Articles | Volume 17, issue 12
https://doi.org/10.5194/bg-17-3317-2020
https://doi.org/10.5194/bg-17-3317-2020
Research article
 | 
01 Jul 2020
Research article |  | 01 Jul 2020

Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system

Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas

Related authors

The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023,https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023,https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Millennial variability of terrigenous transport to the central–southern Peruvian margin during the last deglaciation (18–13 kyr BP)
Marco Yseki, Bruno Turcq, Sandrine Caquineau, Renato Salvatteci, José Solis, C. Gregory Skilbeck, Federico Velazco, and Dimitri Gutiérrez
Clim. Past, 18, 2255–2269, https://doi.org/10.5194/cp-18-2255-2022,https://doi.org/10.5194/cp-18-2255-2022, 2022
Short summary
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022,https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022,https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024,https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023,https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Anthropogenic climate change drives non-stationary phytoplankton internal variability
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023,https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023,https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023,https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary

Cited articles

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. 
Bakun, A.: Global climate change and intensification of coastal ocean upwelling, Science, 247, 198–201, 1990. 
Bakun, A., Field, D. B., Redondo-Rodriguez, A., and Weeks, S. J.: Greenhouse gas, upwelling-favorable winds, nad the future of coastal ocean upwelling ecosystems, Glob. Change Biol., 16, 1213–1228, https://doi.org/10.1111/j.1365-2486.2009.02094.x, 2010. 
Belmadani, A., Echevin, V., Codron, F., Takahashi, K., and Junquas, C.: What dynamics drive future winds scenarios off Peru and Chile?, Clim. Dynam., 43, 1893–1914, https://doi.org/10.1007/s00382-013-2015-2, 2014. 
Download
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Altmetrics
Final-revised paper
Preprint