Articles | Volume 17, issue 4
https://doi.org/10.5194/bg-17-917-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-17-917-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)
Manon Tonnard
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Antarctic Climate and Ecosystems – Cooperative Research Centre,
University of Tasmania, Hobart, TAS 7001, Australia
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, TAS 7001, Australia
Hélène Planquette
CORRESPONDING AUTHOR
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Andrew R. Bowie
Antarctic Climate and Ecosystems – Cooperative Research Centre,
University of Tasmania, Hobart, TAS 7001, Australia
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, TAS 7001, Australia
Pier van der Merwe
Antarctic Climate and Ecosystems – Cooperative Research Centre,
University of Tasmania, Hobart, TAS 7001, Australia
Morgane Gallinari
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Floriane Desprez de Gésincourt
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Yoan Germain
Laboratoire Cycles Géochimiques et ressources – Ifremer,
Plouzané, 29280, France
Arthur Gourain
Ocean Sciences Department, School of Environmental Sciences,
University of Liverpool, L69 3GP, UK
Marion Benetti
Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland
LOCEAN, Sorbonne Universités, UPMC/CNRS/IRD/MNHN, Paris, France
Gilles Reverdin
LOCEAN, Sorbonne Universités, UPMC/CNRS/IRD/MNHN, Paris, France
Paul Tréguer
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Julia Boutorh
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Marie Cheize
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
François Lacan
LEGOS, Université de Toulouse – CNRS/IRD/CNES/UPS – Observatoire
Midi-Pyrénées, Toulouse, France
Jan-Lukas Menzel Barraqueta
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
Wischhofstraße 1–3, Geb. 12, 24148 Kiel, Germany
Department of Earth Sciences, Stellenbosch University, Stellenbosch,
7600, South Africa
Leonardo Pereira-Contreira
Fundação Universidade Federal do Rio Grande (FURG), R. Luis
Loréa, Rio Grande – RS, 96200-350, Brazil
Rachel Shelley
Fundação Universidade Federal do Rio Grande (FURG), R. Luis
Loréa, Rio Grande – RS, 96200-350, Brazil
Dept. of Earth, Ocean and Atmospheric Science, Florida State University,
117 N Woodward Ave, Tallahassee, Florida 32301, USA
School of Geography, Earth and Environmental Sciences, University of
Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
Pascale Lherminier
Ifremer, Univ Brest, CNRS, IRD, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
Géraldine Sarthou
CORRESPONDING AUTHOR
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Related authors
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Preprint under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Gilles Reverdin, Claire Waelbroeck, Antje Voelker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3009, https://doi.org/10.5194/egusphere-2024-3009, 2024
Short summary
Short summary
Water isotopes in the ocean trace the freshwater exchanges between the ocean, the atmosphere and the cryosphere, and are used to investigate processes of the hydrological cycle. We illustrate offsets in seawater isotopic composition between different data sets that are larger than the expected variability that one often wants to explore. This highlights the need to share seawater isotopic composition samples dedicated to specific intercomparison of data produced in the different laboratories.
Alexandre Heumann, Félix Margirier, Emmanuel Rinnert, Pascale Lherminier, Carla Scalabrin, Louis Geli, Orens Pasqueron de Fommervault, and Laurent Beguery
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-377, https://doi.org/10.5194/essd-2024-377, 2024
Preprint under review for ESSD
Short summary
Short summary
Following an seismic crisis in May 2018 in Mayotte, an observation network has been created with the given objective of monitoring this volcanic phenomena. A SeaExplorer glider has been deployed to supplement the data obtained during a series of oceanographic surveys. The glider performed a continuous monitoring of 30 months of the water column from the sea surface to 1250 meters water depth with the objective to acquire hydrological properties, water currents and dissolved gas concentrations.
