Articles | Volume 17, issue 18
Biogeosciences, 17, 4707–4726, 2020
https://doi.org/10.5194/bg-17-4707-2020
Biogeosciences, 17, 4707–4726, 2020
https://doi.org/10.5194/bg-17-4707-2020

Research article 28 Sep 2020

Research article | 28 Sep 2020

Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record

James Z. Sippo et al.

Related authors

Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021,https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Hypersaline tidal flats as important “blue carbon” systems: a case study from three ecosystems
Dylan R. Brown, Humberto Marotta, Roberta B. Peixoto, Alex Enrich-Prast, Glenda C. Barroso, Mario L. G. Soares, Wilson Machado, Alexander Pérez, Joseph M. Smoak, Luciana M. Sanders, Stephen Conrad, James Z. Sippo, Isaac R. Santos, Damien T. Maher, and Christian J. Sanders
Biogeosciences, 18, 2527–2538, https://doi.org/10.5194/bg-18-2527-2021,https://doi.org/10.5194/bg-18-2527-2021, 2021
Short summary
An improved method for atmospheric 14CO measurements
Vasilii V. Petrenko, Andrew M. Smith, Edward M. Crosier, Roxana Kazemi, Philip Place, Aidan Colton, Bin Yang, Quan Hua, and Lee T. Murray
Atmos. Meas. Tech., 14, 2055–2063, https://doi.org/10.5194/amt-14-2055-2021,https://doi.org/10.5194/amt-14-2055-2021, 2021
Short summary
Stable isotopes track the ecological and biogeochemical legacy of mass mangrove forest dieback in the Gulf of Carpentaria, Australia
Yota Harada, Rod M. Connolly, Brian Fry, Damien T. Maher, James Z. Sippo, Luke C. Jeffrey, Adam J. Bourke, and Shing Yip Lee
Biogeosciences, 17, 5599–5613, https://doi.org/10.5194/bg-17-5599-2020,https://doi.org/10.5194/bg-17-5599-2020, 2020
Short summary
Changes in Particulate and Mineral Associated Organic Carbon with Land Use in Contrasting Soils
Sabina Yeasmin, Balwant Singh, Cliff T. Johnston, Donald L. Sparks, and Quan Hua
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-416,https://doi.org/10.5194/bg-2019-416, 2019
Preprint withdrawn
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021,https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Temporal variability and driving factors of the carbonate system in the Aransas Ship Channel, TX, USA: a time series study
Melissa R. McCutcheon, Hongming Yao, Cory J. Staryk, and Xinping Hu
Biogeosciences, 18, 4571–4586, https://doi.org/10.5194/bg-18-4571-2021,https://doi.org/10.5194/bg-18-4571-2021, 2021
Short summary
Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification – a mesocosm approach
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021,https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Retracing hypoxia in Eckernförde Bight (Baltic Sea)
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021,https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
The impact of the freeze–melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian seas (Siberian Arctic)
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021,https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary

Cited articles

Alber, M., Swenson, E. M., Adamowicz, S. C., and Mendelssohn, I. A.: Salt Marsh Dieback: An overview of recent events in the US, Estuar. Coast. Shelf Sci., 80, 1–11, https://doi.org/10.1016/j.ecss.2008.08.009, 2008. 
Alongi, D. M.: The Impact of Climate Change on Mangrove Forests, Curr. Clim. Change Rep., 1, 30–39, https://doi.org/10.1007/s40641-015-0002-x, 2015. 
Asbridge, E., Lucas, R., Ticehurst, C., and Bunting, P.: Mangrove response to environmental change in Australia's Gulf of Carpentaria, Ecol. Evol., 6, 3523–3539, 2016. 
Asbridge, E., Bartolo, R., Finlayson, C. M., Lucas, R. M., Rogers, K., and Woodroffe, C. D.: Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, northern Australia, Estuar. Coast. Shelf Sci., 228, 106353, https://doi.org/10.1016/j.ecss.2019.106353, 2019. 
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R.: The value of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193, https://doi.org/10.1890/10-1510.1, 2011. 
Download
Short summary
In 2015–2016, a massive mangrove dieback event occurred along ~1000 km of coastline in Australia. Multiple lines of evidence from climate data, wood and sediment samples suggest low water availability within the dead mangrove forest. Wood and sediments also reveal a large increase in iron concentrations in mangrove sediments during the dieback. This study supports the hypothesis that the forest dieback was associated with low water availability driven by a climate-change-related ENSO event.
Altmetrics
Final-revised paper
Preprint