Articles | Volume 17, issue 20
https://doi.org/10.5194/bg-17-5163-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5163-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
present address: Woodwell Climate Research Center, Falmouth, MA 02540, USA
Suzanne E. Tank
Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Robert G. Striegl
United States Geological Survey, Boulder, CO, 80303, USA
Steven V. Kokelj
Northwest Territories Geological Survey, Yellowknife, NT, X1A 2L9, Canada
Justin Kokoszka
Northwest Territories Geological Survey, Yellowknife, NT, X1A 2L9, Canada
Cristian Estop-Aragonés
Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
present address: Institute of Landscape Ecology, University of Münster, 48149 Münster, Germany
David Olefeldt
Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Related authors
No articles found.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Hayley F. Drapeau, Suzanne E. Tank, Maria A. Cavaco, Jessica A. Serbu, Vincent L. St. Louis, and Maya P. Bhatia
Biogeosciences, 22, 1369–1391, https://doi.org/10.5194/bg-22-1369-2025, https://doi.org/10.5194/bg-22-1369-2025, 2025
Short summary
Short summary
From glacial headwaters to 100 km downstream, we found clear organic matter gradients in Canadian Rocky Mountain rivers. In contrast, microbial communities exhibited overall cohesion, indicating that species dispersal may be an over-riding control on community dynamics in these connected rivers. Identification of glacial-specific microbes suggests that glaciers seed headwater microbial assemblages; these findings show the importance of glacial waters and microbiomes in changing mountain systems.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023, https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Short summary
There is an urgent need to obtain size and erosion estimates of climate-driven landslides, such as retrogressive thaw slumps. We evaluated surface interpolation techniques to estimate slump erosional volumes and developed a new inventory method by which the size and activity of these landslides are tracked through time. Models between slump area and volume reveal non-linear intensification, whereby model coefficients improve our understanding of how permafrost landscapes may evolve over time.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Sarah Shakil, Suzanne E. Tank, Jorien E. Vonk, and Scott Zolkos
Biogeosciences, 19, 1871–1890, https://doi.org/10.5194/bg-19-1871-2022, https://doi.org/10.5194/bg-19-1871-2022, 2022
Short summary
Short summary
Permafrost thaw-driven landslides in the western Arctic are increasing organic carbon delivered to headwaters of drainage networks in the western Canadian Arctic by orders of magnitude. Through a series of laboratory experiments, we show that less than 10 % of this organic carbon is likely to be mineralized to greenhouse gases during transport in these networks. Rather most of the organic carbon is likely destined for burial and sequestration for centuries to millennia.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Kyra A. St. Pierre, Brian P. V. Hunt, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Allison A. Oliver, and Kenneth P. Lertzman
Biogeosciences, 18, 3029–3052, https://doi.org/10.5194/bg-18-3029-2021, https://doi.org/10.5194/bg-18-3029-2021, 2021
Short summary
Short summary
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British Columbia (Canada), we show that coastal temperate rainforest streams are sources of organic nitrogen, iron, and carbon to the Pacific Ocean but not the inorganic nutrients easily used by marine phytoplankton. This distinction may have important implications for coastal food webs and highlights the need to sample all nutrients in fresh and marine waters year-round to fully understand coastal dynamics.
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Cited articles
Anderson, S. P.:
Biogeochemistry of Glacial Landscape Systems,
Annu. Rev. Earth Pl. Sc.,
35(1), 375–399, https://doi.org/10.1146/annurev.earth.35.031306.140033, 2007.
Beaulieu, E., Goddéris, Y., Donnadieu, Y., Labat, D., and Roelandt, C.:
High sensitivity of the continental-weathering carbon dioxide sink to future climate change,
Nat. Clim. Change,
J2, 346–349, https://doi.org/10.1038/nclimate1419, 2012.
Berner, R. A.:
Weathering, plants, and the long-term carbon cycle,
Geochim. Cosmochim. Ac.,
56, 3225–3231, 1992.
