Articles | Volume 17, issue 2
https://doi.org/10.5194/bg-17-361-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-361-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Jiří Bárta
Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
Daan Blok
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Bo Elberling
Center for Permafrost (CENPERM), Department of Geosciences and
Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Samuel Faucherre
Center for Permafrost (CENPERM), Department of Geosciences and
Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Gustaf Hugelius
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Christian J. Jørgensen
Center for Permafrost (CENPERM), Department of Geosciences and
Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
current address: Section for Arctic
Environment, Department of Bioscience, Aarhus University, Aarhus, Denmark
Andreas Richter
Centre for Microbiology and Ecosystem Science, University of
Vienna, Vienna, Austria
Hana Šantrůčková
Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
Niels Weiss
Department of Physical Geography, Stockholm University, Stockholm, Sweden
current address: Department of Geography and Environmental
Studies, Wilfrid Laurier University, Yellowknife, Canada
Related authors
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
Biogeosciences, 22, 2691–2705, https://doi.org/10.5194/bg-22-2691-2025, https://doi.org/10.5194/bg-22-2691-2025, 2025
Short summary
Short summary
While laboratory studies have identified many drivers and their effects on the carbon emission pulse after rewetting of dry soils, a validation with field data is still missing. Here, we show that the carbon emission pulse in the laboratory and in the field increases with soil organic carbon and temperature, but their trends with pre-rewetting dryness and moisture increment at rewetting differ. We conclude that the laboratory findings can be partially validated.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Jolanta Niedźwiecka, Roey Angel, Petr Čapek, Ana Catalina Lara, Stanislav Jabinski, Travis B. Meador, and Hana Šantrůčková
EGUsphere, https://doi.org/10.5194/egusphere-2025-481, https://doi.org/10.5194/egusphere-2025-481, 2025
Short summary
Short summary
Studies on how microbes use C in soils typically assume oxic conditions, but often overlook anaerobic processes and extracellular metabolite release. We examined how O2 and Fe content affect C mineralisation in forest soils by tracking 13C flow into biomass, CO2, metabolites and the active microbes under oxic and anoxic conditions. Results showed that anoxic conditions preserved C longer, especially in the high-Fe soils. We conclude that microbial exudates play a role in anoxic C stabilisation.
Daniela Guasconi, Sara A. O. Cousins, Stefano Manzoni, Nina Roth, and Gustaf Hugelius
SOIL, 11, 233–246, https://doi.org/10.5194/soil-11-233-2025, https://doi.org/10.5194/soil-11-233-2025, 2025
Short summary
Short summary
This study assesses the effects of experimental drought and soil amendment on soil and vegetation carbon pools at different soil depths. Drought consistently reduced soil moisture and aboveground biomass, while compost increased total soil carbon content and aboveground biomass, and effects were more pronounced in the topsoil. Root biomass was not significantly affected by the treatments. The contrasting response of roots and shoots improves our understanding of ecosystem carbon dynamics.
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206, https://doi.org/10.5194/gmd-2024-206, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Including high-latitude deep carbon is critical for projecting future soil carbon emissions, yet it’s absent in most land surface models. Here we propose a new carbon accumulation protocol by integrating deep carbon from Yedoma deposits and representing the observed history of peat carbon formation in ORCHIDEE-MICT. Our results show an additional 157 PgC in present-day Yedoma deposits and a 1–5 m shallower peat depth, 43 % less passive soil carbon in peatlands against the convention protocol.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cited articles
Bader, C., Müller, M., Schulin, R., and Leifeld, J.: Peat
decomposability in managed organic soils in relation to land use, organic
matter composition and temperature, Biogeosciences 15, 703–719,
https://doi.org/10.5194/bg-15-703-2018, 2018.
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen
availability, Plant Soil, 10, 9–31, 1958.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264,
https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bockheim, J. G.: Importance of cryoturbation in redistributing organic
carbon in permafrost-affected soils, Soil Sci. Soc. Am. J., 71,
1335–1342, https://doi.org/10.2136/sssaj2006.0414N, 2007.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground-ice conditions, 1:10 000 000,
Map CP-45, United States Geological Survey, International Permafrost
Association, Washington, DC, 1997.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground-ice conditions, version 2.
Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center, 2002.
Burke, E. J., Hartley, I. P., and Jones, C. D.: Uncertainties in the global
temperature change caused by carbon release from permafrost thawing, The
Cryosphere, 6, 1063–1076, https://doi.org/10.5194/tc-6-1063-2012, 2012.
Čapek, P., Diáková, K., Dickopp, J. E., Bárta, J., Wild, B.,
Schnecker, J., and Hugelius, G.: The effect of warming on the vulnerability
of subducted organic carbon in arctic soils, Soil Biol. Biochem., 90, 19–29,
https://doi.org/10.1016/j.soilbio.2015.07.013, 2015.
Ciais, P.: A geoscientist is astounded by Earth's huge frozen carbon
deposits, Nature, 462, 393, https://doi.org/10.1038/462393e, 2009.
Clymo, R. S. and Hayward, P. M.: The Ecology of Sphagnum, in:
Bryophyte Ecology, edited by: Smith, A. J. E., 540, 229–289,
https://doi.org/10.1007/978-94-009-5891-3_8, 1982.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Diáková, K., Čapek, P., Kohoutová, I., Mpamah, P., Barta,
J., Biasi, C., Martikainen, P., and Šantrůčková, H.:
Heterogeneity of carbon loss and its temperature sensitivity in
East-European subarctic tundra soils, FEMS Microbiol. Ecol., 92, fiw140,
https://doi.org/10.1093/femsec/fiw140, 2016.
Elberling, B., Michelsen, A., Schädel, C., Schuur, E. A., Christiansen,
H. H., Berg, L., Tamstorf, M. P., and Sigsgaard, C.: Long-term CO2
production following permafrost thaw, Nat. Clim. Change, 3,
890–894, https://doi.org/10.1038/nclimate1955, 2013.
Faucherre, S., Jørgensen, C. J., Blok, D., Weiss, N., Siewert, M. B.,
Bang-Andreasen, T., Hugelius, G., Kuhry, P., and Elberling, B.: Short and
long-term controls on active layer and permafrost carbon turnover across the
Arctic, J. Geophys. Res.–Biogeo., 123, 372–390,
https://doi.org/10.1002/2017JG004069, 2018.
Fierer, N. and Schimel, J. P.: A proposed mechanism for the pulse in carbon
dioxide production commonly observed following the rapid rewetting of a dry
soil, Soil Sci. Soc. Am. J., 67, 798–805,
https://doi.org/10.2136/sssaj2003.0798, 2003.
Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Schomberg, H. H., and
Hons, F. M.: Flush of carbon dioxide following rewetting of dried soil
relates to active organic pools, Soil Sci. Soc. Am. J., 64, 613–623,
https://doi.org/10.2136/sssaj2000.642613x, 2000.
Gentsch, N., Mikutta, R., Alves, R. J. E., Barta, J., Čapek, P., Gittel,
A., Hugelius, G., Kuhry, P., Lashchinskiy, N., Palmtag, J., Richter, A.,
Šantrůčková, H., Schnecker, J., Shibistova, O., Urich, T.,
Wild, B., and Guggenberger, G.: Storage and transformation of organic matter
fractions in cryoturbated permafrost soils across the Siberian Arctic,
Biogeosciences, 12, 4525–4542, https://doi.org/10.5194/bg-12-4525-2015,
2015a.
Gentsch, N., Mikutta, R., Shibistova, O., Wild, B., Schnecker, J., Richter,
A., and Guggenberger, G.: Properties and bioavailability of particulate and
mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma
Region, Russia. European J. Soil Sci., 66, 722–734, https://doi.org/10.1111/ejss.12269, 2015b.
Gentsch, N., Wild, B., Mikutta, R., Čapek, P., Diáková, K.,
Schrumpf, M., Turner, S., Minnich, C., Schaarschmidt, F., Shibistova, O.,
Schnecker, J., Urich, T., Gittel, A., Šantrůčková, H.,
Bárta, J., Lashchinskiy, N., Fuß, R., Richter, A., and Guggenberger,
G.: Temperature response of permafrost soil carbon is attenuated by mineral
protection, Glob. Change Biol., 24, 3401–3415,
https://doi.org/10.1111/gcb.14316, 2018.