Rachel Ursula Shelley, Alexander Roberts Baker, Max Thomas, and Sam Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2667, https://doi.org/10.5194/egusphere-2024-2667, 2024
Short summary
Short summary
The fractions of trace elements in atmospheric particles over the Mediterranean and Black seas that are soluble have been measured. These soluble fractions can affect the growth of microorganisms in the ocean and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the soluble element loads found in the Mediterranean surface waters and influence the balance between nitrogen and phosphorus there.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-21, https://doi.org/10.5194/ar-2024-21, 2024
Revised manuscript accepted for AR
Short summary
Short summary
Dust deposition flux was investigated in lutruwita/Tasmania, Australia, between 2016 and 2021. Results show that the use of direct measurement of aluminium, iron, thorium and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Gilles Reverdin, Thi Tuyet Trang Chau, Frédéric Chevallier, and Marion Gehlen
Ocean Sci., 20, 725–758, https://doi.org/10.5194/os-20-725-2024, https://doi.org/10.5194/os-20-725-2024, 2024
Short summary
Short summary
In the southern Indian Ocean, south of the polar front, an observed increase of sea surface fCO2 and a decrease of pH over 1985–2021 are mainly driven by anthropogenic CO2 uptake, but in the last decade (2010–2020) fCO2 and pH were stable in summer, highlighting the competitive balance between anthropogenic CO2 and primary production. In the water column the increase of anthropogenic CO2 concentrations leads to migration of the aragonite saturation state from 600 m in 1985 up to 400 m in 2021.
Morgane M. G. Perron, Susanne Fietz, Douglas S. Hamilton, Akinori Ito, Rachel U. Shelley, and Mingjin Tang
Atmos. Meas. Tech., 17, 165–166, https://doi.org/10.5194/amt-17-165-2024, https://doi.org/10.5194/amt-17-165-2024, 2024
Short summary
Short summary
The solubility of vital and toxic trace elements delivered by the atmosphere determines their potential to fertilise or limit ocean productivity. A poor understanding of aeolian trace element solubility and the absence of a standard method to define this parameter hinder accurate model representation of the impact of atmospheric deposition on ocean productivity in a changing climate. The inter-journal special issue aims at “Reducing Uncertainty in Soluble aerosol Trace Element Deposition”.
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Anastasiia Tarasenko, Alexandre Supply, Nikita Kusse-Tiuz, Vladimir Ivanov, Mikhail Makhotin, Jean Tournadre, Bertrand Chapron, Jacqueline Boutin, Nicolas Kolodziejczyk, and Gilles Reverdin
Ocean Sci., 17, 221–247, https://doi.org/10.5194/os-17-221-2021, https://doi.org/10.5194/os-17-221-2021, 2021
Short summary
Short summary
Data from the ARKTIKA-2018 expedition and new satellite data help us to follow rapid changes in the upper layer of the Laptev and East Siberian seas (LS, ESS) in summer 2018. With satellite-derived surface temperature, an improved SMOS salinity, and wind, we study how the fresh river water is mixed with cold sea water and ice-melted water at small time and spatial scales. The wind pushes fresh water northward and northeastward, close to and under the ice, forcing it into the deep Arctic Ocean.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Tanguy Szekely, Jérôme Gourrion, Sylvie Pouliquen, and Gilles Reverdin
Ocean Sci., 15, 1601–1614, https://doi.org/10.5194/os-15-1601-2019, https://doi.org/10.5194/os-15-1601-2019, 2019
Short summary
Short summary
This study is an attempt to validate the quality of a global temperature and salinity dataset by estimating the effects of measurement errors on the estimated ocean variability. The study shows that the effects of the measurement errors decrease during the quality control process and are almost null for the delayed-time-mode quality-controlled dataset.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Camille Risi, Joseph Galewsky, Gilles Reverdin, and Florent Brient
Atmos. Chem. Phys., 19, 12235–12260, https://doi.org/10.5194/acp-19-12235-2019, https://doi.org/10.5194/acp-19-12235-2019, 2019
Short summary
Short summary
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen atom is replaced by a deuterium atom). These different molecules are called water isotopes. The isotopic composition of water vapor can potentially provide information about physical processes along the water cycle, but the factors controlling it are complex. As a first step, we propose an equation to predict the water vapor isotopic composition near the surface of tropical oceans.
