last 23 kyr,
Palaeogeogr. Palaeocl., 490, 17–37, 2018.
Barmawidjaja, D. M., Jorissen, F. J., Puskaric, S., and Van der Zwaan, G.
J.: Microhabitat selection by benthic foraminifera in the northern Adriatic
Sea, J. Foramin. Res., 22, 297–317, 1992.
Bernhard, J. M. and Bowser, S. S.: Benthic foraminifera of dysoxic
sediments: chloroplast sequestration and functional morphology,
Earth-Sci. Rev., 46, 149–165, 1999.
Bernhard, J. M. and Sen Gupta, B. K.: Foraminifera of oxygen-depleted
environments, in: Modern foraminifera, Springer, 201–216, 1999.
Bernhard, J. M., Sen Gupta, B. K., and Borne, P. F.: Benthic foraminiferal
proxy to estimate dysoxic bottom water oxygen concentration: Santa Barbara
basin U.S. Pacific continental margin, J. Foramin. Res.,
27, 301–310, 1997.
Bova, S. C., Herbert, T., Rosenthal, Y., Kalansky, J., Altabet, M., Chazen,
C., Mojarro, A., and Zech, J.: Links between eastern equatorial Pacific
stratification and atmospheric CO2 rise during the last deglaciation,
Paleoceanography, 30, 1407–1424, 2015.
Bova, S. C., Herbert, T. D., and Altabet, M. A.: Ventilation of northern and
southern sources of aged carbon in the eastern equatorial Pacific during the
Younger Dryas rise in atmospheric CO2, Paleoceanogr.
Paleocl., 33, 1151–1168, 2018.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E.,
Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T.
D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M.
M.: World Ocean Database 2013, NOAA Atlas NESDIS 72, edited by: Levitus, S.,
National Oceanographic Data Center Ocean Climate Laboratory, 208 pp., 2013.
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015.
Cannariato, K. G. and Kennett, J. P.: Climatically related millenial-scale
fluctuations in strength of California margin oxygen-minimum zone during the
past 60 ky, Geology, 27, 975–978, 1999.
Cannariato, K. G., Kennett, J. P., and Behl, R. J.: Biotic response to late
Quaternary rapid climate switches in Santa Barbara Basin: Ecological and
evolutionary implications, Geology, 27, 63–66, 1999.
Caralp, M. H.: Abundance of Bulimina exilis and Melonis barleeanum: Relationship to the quality of marine
organic matter, Geo-Mar. Lett., 9, 37–43, 1989.
Cardich, J., Morales, M., Quipúzcoa, L., Sifeddine, A., and
Gutiérrez, D.: Benthic Foraminiferal Communities and Microhabitat
Selection on the Continental Shelf Off Central Peru, in: Anoxia, Springer, Dordrecht, 323–340,
https://doi.org/10.1007/978-94-007-1896-8_17, 2012.
Cardich, J., Gutiérrez, D., Romero, D., Pérez, A., Quipúzcoa,
L., Marquina, R., Yupanqui, W., Solís, J., Carhuapoma, W., Sifeddine,
A., and Rathburn, A.: Calcareous benthic foraminifera from the upper central
Peruvian margin: control of the assemblage by pore water redox and
sedimentary organic matter, Mar. Ecol. Prog. Ser., 535, 63–87,
https://doi.org/10.3354/meps11409, 2015.
Cardich, J., Sifeddine, A., Salvatteci, R., Romero, D., Briceño-Zuluaga,
F., Graco, M., Anculle, T., Almeida, C., and Gutiérrez, D.: Multidecadal changes in marine subsurface oxygenation off central Peru during the last ca. 170 years, Front. Mar. Sci., 6, 1–16, https://doi.org/10.3389/fmars.2019.00270,
2019.
Caulle, C., Koho, K. A., Mojtahid, M., Reichart, G. J., and Jorissen, F. J.:
Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian
Sea: faunal succession within and below the OMZ, Biogeosciences, 11,
1155–1175, https://doi.org/10.5194/bg-11-1155-2014, 2014.