Berner, R. A.:
A new look at the long-term carbon cycle,
GSA Today,
9, 1–6, 1999.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale,
Nat. Commun.,
10, 1–11, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bronaugh, D. and Werner, A.:
zyp: Zhang + Yue-Pilon trends package,
Pacific Climate Impacts Consortium,
available at: https://CRAN.R-project.org/package=zyp (last access: 28 February 2020), 2013.
Calmels, D., Gaillardet, J., Brenot, A., and France-Lanord, C.:
Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives,
Geology,
35, 1003–1006, https://doi.org/10.1130/G24132A.1, 2007.
Campeau, A., Bishop, K., Nilsson, M. B., Klemedtsson, L., Laudon, H., Leith, F. I., Öquist, M., and Wallin, M. B.:
Stable Carbon Isotopes Reveal Soil-Stream DIC Linkages in Contrasting Headwater Catchments,
J. Geophys. Res.-Biogeo.,
123, 149–167, https://doi.org/10.1002/2017JG004083, 2018.
Clark, I. D. and Fritz, P.:
Environmental isotopes in hydrogeology,
CRC Press/Lewis Publishers, Boca Raton, FL, 1997.
Crawford, J. T., Striegl, R. G., Wickland, K. P., Dornblaser, M. M., and Stanley, E. H.:
Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska,
J. Geophys. Res.-Biogeo.,
118, 482–494, https://doi.org/10.1002/jgrg.20034, 2013.
Cray, H. A. and Pollard, W. H.:
Vegetation Recovery Patterns Following Permafrost Disturbance in a Low Arctic Setting: Case Study of Herschel Island, Yukon, Canada,
Arct. Antarct. Alp. Res.,
47, 99–113, https://doi.org/10.1657/AAAR0013-076, 2015.
Descolas-Gros, C. and Fontungne, M.:
Stable carbon isotope fractionation by marine phytoplankton during photosynthesis,
Plant Cell Environ.,
13, 207–218, https://doi.org/10.1111/j.1365-3040.1990.tb01305.x, 1990.
Didan, K.:
MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set], NASA EOSDIS Land Processes DAAC,
https://doi.org/doi: 10.5067/MODIS/MOD13Q1.006, 2015.
Doctor, D. H., Kendall, C., Sebestyen, S. D., Shanley, J. B., Ohte, N., and Boyer, E. W.:
Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream,
Hydrol. Process.,
22, 2410–2423, https://doi.org/10.1002/hyp.6833, 2008.
Drake, T. W., Tank, S. E., Zhulidov, A. V., Holmes, R. M., Gurtovaya, T., and Spencer, R. G. M.:
Increasing Alkalinity Export from Large Russian Arctic Rivers,
Environ. Sci. Technol.,
52, 8302–8308, https://doi.org/10.1021/acs.est.8b01051, 2018a.
Drake, T. W., Guillemette, F., Hemingway, J. D., Chanton, J. P., Podgorski, D. C., Zimov, N. S., and Spencer, R. G. M.:
The Ephemeral Signature of Permafrost Carbon in an Arctic Fluvial Network,
J. Geophys. Res.-Biogeo.,
123, 1–11, https://doi.org/10.1029/2017JG004311, 2018b.
Duk-Rodkin, A. and Hughes, O. L.: Surficial geology, Fort McPherson-Bell River, Yukon-Northwest Territories,
Geological Survey of Canada, Ottawa, Canada, 1992.
Evans, J. S., Oakleaf, J., Cushman, S. A., and Theobald, D.:
An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0-0,
available at: http://evansmurphy.wix.com/evansspatial (last access: 2 December 2015), 2014.
Gaillardet, J., Dupré, B., Louvat, P., and Allegre, C. J.:
Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers,
Chem Geol.,
159, 3–30, https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Gentsch, N., Mikutta, R., Shibistova, O., Wild, B., Schnecker, J., Richter, A., Urich, T., Gittel, A., Šantrůčková, H., Bárta, J., Lashchinskiy, N., Mueller, C. W., Fuß, R., and Guggenberger, G.:
Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia,
Eur. J. Soil Sci.,
66, 722–734, https://doi.org/10.1111/ejss.12269, 2015.
Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., and Nathan, R. J. (eds.):
Stream hydrology: an introduction for ecologists, 2nd edn.,
Wiley, Chichester, West Sussex, England; Hoboken, N.J., 2004.
Hamilton, S. K. and Ostrom, N. E.:
Measurement of the stable isotope ratio of dissolved N2 in 15N tracer experiments,
Limnol. Oceanogr.-Meth.,
5, 233–240, 2007.
Hesslein, R. H., Rudd, J. W. M., Kelly, C., Ramlal, P., and Hallard, K. A.:
Carbon dioxide pressure in surface waters of Canadian lakes,
in: Air-Water Mass Transfer: Selected Papers from the Second International Symposium on Gas Transfer at Water Surfaces,
edited by: Wilhelms, S. C. and Gulliver, J. S.,
American Society of Civil Engineers, New York, New York, 413–431, 1991.
Hilton, R. G. and West, A. J.:
Mountains, erosion and the carbon cycle,
Nat. Rev. Earth Environ.,
1, 284–299, https://doi.org/10.1038/s43017-020-0058-6, 2020.
Hitchon, B. and Krouse, H. R.:
Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada-III. Stable isotopes of oxygen, carbon and sulphur,
Geochim. Cosmochim. Ac.,
36, 1337–1357, 1972.
Horgby, Å., Boix Canadell, M., Ulseth, A. J., Vennemann, T. W., and Battin, T. J.:
High-Resolution Spatial Sampling Identifies Groundwater as Driver of CO2 Dynamics in an Alpine Stream Network,
J. Geophys. Res.-Biogeo.,
124, 1961–1976, https://doi.org/10.1029/2019JG005047, 2019.
Hornby, D. D.:
RivEX (Version 10.25),
available at: http://www.rivex.co.uk (last access: 21 February 2020), 2017.
Hotchkiss, E. R., Hall Jr, R. O., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H., Rosvall, M., and Karlsson, J.:
Sources of and processes controlling CO2 emissions change with the size of streams and rivers,
Nat. Geosci.,
8, 696–699, https://doi.org/10.1038/ngeo2507, 2015.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.:
Overview of the radiometric and biophysical performance of the MODIS vegetation indices,
Remote Sens. Environ.,
83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Hutchins, R. H. S., Prairie, Y. T., and del Giorgio, P. A.:
Large-Scale Landscape Drivers of CO2, CH4, DOC, and DIC in Boreal River Networks,
Global Biogeochem. Cy.,
33, 125–142, https://doi.org/10.1029/2018GB006106, 2019.
Hutchins, R. H. S., Tank, S. E., Olefeldt, D., Quinton, W. L., Spence, C., Dion, N., Estop-Aragonés, C., and Mengistu, S. G.:
Fluvial CO2 and CH4 patterns across wildfire-disturbed ecozones of subarctic Canada: Current status and implications for future change,
Glob. Change Biol.,
26, 2304–2319, https://doi.org/10.1111/gcb.14960, 2020.
Kendall, C., Doctor, D. H., and Young, M. B.:
Environmental Isotope Applications in Hydrologic Studies,
in: Treatise on Geochemistry, vol. 7,
edited by: Holland, H. D. and Turekian, K. K.,
Elsevier, Oxford, 273–327, 2014.
Kokelj, S. V., Lacelle, D., Lantz, T. C., Tunnicliffe, J., Malone, L., Clark, I. D., and Chin, K. S.:
Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales,
J. Geophys. Res.-Earth,
118, 681–692, https://doi.org/10.1002/jgrf.20063, 2013.
