Articles | Volume 17, issue 16
https://doi.org/10.5194/bg-17-4261-2020
https://doi.org/10.5194/bg-17-4261-2020
Research article
 | 
26 Aug 2020
Research article |  | 26 Aug 2020

Linking tundra vegetation, snow, soil temperature, and permafrost

Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike

Related authors

Very high resolution aerial image orthomosaics, point clouds, and elevation datasets of select permafrost landscapes in Alaska and northwestern Canada
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024,https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023,https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary

Related subject area

Biogeophysics: Physical - Biological Coupling
Phytoplankton blooming mechanisms over the East China Sea during post-El Niño summers
Dong-Geon Lee, Ji-Hoon Oh, Jonghun Kam, and Jong-Seong Kug
Biogeosciences, 22, 3165–3180, https://doi.org/10.5194/bg-22-3165-2025,https://doi.org/10.5194/bg-22-3165-2025, 2025
Short summary
Impact of stratiform liquid water clouds on vegetation albedo quantified by coupling an atmosphere and a vegetation radiative transfer model
Kevin Wolf, Evelyn Jäkel, André Ehrlich, Michael Schäfer, Hannes Feilhauer, Andreas Huth, Alexandra Weigelt, and Manfred Wendisch
Biogeosciences, 22, 2909–2933, https://doi.org/10.5194/bg-22-2909-2025,https://doi.org/10.5194/bg-22-2909-2025, 2025
Short summary
Technical note: Investigating saline water uptake by roots using spectral induced polarization
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025,https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Can atmospheric chemistry deposition schemes reliably simulate stomatal ozone flux across global land covers and climates?
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429,https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Source-to-sink pathways of dissolved organic carbon in the river–estuary–ocean continuum: a modeling investigation
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024,https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary

Cited articles

AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, available at: https://www.amap.no/documents/download/2987/inline (23 June 2020), 2017. a
Anders, K., Antonova, S., Boike, J., Gehrmann, M., Hartmann, J., Helm, V., Höfle, B., Marsh, P., Marx, S., and Sachs, T.: Airborne Laser Scanning (ALS) Point Clouds of Trail Valley Creek, NWT, Canada, PANGEA, https://doi.org/10.1594/PANGAEA.894884, 2018. a, b
Anisimov, O. A., Shiklomanov, N. I., and Nelson, F. E.: Variability of seasonal thaw depth in permafrost regions: a stochastic modeling approach, Ecol. Model., 153, 217–227, https://doi.org/10.1016/S0304-3800(02)00016-9, 2002. a
Antonova, S., Thiel, C., Höfle, B., Anders, K., Helm, V., Zwieback, S., Marx, S., and Boike, J.: Estimating tree height from TanDEM-X data at the northwestern Canadian treeline, Remote Sens. Environ., 231, 111251, https://doi.org/10.1016/j.rse.2019.111251, 2019. a
Belke-Brea, M., Domine, F., Barrere, M., Picard, G., and Arnaud, L.: Impact of Shrubs on Winter Surface Albedo and Snow Specific Surface Area at a Low Arctic Site: In Situ Measurements and Simulations, J. Clim., 33, 597–609, https://doi.org/10.1175/JCLI-D-19-0318.1, 2020. a
Download
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
Share
Altmetrics
Final-revised paper
Preprint