Chaigneau, A., Dominguez, N., Eldin, G., Vasquez, L., Flores, R., Grados,
C., and Echevin, V.: Near-coastal circulation in the Northern Humboldt
Current System from shipboard ADCP data, J. Geophys. Res.-Ocean., 118, 5251–5266, https://doi.org/10.1002/jgrc.20328, 2013.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V.,
Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and
Wallmann, K.: Organic carbon production, mineralisation and preservation on
the Peruvian margin, Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015,
2015.
den Dulk, M., Reichart, G. J., Memon, G. M., Roelofs, E. M. P., Zachariasse,
W. J., and van der Zwaan, G. J.: Benthic foraminiferal response to
variations in surface water productivity and oxygenation in the northern
Arabian Sea, Mar. Micropaleontol., 35, 43–66, 1998.
den Dulk, M., Reichart, G. J., van Heyst, S., Zachariasse, W. J., and Van
der Zwaan, G. J.: Benthic foraminifera as proxies of organic matter flux and
bottom water oxygenation? A case history from the Northern Arabian Sea,
Palaeogeogr. Palaeocl., 161, 337–359, 2000.
Doering, K., Erdem, Z., Ehlert, C., Fleury, S., Frank, M., and Schneider,
R.: Changes in diatom productivity and upwelling intensity off Peru since
the Last Glacial Maximum: Response to basin-scale atmospheric and oceanic
forcing, Paleoceanography, 31, 1453–1473, https://doi.org/10.1002/2016pa002936, 2016.
Douglas, R. G. and Heitman, H. L.: Slope and basin benthic foraminifera of
the California Borderland, Soc. Econ. Pa., 27, 231–246, 1979.
Erdem, Z. and Schönfeld, J.: Pleistocene to Holocene benthic
foraminiferal assemblages from the Peruvian continental margin,
Palaeontol. Electron., 20.2.35A, 1–32, https://doi.org/10.26879/764, 2017.
Erdem, Z., Schönfeld, J., Glock, N., Dengler, M., Mosch, T., Sommer, S.,
Elger, J., and Eisenhauer, A.: Peruvian sediments as recorders of an
evolving hiatus for the last 22 thousand years, Quaternary Sci. Rev.,
137, 1–14, https://doi.org/10.1016/j.quascirev.2016.01.029, 2016.
Erdem, Z., Schönfeld, J., Rathburn, A. E., Pérez, M. E., Cardich, J., and Glock, N.: Peruvian Margin living benthic foraminiferal distributions in percentage, PANGAEA, https://doi.org/10.1594/PANGAEA.901840, 2019.
Fontanier, C., Duros, P., Toyofuku, T., Oguri, K., Koho, K. A., Buscail, R.,
Grémare, A., Radakovitch, O., Deflandre, B., Nooijer, L. J. D., Bichon,
S., Goubet, S., Ivanovsky, A., Chabaud, G., Menniti, C., Reichart, G.-J.,
and Kitazato, H.: Living (stained) deep-sea foraminifera off Hachinohe (NE
Japan, western Pacific): environmental interplay in oxygen-depleted
ecosystems, J. Foramin. Res., 44, 281–299, 2014.
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., and Lange,
C.: Vertical and horizontal extension of the oxygen minimum zone in the
eastern South Pacific Ocean, Deep-Sea Res. Pt. II, 56, 992–1003, 2009.
Geslin, E., Heinz, P., Jorissen, F., and Hemleben, C.: Migratory responses
of deep-sea benthic foraminifera to variable oxygen conditions: laboratory
investigations, Mar. Micropaleontol., 53, 227–243,
https://doi.org/10.1016/j.marmicro.2004.05.010, 2004.
Glock, N., Eisenhauer, A., Milker, Y., Liebetrau, V., Schönfeld, J.,
Mallon, J., Sommer, S., and Hensen, C.: Environmental influences on the pore
density of Bolivina spissa (Cushman), J. Foramin. Res., 41,
22–32, 2011.
Glock, N., Erdem, Z., Wallmann, K., Somes, C. J., Liebetrau, V., Schonfeld,
J., Gorb, S., and Eisenhauer, A.: Coupling of oceanic carbon and nitrogen
facilitates spatially resolved quantitative reconstruction of nitrate
inventories, Nat. Commun., 9, 1217, https://doi.org/10.1038/s41467-018-03647-5, 2018.