Kokelj, S. V., Tunnicliffe, J., Lacelle, D., Lantz, T. C., Chin, K. S., and Fraser, R.:
Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada,
Global Biogeochem. Cy.,
129, 56–68, https://doi.org/10.1016/j.gloplacha.2015.02.008, 2015.
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., and Lacelle, R.:
Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada,
Geology,
45, 371–374, https://doi.org/10.1130/G38626.1, 2017a.
Kokelj, S. V., Tunnicliffe, J. F., and Lacelle, D.:
The Peel Plateau of Northwestern Canada: An Ice-Rich Hummocky Moraine Landscape in Transition,
in:
Landscapes and Landforms of Western Canada,
edited by:
Slaymaker, O.,
Springer International Publishing, Cham, 109–122, 2017b.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.:
Package “lmerTest.”,
The Comprehensive R Archive Network, 2018.
Lacelle, D., Fontaine, M., Pellerin, A., Kokelj, S. V., and Clark, I. D.:
Legacy of Holocene Landscape Changes on Soil Biogeochemistry: A Perspective From Paleo-Active Layers in Northwestern Canada,
J. Geophys. Res.-Biogeo.,
124, 2662–2679, https://doi.org/10.1029/2018JG004916, 2019.
Lafrenière, M. J. and Sharp, M. J.:
The Concentration and Fluorescence of Dissolved Organic Carbon (DOC) in Glacial and Nonglacial Catchments: Interpreting Hydrological Flow Routing and DOC Sources,
Arct. Antarct. Alp. Res.,
36, 156–165, 2004.
Lehn, G. O., Jacobson, A. D., Douglas, T. A., McClelland, J. W., Barker, A. J., and Khosh, M. S.:
Constraining seasonal active layer dynamics and chemical weathering reactions occurring in North Slope Alaskan watersheds with major ion and isotope (δ34SSO4, δ13CDIC, 87Sr∕86Sr, δ44∕40Ca, and δ44∕42Ca) measurements,
Geochim. Cosmochim. Ac.,
217, 399–420, https://doi.org/10.1016/j.gca.2017.07.042, 2017.
Levenstein, B., Culp, J. M., and Lento, J.:
Sediment inputs from retrogressive thaw slumps drive algal biomass accumulation but not decomposition in Arctic streams, NWT,
Freshwater Biol.,
63, 1300–1315, https://doi.org/10.1111/fwb.13158, 2018.
Littlefair, C. A., Tank, S. E., and Kokelj, S. V.: Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada, Biogeosciences, 14, 5487–5505, https://doi.org/10.5194/bg-14-5487-2017, 2017.
Lurry, D. L. and Kolbe, C. M.:
Interagency Field Manual for the Collection of Water-Quality Data,
USGS,
United States Geological Survey, Austin, TX, 2000.
Malone, L., Lacelle, D., Kokelj, S., and Clark, I. D.:
Impacts of hillslope thaw slumps on the geochemistry of permafrost catchments (Stony Creek watershed, NWT, Canada),
Chem. Geol.,
356, 38–49, https://doi.org/10.1016/j.chemgeo.2013.07.010, 2013.
Millero, F. J.:
The thermodynamics of the carbonate system in seawater,
Geochim. Cosmochim. Ac.,
43, 1651–1661, 1979.
Mook, W. G., Bommerson, J. C., and Staverman, W. H.:
Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide,
Earth Planet. Sc. Lett.,
22, 169–176, 1974.
Norris, D. K.:
Geology of the Northern Yukon and Northwestern District of Mackenzie,
Geological Survey of Canada, Ottawa, Canada, 1985.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and Turetsky, M. R.:
Circumpolar distribution and carbon storage of thermokarst landscapes,
Nat. Commun.,
7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Parkhurst, D. I. and Appelo, C. A. J.:
Description of input and examples for PHREEQC version 3 – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, vol. A43, p. 497,
U.S. Geological Survey,
available at: http://pubs.usgs.gov/tm/06/a43 (last access: 13 September 2018), 2013.