Gittel, A., Bárta, J., Kohoutová, I., Mikutta, R., Owens, S.,
Gilbert, J., Schnecker, J., Wild, B., Hannisdal, B., Maerz, J.,
Lashchinskiy, N., Čapek, P., Šantrůčková, H., Gentsch,
N., Shibistova, O., Guggenberger, G., Richter, A., Torsvik, V. L., Schleper,
C., and Urich, T.: Distinct microbial communities associated with buried
soils in the Siberian tundra, ISME J., 8, 841–853, 2014.
Grosse, G., Harden, J., Turetsky, M. R., McGuire, A. D., Camill, P.,
Tarnocai, C., Frolking, S., Schuur, E. A. G., Jorgenson, T., Marchenko, S.,
Romanovsky, V., Wickland, K. P., French, N., Waldrop, M. P.,
Bourgeau-Chavez, L., and Striegl, R. G.: Vulnerability of high-latitude soil
organic carbon in North America to disturbance, J. Geophys. Res., 116,
G00K06, https://doi.org/10.1029/2010JG001507, 2011.
Gruber, N, Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M.,
Richey, J. E., Romero-Lankao, P., Schulze, D., and Chen, C.-T. A.: The
vulnerability of the carbon cycle in the 21st century: An assessment of
carbon-climate-human interactions, in: The Global Carbon Cycle, Integrating
Humans, Climate and the Natural World, edited by: Field, C. and Raupach, M.,
Island Press, Washington DC, 45–76, 2004.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis, Palaeontol.
Electron., 4, 9 pp., 2001.
Harden, J. W., Koven, C. D., Ping, C. L., Hugelius, G., McGuire, A. D.,
Camill, P., Jorgenson, T., Kuhry, P., Michaelson, G. J., O'Donnell, J. A.,
Schuur, E. A. G., Tarnocai, C., Johnson, K., and Grosse, G.: Field
information links permafrost carbon to physical vulnerabilities of thawing,
Geophys. Res. Lett., 39, L15704, https://doi.org/10.1029/2012gl051958, 2012.
Horwath Burnham, J. and Sletten, R. S.: Spatial distribution of soil organic
carbon in northwest Greenland and underestimates of High Arctic carbon
stores, Global Biogeochem. Cy., 24, GB3012,
https://doi.org/10.1029/2009GB003660, 2010.
Hugelius, G. and Kuhry, P.: Landscape partitioning and environmental
gradient analyses of soil organic carbon in a permafrost environment, Global
Biogeochem. Cy., 23, GB3006, https://doi.org/10.1029/2008GB003419, 2009.
Hugelius, G., Kuhry, P., Tarnocai, C., and Virtanen, T.: Soil organic carbon
pools in a periglacial landscape: a case study from the central Canadian
Arctic, Permafrost Periglac., 21, 16–29, https://doi.org/10.1002/ppp.677,
2010.
Hugelius, G., Virtanen, T., Kaverin, D., Pastukhov, A., Rivkin, F.,
Marchenko, S., Romanovsky, V., and Kuhry, P.: High-resolution mapping of
ecosystem carbon storage and potential effects of permafrost thaw in
periglacial terrain, European Russian Arctic, J. Geophys. Res., 116, G03024,
https://doi.org/10.1029/2010JG001606, 2011.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Kuhry, P., and Tarnocai, C.: Ideas and perspectives: Holocene
thermokarst sediments of the Yedoma permafrost region do not increase the
northern peatland carbon pool, Biogeosciences, 13, 2003–2010,
https://doi.org/10.5194/bg-13-2003-2016, 2016.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical
Science Basis, Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Stocker,
T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 28 pp., 2013.