Glock, N., Roy, A.-S., Romero, D., Wein, T., Weissenbach, J., Revsbech, N.
P., Høgslund, S., Clemens, D., Sommer, S., and Dagan, T.: Metabolic
preference of nitrate over oxygen as an electron acceptor in foraminifera
from the Peruvian oxygen minimum zone, P. Natl. Acad.
Sci. USA, 116, 2860–2865, 2019.
Glud, R. N., Thamdrup, B., Stahl, H., Wenzhoefer, F., Glud, A., Nomaki, H.,
Oguri, K., Revsbech, N. P., and Kitazato, H.: Nitrogen cycling in a deep
ocean margin sediment (Sagami Bay, Japan), Limnol. Oceanogr., 54, 723–734,
2009.
Golik, A. and Phleger, F. B.: Benthonic foraminifera from the Gulf of
Panama, J. Foramin. Res., 7, 83–99, 1977.
Gonzales, M. V., De Almeida, F. K., Costa, K. B., Santarosa, A. C. A.,
Camillo Jr, E., De Quadros, J. P., and Toledo, F. A.: HelP index:
Hoeglundina elegans preservation index for marine sediments in the western
South Atlantic, J. Foramin. Res., 47, 56–69, 2017.
Gooday, A. J.: A response by benthic Foraminifera to the deposition of
phytodetritus in the deep sea, Nature, 332, 70–73, https://doi.org/10.1038/332070a0, 1988.
Gooday, A. J.: Deep-sea benthic foraminiferal species which exploit
phytodetritus: characteristic features and controls on distribution, Mar.
Micropaleontol., 22, 187–205, 1993.
Gooday, A. J.: Benthic foraminifera (Protista) as tools in deep-water
palaeoceanography: environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, https://doi.org/10.1016/S0065-2881(03)46002-1, 2003.
Gooday, A. J. and Jorissen, F. J.: Benthic foraminiferal biogeography:
controls on global distribution patterns in deep-water settings, Ann. Rev. Mar.
Sci., 4, 237–262, https://doi.org/10.1146/annurev-marine-120709-142737, 2012.
Gooday, A. J. and Rathburn, A. E.: Temporal variability in living deep-sea
benthic foraminifera: a review, Earth-Sci. Rev., 46, 187–212, 1999.
Gooday, A. J., Bernhard, J. M., Levin, L. A., and Suhr, S. B.: Foraminifera
in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings:
taxonomic composition, diversity, and relation to metazoan faunas, Deep-Sea
Res. Pt. II, 47, 25–54, 2000.
Gupta, A. K. and Thomas, E.: Initiation of Northern Hemisphere glaciation
and strengthening of the northeast Indian monsoon: Ocean Drilling Program
Site 758, eastern equatorial Indian Ocean, Geology, 31, 47–50, 2003.
Hammer, Ø., Harper, D., and Ryan, P.: PAST-Palaeontological statistics, available at:
http://www.uv.es/~pardomv/pe/2001_1/past/pastprog/past.pdf (last access: 12 June 2020), 2001.
Heinze, P.-M. and Wefer, G.: The history of coastal upwelling off Peru
(11∘ S, ODP Leg 112, Site 680B) over the past 650 000 years,
Geol. Soc. Lond. Special Publ., 64, 451–462, 1992.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring
marine hypoxia on continental margins, Deep-Sea Res. Pt. I, 51, 1159–1168, 2004.
Hendy, I. L. and Pedersen, T. F.: Oxygen minimum zone expansion in the
eastern tropical North Pacific during deglaciation, Geophys. Res.
Lett., 33, L20602, https://doi.org/10.1029/2006GL025975, 2006.
Hermelin, J. O. R. and Shimmield, G. B.: The importance of the oxygen
minimum zone and sediment geochemistry in the distribution of Recent benthic
foraminifera in the northwest Indian Ocean, Mar. Geol., 91, 1–29, 1990.
Hoogakker, B. A. A., Lu, Z., Umling, N., Jones, L., Zhou, X., Rickaby, R. E.