Pierrot, D., Lewis, E., and Wallace, D. W. R.:
MS Excel program developed for CO2 system calculations,
available at: https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a,
Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006.
Piper, A. M.:
A graphic procedure in the geochemical interpretation of water-analyses,
Eos T. Am. Geophys. Un.,
25, 914, https://doi.org/10.1029/TR025i006p00914, 1944.
Poulin, B. A., Ryan, J. N., and Aiken, G. R.:
Effects of Iron on Optical Properties of Dissolved Organic Matter,
Environ. Sci. Technol.,
48, 10098–10106, https://doi.org/10.1021/es502670r, 2014.
R Core Team:
R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
available at: http://www.r-project.org/ (last access: 15 September 2020), 2018.
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E., Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D. L., Kimball, J. S., Kwok, R., Lammers, R. B., Lee, C. M., Lettenmaier, D. P., McDonald, K. C., Podest, E., Pundsack, J. W., Rudels, B., Serreze, M. C., Shiklomanov, A., Skagseth, Ø., Troy, T. J., Vörösmarty, C. J., Wensnahan, M., Wood, E. F., Woodgate, R., Yang, D., Zhang, K., and Zhang, T.:
Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations,
J. Climate,
23, 5715–5737, https://doi.org/10.1175/2010JCLI3421.1, 2010.
Riley, S. J., DeGloria, S. D., and Elliot, R.:
A terrain ruggedness index that quantifies topographic heterogeneity,
Int. J. Sci.,
5, 23–27, 1999.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.:
Climate change and the permafrost carbon feedback,
Nature,
520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Segal, R. A., Lantz, T. C., and Kokelj, S. V.:
Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic,
Environ. Res. Lett.,
11, 034025, https://doi.org/10.1088/1748-9326/11/3/034025, 2016.
Serreze, M. C. and Barry, R. G.:
Processes and impacts of Arctic amplification: A research synthesis,
Global Biogeochem. Cy.,
77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shakil, S., Tank, S. E., Kokelj, S. V., Vonk, J. E., and Zolkos, S.:
Particulate dominance of organic carbon mobilization from thaw slumps on the Peel Plateau, NT: Quantification and implications for stream systems and permafrost carbon release,
Environ. Res. Lett., accepted, https://doi.org/10.1088/1748-9326/abac36, 2020.
Sharp, M., Tranter, M., Brown, G. H., and Skidmore, M.:
Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment,
Geology,
23, 61–64, 1995.
St. Pierre, K. A., St. Louis, V. L., Schiff, S. L., Lehnherr, I., Dainard, P. G., Gardner, A. S., Aukes, P. J. K., and Sharp, M. J.:
Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2,
P. Natl. Acad. Sci. USA,
116, 17690–17695, https://doi.org/10.1073/pnas.1904241116, 2019.
Stallard, R. F. and Edmond, J. M.:
Geochemistry of the Amazon: 2. The Influence of Geology and Weathering Environment on the Dissolved Load,
J. Geophys. Res.,
88, 9671–9688, 1983.
Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P., and Raymond, P. A.:
Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005,
Water Resour. Res.,
43, 1–9, https://doi.org/10.1029/2006WR005201, 2007.
Stubbins, A., Silva, L. M., Dittmar, T., and Van Stan, J. T.:
Molecular and Optical Properties of Tree-Derived Dissolved Organic Matter in Throughfall and Stemflow from Live Oaks and Eastern Red Cedar,
Front. Earth Sci.,
5, 1–13, https://doi.org/10.3389/feart.2017.00022, 2017.
Stumm, W. and Morgan, J. J.:
Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn.,
John Wiley & Son, Inc., New York, 1996.
Tank, S. E., Striegl, R. G., McClelland, J. W., and Kokelj, S. V.:
Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean,
Environ. Res. Lett.,
11, 054015, https://doi.org/10.1088/1748-9326/11/5/054015, 2016.
Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I., and Abbott, B. W.:
Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach,
Permafrost Periglac.,
31, 358–370, https://doi.org/10.1002/ppp.2057, 2020.
