Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-5989-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5989-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Quentin Charbonnier
CORRESPONDING AUTHOR
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstraße 25, 8092 Zurich, Switzerland
Julien Bouchez
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Jérôme Gaillardet
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Institut Universitaire de France, Paris, France
Éric Gayer
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
Related authors
No articles found.
Sofía López-Urzúa, Louis Derry, and Julien Bouchez
EGUsphere, https://doi.org/10.5194/egusphere-2025-78, https://doi.org/10.5194/egusphere-2025-78, 2025
Short summary
Short summary
Silicon (Si) is essential for ecosystem health and Earth's climate, yet human activities such as agriculture have significantly disrupted its natural cycle. In a French agricultural catchment, we found that crop harvesting removes most of the Si released from rocks—1 to 4 times more than the dissolved Si transport downstream by rivers. Using geochemical tools, including Si isotopes and germanium-silicon ratio, we traced Si cycling and highlighted the impact of agriculture on Si exports.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024, https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of solute pairs during a storm event by plotting the concentration variation of one solute against the variation of another solute. This can reveal whether two or more end-members contribute to streamflow during a storm event. Furthermore, the variation of the solute ratios during the events can indicate which catchment processes are dominant and which are negligible.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Cited articles
Abouchami, W., Näthe, K., Kumar, A., Galer, S. J., Jochum, K. P., Williams, E., Horbe, A. M., Rosa, J. W., Balsam, W., Adams, D., Mezger, C., and Meinrat, O. A.:
Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin,
Earth Planet. Sci. Lett.,
380, 112–123, 2013. a, b
Aerts, R. and Chapin III, F. S.:
The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns,
in: Advances in Ecological Research, Vol. 30, Elsevier Academic Press Inc, 525b Street, Suite 1900, San Diego, Ca 92101-4495 USA 1–67, 1999. a
Allègre, C. J., Dupré, B., Négrel, P., and Gaillardet, J.:
Sr, Nd, Pb isotope systematics in Amazon and Congo River systems: constraints about erosion processes,
Chem. Geol.,
131, 93–112, 1996. a
Arndt, S., Hetzel, A., and Brumsack, H.-J.:
Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: A reaction-transport model,
Geochim. Cosmochim. Ac.,
73, 2000–2022, 2009. a
Bates, S. L., Hendry, K. R., Pryer, H. V., Kinsley, C. W., Pyle, K. M., Woodward, E. M. S., and Horner, T. J.: Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic,
Geochim. Cosmochim. Ac.,
204, 286–299, 2017. a
Berner, E. K. and Berner, R. A.:
Global environment: water, air, and geochemical cycles,
Princeton University Press, Prentice Hall, New York, 2012. a
Blondeau, M., Benzerara, K., Ferard, C., Guigner, J.-M., Poinsot, M., Coutaud, M., Tharaud, M., Cordier, L., and Skouri-Panet, F.:
Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba,
Chem. Geol.,
483, 88–97, 2018. a
Bouchez, J., Gaillardet, J., Lupker, M., Louvat, P., France-Lanord, C., Maurice, L., Armijos, E., and Moquet, J.-S.:
Floodplains of large rivers: Weathering reactors or simple silos?,
Chem. Geol.,
332, 166–184, 2012. a
Bouchez, J., Gaillardet, J., and von Blanckenburg, F.:
Weathering intensity in lowland river basins: from the Andes to the Amazon mouth,
Proced. Earth Plan. Sc.,
10, 280–286, 2014a. a
Brantley, S. L., Megonigal, J. P., Scatena, F. N., Balogh-Brunstad, Z., Barnes, R. T., Bruns, M. A., Van Cappellen, P., Dontsova, K., Hartnett, H. E., Hartshorn, A. S., Heimsath, A., Herndon, E., Jin, L., Keller, C. K., Leake, J. R., McDowell, W. H., Meinzer, F. C., Mozdzer, T. J., Petsch, S., Pett-Ridge, J., Pregitzer, K. S., Raymond, P. A., Riebe, C. S., Shumaker, K., Sutton-Grier, A., Walter, R., and Yoo, K.:
Twelve testable hypotheses on the geobiology of weathering,