M., Thunell, R., Cartapanis, O., and Galbraith, E.: Glacial expansion of
oxygen-depleted seawater in the eastern tropical Pacific, Nature, 562,
410–413, https://doi.org/10.1038/s41586-018-0589-x, 2018.
Ingle, J. C., Keller, G., and Kolpack, R. L.: Benthic foraminiferal
biofacies, sediments and water masses of the southern Peru-Chile Trench
area, southeastern Pacific Ocean, Micropaleontology, 26, 113–150, 1980.
Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of
oceanic oxygen concentrations during the last deglaciation, Nat.
Geosci., 5, 151–156, 2012.
Jaccard, S. L., Galbraith, E. D., Frölicher, T. L., and Gruber, N.:
Ocean (de) oxygenation across the last deglaciation: Insights for the
future, Oceanography, 27, 26–35, 2014.
Jannink, N. T., Zachariasse, W. J., and van der Zwaan, G. J.: Living (Rose
Bengal stained) benthic foraminifera from the Pakistan continental margin
(northern Arabian Sea), Deep-Sea Res. Pt. I, 45, 1483–1513, 1998.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G.: A conceptual model
explaining benthic foraminiferal microhabitats, Mar. Micropaleontol.,
26, 3–15, 1995.
Kaiho, K.: Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen
levels in the modern ocean, Geology, 22, 719–722,
https://doi.org/10.1130/0091-7613(1994)022<0719:bfdoia>2.3.co;2, 1994.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77,
331–350, 2008.
Khusid, T. A.: Distribution of benthic foraminifers off west coast of South
America, Oceanology-USSR, 14, 900–904, 1974.
Kuhnt, T., Friedrich, O., Schmiedl, G., Milker, Y., Mackensen, A., and
Lückge, A.: Relationship between pore density in benthic foraminifera
and bottom-water oxygen content, Deep-Sea Res. Pt. I, 76, 85–95, 2013.
Leiter, C. and Altenbach, A. V.: Benthic foraminifera from the diatomaceous
mud belt off Namibia: Characteristic species for severe anoxia,
Palaeontol. Electron., 13.2.11A, 2010.
Levin, L.: Oxygen minimum zone benthos: adaptation and community response to
hypoxia, in: Oceanogr. Marine Biol. Annu. Rev., edited by: Gibson, R. and
Atkinson, R., Taylor&Francis, London, 1–45, 2003.
Levin, L., Gutiérrez, D., Rathburn, A., Neira, C., Sellanes, J.,
Muñoz, P., Gallardo, V., and Salamanca, M.: Benthic processes on the
peru margin: a transect across the oxygen minimum zone during the 1997–98
El Niño, Prog. Oceanogr., 53, 1–27, 2002.
Levin, L. A.: Manifestation, drivers, and emergence of open ocean
deoxygenation, Ann. Rev. Mar. Sci., 10, 229–260, 2018.
Loubere, P.: A multiproxy reconstruction of biological productivity and
oceanography in the eastern equatorial Pacific for the past 30,000 years,
Mar. Micropaleontol., 37, 173–198, 1999.
Mackensen, A. and Douglas, R. G.: Down-core distribution of live and dead
deep-water benthic foraminifera in box cores from the Weddell Sea and the
California continental borderland, Deep-Sea Res. Pt. A, 36, 879–900, 1989.
Mackensen, A., Grobe, H., Kuhn, G., and Fiitterer, D. K.: Benthic
foraminiferal assemblages from the eastern Weddell Sea between 68 and
73∘ S: Distribution, ecology and fossilization potential, Mar.
Micropaleontol., 16, 241–283, 1990.
Mallon, J.: Benthic foraminifera of the Peruvian and Ecuadorian continental
margin, PhD Dissertation, Christian-Albrechts-Universität zu Kiel, 236
pp., 2012.
Mallon, J., Glock, N., and Schönfeld, J.: The response of benthic
foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone,
in: Anoxia, Springer, Dordrecht, 305–321, 2012.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. A, 34, 267–285, 1987.
Martinez, P. and Robinson, R. S.: Increase in water column denitrification during the last deglaciation: the influence of oxygen demand in the eastern equatorial Pacific, Biogeosciences, 7, 1–9, https://doi.org/10.5194/bg-7-1-2010, 2010.