Toohey, R. C., Herman-Mercer, N. M., Schuster, P. F., Mutter, E. A., and Koch, J. C.:
Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost,
Geophys. Res. Lett.,
43, 12120–12130, https://doi.org/10.1002/2016GL070817, 2016.
Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F., and West, A. J.:
Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks,
P. Natl. Acad. Sci. USA,
114, 8716–8721, https://doi.org/10.1073/pnas.1702953114, 2017.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Walter Anthony, K., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.:
Carbon release through abrupt permafrost thaw,
Nat. Geosci.,
13, 138–143, 2020.
Turner, J. V.:
Kinetic fractionation of carbon-13 during calcium carbonate precipitation,
Geochim. Cosmochim. Ac.,
46, 1183–1191, https://doi.org/10.1016/0016-7037(82)90004-7, 1982.
van der Sluijs, J., Kokelj, S. V., Fraser, R. H., Tunnicliffe, J., and Lacelle, D.:
Permafrost Terrain Dynamics and Infrastructure Impacts Revealed by UAV Photogrammetry and Thermal Imaging,
Remote Sens.-Basel,
30, 1–30, https://doi.org/10.3390/rs10111734, 2018.
Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015, 2015.
Vonk, J. E., Tank, S. E., and Walvoord, M. A.:
Integrating hydrology and biogeochemistry across frozen landscapes,
Nat. Commun.,
10, 5377, https://doi.org/10.1038/s41467-019-13361-5, 2019.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G. M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.:
Ice sheets matter for the global carbon cycle,
Nat. Commun.,
10, 3567, https://doi.org/10.1038/s41467-019-11394-4, 2019.
Walvoord, M. A. and Kurylyk, B. L.:
Hydrologic Impacts of Thawing Permafrost – A Review,
Vadose Zone J.,
15, 1–20, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.:
Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon,
Environ. Sci. Technol.,
37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Weiss, R. F.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
Mar. Chem.,
2, 203–215, 1974.
Wiesenburg, D. A. and Guinasso, N. L.:
Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water,
J. Chem. Eng. Data,
24, 356–360, 1979.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.:
The influence of autocorrelation on the ability to detect trend in hydrological series,
Hydrol. Process.,
16, 1807–1829, https://doi.org/10.1002/hyp.1095, 2002.
Zhang, J., Quay, P. D., and Wilbur, D. O.:
Carbon isotope fractionation during gas-water exchange and dissolution of CO2,
Geochim. Cosmochim. Ac.,
59, 107–114, 1995.
Zolkos, S. and Tank, S. E.:
Experimental Evidence That Permafrost Thaw History and Mineral Composition Shape Abiotic Carbon Cycling in Thermokarst-Affected Stream Networks,
Front. Earth Sci.,
8, 1–17, https://doi.org/10.3389/feart.2020.00152, 2020.
Zolkos, S., Tank, S. E., and Kokelj, S. V.:
Mineral Weathering and the Permafrost Carbon-Climate Feedback,
Geophys. Res. Lett.,
45, 9623–9632, https://doi.org/10.1029/2018GL078748, 2018.
Zolkos, S., Tank, S. E., Striegl, R. G., and Kokelj, S. V.:
Thermokarst Effects on Carbon Dioxide and Methane Fluxes in Streams on the Peel Plateau (NWT, Canada),
J. Geophys. Res.-Biogeo.,
124, 1781–1798, https://doi.org/10.1029/2019JG005038, 2019.
Zuur, A. F. (ed.):
Mixed effects models and extensions in ecology with R,
Springer, New York, NY, 2009.
Zuur, A. F., Ieno, E. N., and Elphick, C. S.:
A protocol for data exploration to avoid common statistical problems,
Methods Ecol. Evol.,
1, 3–14, https://doi.org/10.1111/j.2041-210X.2009.00001.x, 2010.
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport....
Altmetrics
Final-revised paper
Preprint