Geobiology,
9, 140–165, 2011. a
Brimhall, G. H. and Dietrich, W. E.:
Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis,
Geochim. Cosmochim. Ac.,
51, 567–587, 1987. a
Burghelea, C. I., Dontsova, K., Zaharescu, D. G., Maier, R. M., Huxman, T., Amistadi, M. K., Hunt, E., and Chorover, J.:
Trace element mobilization during incipient bioweathering of four rock types,
Geochim. Cosmochim. Ac.,
234, 98–114, 2018. a
Calmels, D., Gaillardet, J., and François, L.:
Sensitivity of carbonate weathering to soil CO2 production by biological activity along a temperate climate transect,
Chem. Geol.,
390, 74–86, 2014. a
Cam, N., Benzerara, K., Georgelin, T., Jaber, M., Lambert, J.-F., Poinsot, M., Skouri-Panet, F., and Cordier, L.:
Selective uptake of alkaline earth metals by cyanobacteria forming intracellular carbonates,
Environ. Sci. Technol.,
50, 11654–11662, 2016. a
Cenki-Tok, B., Chabaux, F., Lemarchand, D., Schmitt, A.-D., Pierret, M.-C., Viville, D., Bagard, M.-L., and Stille, P.:
The impact of water–rock interaction and vegetation on calcium isotope fractionation in soil-and stream waters of a small, forested catchment (the Strengbach case),
Geochim. Cosmochim. Ac.,
73, 2215–2228, 2009. a
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O.:
Changing sources of nutrients during four million years of ecosystem development,
Nature,
397, 491–497, 1999. a
Charbonnier, Q., Bouchez, J., Gaillardet, J., and Gayer, É.: Dataset for the manuscript “Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin”, Zenodo, https://doi.org/10.5281/zenodo.4050339, last access: 23 November 2020. a, b, c
Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M., Chuyong, G., Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed, S. C., Sierra, C. A., Silver, W. L., Tanner, E. V. J., and Wieder, W. R.:
Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis,
Ecol. Lett.,
14, 939–947, 2011. a
Crockford, P. W., Wing, B. A., Paytan, A., Hodgskiss, M. S., Mayfield, K. K., Hayles, J. A., Middleton, J. E., Ahm, A.-S. C., Johnston, D. T., Caxito, F., Uhlein, G., Halverson, G. P., Eickmann, B., Torres, M., and Horner, T. J.:
Barium-isotopic constraints on the origin of post-Marinoan barites,
Earth Planet. Sci. Lett.,
519, 234–244, 2019. a
Dalai, T. K., Krishnaswami, S., and Sarin, M. M.:
Barium in the Yamuna River System in the Himalaya: Sources, fluxes, and its behavior during weathering and transport,
Geochem., Geophy. Geosy.,
3, 1–23, 2002. a
Dehairs, F., Chesselet, R., and Jedwab, J.:
Discrete suspended particles of barite and the barium cycle in the open ocean,
Earth Planet. Sci. Lett.,
49, 528–550, 1980. a
Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., Gorge, C., Alanoca, L., and Maurice, L.:
Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes,
Geochim. Cosmochim. Ac.,
164, 71–93, 2015b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Dellinger, M., Bouchez, J., Gaillardet, J., Faure, L., and Moureau, J.:
Tracing weathering regimes using the lithium isotope composition of detrital sediments,
Geology,
45, 411–414, 2017. a
Drever, J. and Stillings, L.:
The role of organic acids in mineral weathering,
Colloid. Surface. A,
120, 167–181, 1997. a
Edmond, J., Palmer, M., Measures, C., Grant, B., and Stallard, R.:
The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil,
Geochim. Cosmochim. Ac.,
59, 3301–3325, 1995. a
Feeley, K. J. and Silman, M. R.:
Land-use and climate change effects on population size and extinction risk of Andean plants,
Glob. Change Biol.,
16, 3215–3222, 2010. a
Frappart, F., Papa, F., Güntner, A., Tomasella, J., Pfeffer, J., Ramillien, G., Emilio, T., Schietti, J., Seoane, L., da Silva Carvalho, J., Medeiros Moreira, D., Bonnet, M. P., and Seyler, F.:
The spatio-temporal variability of groundwater storage in the Amazon River Basin,
Adv. Water Resour.,
124, 41–52, 2019. a
Gaillardet, J., Dupré, B., and Allègre, C. J.:
A global geochemical mass budget applied to the Congo Basin rivers: erosion rates and continental crust composition,
Geochim. Cosmochim. Ac.,
59, 3469–3485, 1995. a
Gaillardet, J., Dupré, B., Louvat, P., and Allegre, C.:
Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers,
Chem. Geol.,
159, 3–30, 1999b. a
Gaillardet, J., Viers, J., and Dupré, B.:
Trace elements in river waters,
in: Treatise on Geochemistry,
edited by: Drever, J. I.,
Elsevier, Amsterdam,
Vol. 5, p. 605, 2003. a
Georg, R. B., Reynolds, B. C., West, A., Burton, K., and Halliday, A. N.:
Silicon isotope variations accompanying basalt weathering in Iceland,
Earth Planet. Sci. Lett.,
261, 476–490, 2007. a
Gibbs, R. J.:
The geochemistry of the Amazon River system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids,
Geol. Soc. Am. Bull.,
78, 1203–1232, 1967. a
Gislason, S. R., Arnorsson, S., and Armannsson, H.:
Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover,
Am. J. Sci.,
296, 837–907, 1996. a
Gou, L.-F., Jin, Z., Galy, A., Gong, Y.-Z., Nan, X.-Y., Jin, C., Wang, X.-D., Bouchez, J., Cai, H.-M., Chen, J.-B., Yu, H.-M., and Huang, F.:
Seasonal riverine barium isotopic variation in the middle Yellow River: Sources and fractionation,
Earth Planet. Sci. Lett.,
p. 115990, 2019. a, b, c, d, e, f
Griffith, E. M. and Paytan, A.:
Barite in the ocean–occurrence, geochemistry and palaeoceanographic applications,
Sedimentology,
59, 1817–1835, 2012. a
Grubb, P.:
Interpretation of the 'Massenerhebung' effect on tropical mountains,
Nature,
229, 44–45, 1971. a
Hahm, W. J., Riebe, C. S., Lukens, C. E., and Araki, S.:
Bedrock composition regulates mountain ecosystems and landscape evolution,
P. Natl. Acad. Sci. USA,
111, 3338–3343, 2014. a
Hofmann, A. W.:
Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust,
Earth Planet. Sci. Lett.,
90, 297–314, 1988. a
Jobbágy, E. G. and Jackson, R. B.:
The uplift of soil nutrients by plants: biogeochemical consequences across scales,
Ecology,
85, 2380–2389, 2004. a
Lamb, D. T., Matanitobua, V. P., Palanisami, T., Megharaj, M., and Naidu, R.:
Bioavailability of barium to plants and invertebrates in soils contaminated by barite,
Environ. Sci. Technol.,
47, 4670–4676, 2013. a
Langmuir, C. H. and Broecker, W.:
How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind-Revised and Expanded Edition,
Princeton University Press, New Jersey, 2012. a
Lemarchand, D. and Gaillardet, J.:
Transient features of the erosion of shales in the Mackenzie basin (Canada), evidences from boron isotopes,
Earth Planet. Sci. Lett.,
245, 174–189, 2006. a
Lemarchand, E., Chabaux, F., Vigier, N., Millot, R., and Pierret, M.-C.:
Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France),
Geochim. Cosmochim. Ac.,
74, 4612–4628, 2010. a
Louvat, P. and Allègre, C. J.:
Present denudation rates on the island of Reunion determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions,
Geochim. Cosmochim. Ac.,
61, 3645–3669, 1997. a
Louvat, P., Gislason, S. R., and Allègre, C. J.:
Chemical and mechanical erosion rates in Iceland as deduced from river dissolved and solid material,
Am. J. Sci.,
308, 679–726, 2008. a
Marschner, H.:
Marschner's mineral nutrition of higher plants,
Academic Press, London, 2011. a
Marston, R. A.:
Geomorphology and vegetation on hillslopes: interactions, dependencies, and feedback loops,
Geomorphology,
116, 206–217, 2010. a
Milliman, J. D. and Farnsworth, K. L.:
River discharge to the coastal ocean: a global synthesis,
Cambridge University Press, Cambridge, 2013. a
Millot, R., Vigier, N., and Gaillardet, J.:
Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada,
Geochim. Cosmochim. Ac.,
74, 3897–3912, 2010. a
Miyazaki, T., Kimura, J.-I., and Chang, Q.:
Analysis of stable isotope ratios of Ba by double-spike standard-sample bracketing using multiple-collector inductively coupled plasma mass spectrometry,
J. Anal. Atom. Spectrom.,
29, 483–490, 2014. a
Moquet, J. S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., Chavarri, E., Lagane, C., Laraque, A., Casimiro, W. S. L., Pombosa, R., Noriega, L., Vera, A., and Guyot J.-L.:
Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins,
Chem. Geol.,
287, 1–26, 2011. a