McKay, C. L., Groeneveld, J., Filipsson, H. L., Gallego-Torres, D., Whitehouse, M. J., Toyofuku, T., and Romero, O. E.: A comparison of benthic foraminiferal Mn∕Ca and sedimentary Mn∕Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system, Biogeosciences, 12, 5415–5428, https://doi.org/10.5194/bg-12-5415-2015, 2015.
Members, E. C., Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler,
M., Boutron, C., Blunier, T., Castellano, E., and Cattani, O.: One-to-one
coupling of glacial climate variability in Greenland and Antarctica, Nature,
444, 195–198, 2006.
Moffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P., and Behl, R. J.:
Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara
Basin: A benthic foraminiferal community perspective, Paleoceanography, 29,
44–57, 2014.
Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and
Hill, T. M.: Paleoceanographic insights on recent oxygen minimum zone
expansion: Lessons for modern oceanography, PloS One, 10, e0115246, https://doi.org/10.1371/journal.pone.0115246, 2015.
Mollier-Vogel, E., Leduc, G., Böschen, T., Martinez, P., and Schneider,
R. R.: Rainfall response to orbital and millennial forcing in northern Peru
over the last 18 ka, Quaternary Sci. Rev., 76, 29–38,
https://doi.org/10.1016/j.quascirev.2013.06.021, 2013.
Mollier-Vogel, E., Martinez, P., Blanz, T., Robinson, R., Desprat, S.,
Etourneau, J., Charlier, K., and Schneider, R. R.: Mid-Holocene deepening of
the Southeast Pacific oxycline, Glob. Planet. Change, 172, 365–373,
2019.
Montes, I., Colas, F., Capet, X., and Schneider, W.: On the pathways of the
equatorial subsurface currents in the eastern equatorial Pacific and their
contributions to the Peru-Chile Undercurrent, J. Geophys.
Res.-Ocean., 115, C09003, https://doi.org/10.1029/2009JC005710, 2010.
Mullins, H. T., Thompson, J. B., McDougall, K., and Vercoutere, T. L.:
Oxygen-minimum zone edge effects: evidence from the central California
coastal upwelling system, Geology, 13, 491–494, 1985.
Murray, J. W.: Ecology and applications of benthic foraminifera, Cambridge
University Press, 426 pp., 2006.
Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M., Ohkouchi, N., Ogawa, N.
O., Kogure, K., Ikemoto, E., and Kitazato, H.: Different ingestion patterns
of 13C-labeled bacteria and algae by deep-sea benthic foraminifera,
Mar. Ecol. Prog. Ser., 310, 95–108, 2006.
Nordberg, K., Gustafsson, M., and Krantz, A.-L.: Decreasing oxygen
concentrations in the Gullmar Fjord, Sweden, as confirmed by benthic
foraminifera, and the possible association with NAO, J. Mar.
Syst., 23, 303–316, 2000.
Oberhänsli, H., Heinze, P., Diester-Haass, L., and Wefer, G.: Upwelling
off Peru during the last 430,000 yr and its relationship to the bottom-water
environment, as deduced from coarse grain-size distributions and analyses of
benthic foraminfers at holes 679D, 680B, and 681B, Leg 112, in: Proceedings
of the Ocean Drilling Program: Scientific results, edited by: Suess, E., von
Huene, R. et al., IODP, 369–390, 1990.
Ohga, T. and Kitazato, H.: Seasonal changes in bathyal foraminiferal
populations in response to the flux of organic matter (Sagami Bay, Japan),
Terra Nova, 9, 33–37, 1997.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473, 2018.
Paulmier, A. and Ruiz-Pino, D.: Oxygen minimum zones (OMZs) in the modern
ocean, Prog. Oceanogr., 80, 113–128, 2009.
Pedersen, T. F.: Increased productivity in the eastern equatorial Pacific
during the last glacial maximum (19,000 to 14,000 yr B.P.), Geology, 11, 16–19,
https://doi.org/10.1130/0091-7613(1983)11<16:ipitee>2.0.co;2, 1983.
Pedersen, T. F., Pickering, M., Vogel, J. S., Southon, J. N., and Nelson, D.