IPCC: Summary for Policymakers, in: Global Warming of 1.5 ∘C. An
IPCC Special Report on the impacts of global warming of 1.5 ∘C
above pre-industrial levels and related global greenhouse gas emission
pathways, in: the context of strengthening the global response to the threat
of climate change, sustainable development, and efforts to eradicate
poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O.,
Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W.,
Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou,
X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.,
World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.
Jarvis,
P., Rey, A., Petsikos, C., Wingate, L., Rayment, M., Pereira, J., Banza, J.,
David, J., Miglietta, F., Borghetti, M., Manca., G., and Valentini, R.:
Drying and wetting of Mediterranean soils stimulates decomposition and
carbon dioxide emission: the “Birch effect”, Tree Physiol., 27,
929–940, 2007.
Kaiser, C., Meyer, H., Biasi, C., Rusalimova, O., Barsukov, P., and Richter,
A.: Conservation of soil organic matter through cryoturbation in arctic
soils in Siberia, J. Geophys. Res., 112, G02017,
https://doi.org/10.1029/2006JG000258, 2007.
Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., and Pfeiffer, E-M.:
Predicting long-term carbon mineralization and trace gas production from
thawing permafrost of Northeast Siberia, Glob. Change Biol., 19, 1160–1172,
https://doi.org/10.1111/gcb.12116, 2013.
Kuhry, P.: The role of fire in the development of Sphagnum-dominated peatlands in
Western Boreal Canada, J. Ecol., 82, 899–910, 1994.
Kuhry, P. and Vitt, D. H.: Fossil carbon/nitrogen ratios as a measure of
peat decomposition, Ecology, 77, 271–275, https://doi.org/10.2307/2265676,
1996.
Kuhry, P., Dorrepaal, E., Hugelius, G., Schuur, E. A. G., and Tarnocai, C.:
Potential remobilization of belowground permafrost carbon under future
global warming, Permafrost Periglac., 21, 208–214,
https://doi.org/10.1002/ppp.684, 2010.
NCSCDv2: The Northern Circumpolar Soil Carbon Database, version 2, https://doi.org/10.5879/ECDS/00000002, 2014.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial CH4
emissions across permafrost zones, Glob. Change Biol., 19, 589–603,
https://doi.org/10.1111/gcb.12071, 2013.
Palmtag, J. and Kuhry, P.: Grain size controls on cryoturbation and soil
organic carbon density in permafrost-affected soils, Permafrost Periglac.,
29, 112–120, https://doi.org/10.1002/ppp.1975, 2018.
Palmtag, J., Hugelius, G., Lashchinskiy, N., Tamstorf, M. P., Richter, A.,
Elberling, B., and Kuhry, P.: Storage, landscape distribution and burial
history of soil organic matter in contrasting areas of continuous
permafrost, Arct. Antarct. Alp. Res., 47, 71–88,
https://doi.org/10.1657/AAAR0014-027, 2015.
Palmtag, J., Ramage, J., Hugelius, G., Gentsch, N., Lashchinskiy, N.,
Richter, A., and Kuhry, P.: Controls on the storage of organic carbon in
permafrost soils in northern Siberia, Eur. J. Soil Sci., 67, 478–491,
https://doi.org/10.1111/ejss.12357, 2016.
Ping, C.-L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein,
H., Romanovsky, V. E., and Walker, D. A.: High stocks of soil organic carbon
in North American Arctic region, Nat. Geosci., 1, 615–619,
https://doi.org/10.1038/ngeo284, 2008.
Šantrůčková, H., Kurbatova, J., Shibistova, O., Smejkalova,
M., and Kastovska, E.: Short-Term Kinetics of Soil Microbial Respiration –
A General Parameter Across Scales?, in: Tree Species Effects on Soils: Implications for Global Change, Proceedings of the NATO Advanced
Research Workshop on Trees and Soil Interactions, Implications to Global
Climate Change, August 2004, Krasnoyarsk, Russia, 229–246,
https://doi.org/10.1007/1-4020-3447-4_13, 2006.