Moran-Zuloaga, D., Ditas, F., Walter, D., Saturno, J., Brito, J., Carbone, S., Chi, X., Hrabě de Angelis, I., Baars, H., Godoi, R. H. M., Heese, B., Holanda, B. A., Lavrič, J. V., Martin, S. T., Ming, J., Pöhlker, M. L., Ruckteschler, N., Su, H., Wang, Y., Wang, Q., Wang, Z., Weber, B., Wolff, S., Artaxo, P., Pöschl, U., Andreae, M. O., and Pöhlker, C.: Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes, Atmos. Chem. Phys., 18, 10055–10088, https://doi.org/10.5194/acp-18-10055-2018, 2018. a, b
Myrvang, M. B., Hillersøy, M. H., Heim, M., Bleken, M. A., and Gjengedal, E.:
Uptake of macro nutrients, barium, and strontium by vegetation from mineral soils on carbonatite and pyroxenite bedrock at the Lillebukt Alkaline Complex on Stjernøy, Northern Norway,
J. Plant Nutr. Soil Sc.,
179, 705–716, 2016. a
Nan, X., Wu, F., Zhang, Z., Hou, Z., Huang, F., and Yu, H.:
High-precision barium isotope measurements by MC-ICP-MS,
J. Anal. Atom. Spectrom.,
30, 2307–2315, 2015. a
Pogge von Strandmann, P. A. and Henderson, G. M.:
The Li isotope response to mountain uplift,
Geology,
43, 67–70, 2015. a
Porder, S.:
How plants enhance weathering and how weathering is important to plants,
Elements,
15, 241–246, 2019. a
Putzer, H.:
The geological evolution of the Amazon Basin and its mineral resources,
in: The Amazon,
Junk publishers,
Springer, Dordrecht, 15–46, 1984. a
Riebe, C. S., Kirchner, J. W., and Finkel, R. C.:
Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes,
Earth Planet. Sci. Lett.,
224, 547–562, 2004. a
Riebe, C. S., Hahm, W. J., and Brantley, S. L.:
Controls on deep critical zone architecture: A historical review and four testable hypotheses,
Earth Surf. Proc. Land.,
42, 128–156, 2017. a
Scalley, T. H., Scatena, F., Moya, S., and Lugo, A.:
Long-term dynamics of organic matter and elements exported as coarse particulates from two Caribbean montane watersheds,
J. Trop. Ecol.,
28, 127–139, 2012. a
Schmitt, A.-D., Vigier, N., Lemarchand, D., Millot, R., Stille, P., and Chabaux, F.:
Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: A review,
C. R. Geosci.,
344, 704–722, 2012. a
Torres, M. A., West, A. J., and Clark, K. E.:
Geomorphic regime modulates hydrologic control of chemical weathering in the Andes–Amazon,
Geochim. Cosmochim. Ac.,
166, 105–128, 2015. a
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016. a, b, c
Tripler, C. E., Kaushal, S. S., Likens, G. E., and Todd Walter, M.:
Patterns in potassium dynamics in forest ecosystems,
Ecol. Lett.,
9, 451–466, 2006. a
Trumbore, S. E., Chadwick, O. A., and Amundson, R.:
Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change,
Science,
272, 393–396, 1996. a
Vaganov, E. A., Grachev, A. M., Shishov, V. V., Panyushkina, I. P., Leavitt, S. W., Knorre, A. A., Chebykin, E. P., and Menyailo, O. V.:
Elemental composition of tree rings: A new perspective in biogeochemistry,
in: Doklady Biological Sciences, vol. 453,
Springer, Doklady Akademii Nauk, 375–379, 2013. a, b
Van Zuilen, K., Müller, T., Nägler, T. F., Dietzel, M., and Küsters, T.:
Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures,
Geochim. Cosmochim. Ac.,
186, 226–241, 2016a. a
Viers, J., Oliva, P., Dandurand, J.-L., Dupré, B., and Gaillardet, J.:
Chemical weathering rates, CO2 consumption, and control parameters deduced from the chemical composition of rivers,
in: Treatise on Geochemistry,
edited by: Heinrich, D. H. and Karl, K. T.,
Elsevier, Oxford, 2014. a
Von Allmen, K., Böttcher, M. E., Samankassou, E., and Nägler, T. F.:
Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments,
Chem. Geol.,
277, 70–77, 2010. a
von Blanckenburg, F.:
The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment,
Earth Planet. Sci. Lett.,
237, 462–479, 2005. a
von Strandmann, P. A. P., Opfergelt, S., Lai, Y.-J., Sigfússon, B., Gislason, S. R., and Burton, K. W.:
Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland,
Earth Planet. Sci. Lett.,
339, 11–23, 2012. a
West, A. J., Galy, A., and Bickle, M.:
Tectonic and climatic controls on silicate weathering,
Earth Planet. Sci. Lett.,
235, 211–228, 2005. a
Wilcke, W., Velescu, A., Leimer, S., Bigalke, M., Boy, J., and Valarezo, C.:
Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years,
Biogeochemistry,
136, 167–189, 2017. a
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and...
Altmetrics
Final-revised paper
Preprint