E.: The response of benthic foraminifera to productivity cycles in the
eastern equatorial Pacific: Faunal and geochemical constraints on glacial
bottom water oxygen levels, Paleoceanography, 3, 157–168, 1988.
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes,
R., and Chavez, F. P.: Primary production in the eastern tropical Pacific: A
review, Prog. Oceanogr., 69, 285–317, 2006.
Phleger, F. B. and Soutar, A.: Production of benthic foraminifera in three
east Pacific oxygen minima, Micropaleontology, 19, 110–115, 1973.
Piña-Ochoa, E., Høgslund, S., Geslin, E., Cedhagen, T., Revsbech, N.
P., Nielsen, L. P., Schweizer, M., Jorissen, F., Rysgaard, S., and
Risgaard-Petersen, N.: Widespread occurrence of nitrate storage and
denitrification among Foraminifera and Gromiida, P. Natl.
Acad. Sci. USA, 107, 1148–1153, 2010.
Praetorius, S. K., Mix, A. C., Walczak, M., Wolhowe, M. D., Addison, J. A.,
and Prahl, F. G.: North Pacific deglacial hypoxic events linked to abrupt
ocean warming, Nature, 527, 362–366, 2015.
Rathburn, A. E., Willingham, J., Ziebis, W., Burkett, A. M., and Corliss, B.
H.: A New biological proxy for deep-sea paleo-oxygen: Pores of epifaunal
benthic foraminifera, Sci. Rep., 8, 9456, https://doi.org/10.1038/s41598-018-27793-4, 2018.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M.: IntCal13
and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP,
Radiocarbon, 55, 1869–1887, 2013.
Reimers, C. E. and Suess, E.: Spatial and temporal patterns of organic
matter accumulation on the Peru continental margin, in: Coastal upwelling, its sediment record, Part B: sedimentary records of ancient coastal upwelling, edited by: Thiede, J. and Suess, E., NATO Conference Series IV: Marine Sciences, 10b, Plenum Press, New York, 311–345, 1983.
Resig, J. M.: Biogeography of benthic foraminifera of the northern Nazca
plate and adjacent continental margin, Geol. Soc. Am. Mem.,
154, 619–644, 1981.
Resig, J. M.: Benthic foraminiferal stratigraphy and paleoenvironments off
Peru leg 112, in: Proceedings of the Ocean Drilling Program, Scientific
Results, edited by: Suess, E., Von Huene, R. et al., Ocean Drilling
Program, College Station, TX, 263–296, 1990.
Salvatteci, R., Gutiérrez, D., Sifeddine, A., Ortlieb, L., Druffel, E.,
Boussafir, M., and Schneider, R.: Centennial to millennial-scale changes in
oxygenation and productivity in the Eastern Tropical South Pacific during
the last 25,000 years, Quaternary Sci. Rev., 131, 102–117, 2016.
Salvatteci, R., Schneider, R., Blanz, T., and Mollier-Vogel, E.: Deglacial
to Holocene Ocean Temperatures in the Humboldt Current System as Indicated
by Alkenone Paleothermometry, Geophys. Res. Lett., 46, 281–292, 2018.
Sarkar, S. and Gupta, A. K.: Late Quaternary productivity changes in the
equatorial Indian Ocean (ODP Hole 716A), Palaeogeogr. Palaeocl., 397, 7–19, 2014.
Sarnthein, M., Küssner, K., Grootes, P. M., Ausin, B., Eglinton, T., Muglia, J., Muscheler, R., and Schlolaut, G.: Plateaus and jumps in the atmospheric radiocarbon record – Potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-127, in review, 2019.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339, 2017.
Schmiedl, G., Mackensen, A., and Müller, P.: Recent benthic foraminifera
from the eastern South Atlantic Ocean: dependence on food supply and water
masses, Mar. Micropaleontol., 32, 249–287, 1997.
Schmiedl, G., Mitschele, A., Beck, S., Emeis, K.-C., Hemleben, C., Schulz,
H., Sperling, M., and Weldeab, S.: Benthic foraminiferal record of ecosystem
variability in the eastern Mediterranean Sea during times of sapropel
S5 and S6 deposition, Palaeogeogr. Palaeocl., 190, 139–164, 2003.