Schädel, C., Schuur, E. A. G., Bracho, R., Elberling, B., Knoblauch, C.,
Lee, H., Luo, Y., Shaver, G. R., and Turetsky, M. R.: Circumpolar assessment
of permafrost C quality and its vulnerability over time using long-term
incubation data, Glob. Change Biol., 20, 641–652,
https://doi.org/10.1111/gcb.12417, 2014.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
Permafrost Carbon to Climate Change: Implications for the Global Carbon
Cycle, Bioscience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 20, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shmelev, D., Veremeeva, A., Kraev, G., Kholodov, A., Spencer, R. G. M., and
Walker, W. S.: Estimation and Sensitivity of Carbon Storage in Permafrost of
North-Eastern Yakutia, Permafrost. Periglac., 28, 379–390,
https://doi.org/10.1002/ppp.1933, 2017.
Siewert, M. B.: High-resolution digital mapping of soil organic carbon in
permafrost terrain using machine learning: a case study in a sub-Arctic
peatland environment, Biogeosciences, 15, 1663–1682,
https://doi.org/10.5194/bg-15-1663-2018, 2018.
Siewert, M. B., Hugelius, G., Heim, B., and Faucherre, S.: Landscape
controls and vertical variability of soil organic carbon storage in
permafrost-affected soils of the Lena River Delta, CATENA, 147, 725–741,
https://doi.org/10.1016/j.catena.2016.07.048, 2016.
Schnecker, J., Wild, B., Hofhansl, F., Eloy Alves, R. J., Bárta, J.,
Čapek, P., Fuchslueger, L., Gentsch, N., Gittel, A., Guggenberger, G.,
Hofer, A., Kienzl, S., Knoltsch, A., Lashchinskiy, N., Mikutta, R.,
Santrůčková, H., Shibistova, O., Takriti, M., Urich, T., Weltin,
G., and Richter, A.: Effects of soil organic matter properties and microbial
community composition on enzyme activities in cryoturbated arctic soils,
PLoS ONE, 9, e94076, https://https://doi.org/10.1371/journal.pone.0094076, 2014.
Soil Survey Staff: Keys to Soil Taxonomy, Twelfth Edition, USDA Natural
Resources Conservation Service, Washington, DC, 372 pp., 2014.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H.-W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40, 6165–6170,
https://doi.org/10.1002/2013GL058088, 2013.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Vardy, S. R., Warner, B. G., Turunen, J., and Aravena, R.: Carbon
accumulation in permafrost peatlands in the Northwest Territories and
Nunavut, Canada, The Holocene, 10, 273–280,
https://doi.org/10.1191/095968300671749538, 2000.
Walter Anthony, K. M., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P.
M., Iii, F. S. C., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., and
Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks
during the Holocene epoch, Nature, 511, 452–456,
https://doi.org/10.1038/nature13560, 2014.
Weiss, N. and Kaal, J.: Characterization of labile organic matter in
Pleistocene permafrost (NE Siberia), using Thermally assisted Hydrolysis and
Methylation (THM-GC-MS), Soil Biol. Biochem., 117, 203–213,
https://doi.org/10.1016/j.soilbio.2017.10.001, 2018.
Weiss, N., Blok, D., Elberling, B., Hugelius, G., Jorgensen, C. J., Siewert,
M. B., and Kuhry, P.: Thermokarst dynamics and soil organic matter
characteristics controlling initial carbon release from permafrost soils in
the Siberian Yedoma region, Sediment. Geol., 340, 38–48,
https://doi.org/10.1016/j.sedgeo.2015.12.004, 2016.
Weiss, N., Faucherre, S., Lampiris, N., and Wojcik, R.: Elevation-based
upscaling of organic carbon stocks in high Arctic permafrost terrain: A
storage and distribution assessment for Spitsbergen, Svalbard, Polar
Res., 36, https://doi.org/10.1080/17518369.2017.1400363, 2017.
Zechmeister-Boltenstern, S., Keiblinger, K. M., Mooshammer, M., Penuelas,
J., Richter, A., Sardans, J., and Wanek, W.: The application of ecological
stoichiometry to plant–microbial–soil organic matter transformations,
Ecol. Monogr., 85, 133–155, https://doi.org/10.1890/14-0777.1, 2015.
Altmetrics
Final-revised paper
Preprint