Scholz, F., McManus, J., Mix, A. C., Hensen, C., and Schneider, R. R.: The
impact of ocean deoxygenation on iron release from continental margin
sediments, Nat. Geosci., 7, 433–437, 2014.
Schönfeld, J. and Altenbach, A. V.: Late Glacial to Recent distribution
pattern of deep-water Uvigerina species in the north-eastern Atlantic,
Mar. Micropaleontol., 57, 1–24, https://doi.org/10.1016/j.marmicro.2005.05.004, 2005.
Schönfeld, J., Kuhnt, W., Erdem, Z., Flögel, S., Glock, N., Aquit, M., Frank, M., and Holbourn, A.: Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones, Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, 2015.
Schröder, C. J.: Subsurface Preservation of Agglutinated Foraminifera in
the Northwest Atlantic Ocean, Abh. Geol. B.-A., 41, 325–336, 1988.
Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E., and Gooday, A.
J.: Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen
minimum zone of the Pakistan continental margin (Arabian Sea), Mar.
Micropaleontol., 62, 45–73, 2007.
Sen Gupta, B. K. and Machain-Castillo, M. L.: Benthic foraminifera in
oxygen-poor habitats, Mar. Micropaleontol., 20, 183–201, 1993.
Siani, G., Michel, E., De Pol-Holz, R., Devries, T., Lamy, F., Carel, M.,
Isguder, G., Dewilde, F. and Lourantou, A.: Carbon isotope records reveal
precise timing of enhanced Southern Ocean upwelling during the last
deglaciation, Nat. Commun., 4, 1–9, https://doi.org/10.1038/ncomms3758, 2013.
Smart, C. W., King, S. C., Gooday, A. J., Murray, J. W., and Thomas, E.: A
benthic foraminiferal proxy of pulsed organic matter paleofluxes, Mar.
Micropaleontol., 23, 89–99, 1994.
Smith, P. B.: Ecology of benthonic species, Recent foraminifera off Central
America, Geological Survey Professional Paper, Washington, 53 pp., 1964.
Sommer, S.: Short Cruise Report RV METEOR M137 Callao (Peru) – Callao (Peru)
06.05.2017–29.05.2017, Project: Collaborative Research Centre 754
“Climate – Biogeochemistry Interactions in the Tropical Ocean”, 1–13,
2017.
Stern, J. V. and Lisiecki, L. E.: Termination 1 timing in radiocarbon-dated
regional benthic δ18O stacks, Paleoceanography, 29, 1127–1142, 2014.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008.
Tetard, M., Licari, L., and Beaufort, L.: Oxygen history off Baja California
over the last 80 kyr: A new foraminiferal-based record, Paleoceanography,
32, 246–264, 2017.
Tyson, R. V. and Pearson, T. H.: Modern and ancient continental shelf
anoxia: an overview, Geol. Soc. Lond. Special Publ., 58,
1–24, 1991.
Uchio, T.: Ecology of living benthonic Foraminifera frpm the San Diego,
California area, Cushman Foundation Foraminifera Research Special
Publications, 5, 1–72, 1960.
Van der Zwaan, G. J.: Benthic foraminifers proxies or problems? A review of
paleoecological concepts, Earth-Sci. Rev., 46, 213–236, 1999.
Venturelli, R. A., Rathburn, A. E., Burkett, A. M., and Ziebis, W.: Epifaunal foraminifera in an infaunal world: insights into the influence of heterogeneity on the benthic ecology of oxygen-poor, deep-sea habitats, Front. Mar. Sci., 5, 1–13, https://doi.org/10.3389/fmars.2018.00344, 2018.
Wyrtki, K.: The oxygen minima in relation to ocean circulation, in: Deep Sea Research and Oceanographic Abstracts, Elsevier, 9, 11–23, 1962.
Yamamoto, A., Abe-Ouchi, A., Ohgaito, R., Ito, A., and Oka, A.: Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust, Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, 2019.
Zhao, N. and Keigwin, L. D.: An atmospheric chronology for the
glacial-deglacial Eastern Equatorial Pacific, Nat. Commun., 9, 3077,
https://doi.org/10.1038/s41467-018-05574-x, 2018.
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing,...
Altmetrics
Final-revised paper
Preprint