Arthur Gourain, Hélène Planquette, Marie Cheize, Nolwenn Lemaitre, Jan-Lukas Menzel Barraqueta, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 16, 1563–1582, https://doi.org/10.5194/bg-16-1563-2019, https://doi.org/10.5194/bg-16-1563-2019, 2019
Short summary
Short summary
The GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) aimed to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic. As particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe). Lithogenic sources appear to dominate the PFe cycle through margin and benthic inputs.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Debany Fonseca-Batista, Xuefeng Li, Virginie Riou, Valérie Michotey, Florian Deman, François Fripiat, Sophie Guasco, Natacha Brion, Nolwenn Lemaitre, Manon Tonnard, Morgane Gallinari, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Marc Elskens, Julie LaRoche, Lei Chou, and Frank Dehairs
Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, https://doi.org/10.5194/bg-16-999-2019, 2019
Short summary
Short summary
Dinitrogen fixation and primary production were investigated using stable isotope incubation experiments along two transects off the Western Iberian Margin in May 2014 close to the end of the phytoplankton spring bloom. We observed substantial N2 fixation activities (up to 1533 µmol N m-2 d-1) associated with a predominance of unicellular cyanobacteria and non-cyanobacterial diazotrophs, which seemed to be promoted by the presence of bloom-derived organic matter and excess phosphorus.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Nolwenn Lemaitre, Frédéric Planchon, Hélène Planquette, Frank Dehairs, Debany Fonseca-Batista, Arnout Roukaerts, Florian Deman, Yi Tang, Clarisse Mariez, and Géraldine Sarthou
Biogeosciences, 15, 6417–6437, https://doi.org/10.5194/bg-15-6417-2018, https://doi.org/10.5194/bg-15-6417-2018, 2018
Short summary
Short summary
We investigated the surface particulate organic carbon export fluxes in the North Atlantic with the objective of better understanding the biological carbon pump. Our results highlighted that exports depended on the intensity and stage of the bloom, the phytoplankton size and community structures. After comparing with primary production, we concluded that, during our study, the North Atlantic behaves like most of the highly productive areas in the world's ocean, with a low export efficiency.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Jan-Lukas Menzel Barraqueta, Christian Schlosser, Hélène Planquette, Arthur Gourain, Marie Cheize, Julia Boutorh, Rachel Shelley, Leonardo Contreira Pereira, Martha Gledhill, Mark J. Hopwood, François Lacan, Pascale Lherminier, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018, https://doi.org/10.5194/bg-15-5271-2018, 2018
Short summary
Short summary
In the North Atlantic and Labrador Sea, low aerosol deposition and enhanced primary productivity control the dissolved aluminium (dAl) surface distribution, while remineralization of particles seems to control the distribution at depth. DAl in the ocean allows us to indirectly quantify the amount of dust deposited to a given region for a given period. Hence, the study of its distribution, cycling, sources, and sinks is of major importance to improve aerosol deposition models and climate models.
Cheryl M. Zurbrick, Edward A. Boyle, Richard J. Kayser, Matthew K. Reuer, Jingfeng Wu, Hélène Planquette, Rachel Shelley, Julia Boutorh, Marie Cheize, Leonardo Contreira, Jan-Lukas Menzel Barraqueta, François Lacan, and Géraldine Sarthou
Biogeosciences, 15, 4995–5014, https://doi.org/10.5194/bg-15-4995-2018, https://doi.org/10.5194/bg-15-4995-2018, 2018
Short summary
Short summary
During a French cruise in the northern North Atlantic Ocean in 2014, seawater samples were collected for dissolved Pb and Pb isotope analysis. Lead concentrations were highest in subsurface water flowing out of the Mediterranean Sea. The recently formed Labrador Sea Water (LSW) is much lower in Pb concentration than older LSW found in the West European Basin. Comparison of North Atlantic data from 1981 to 2014 shows decreasing Pb concentrations down to ~ 2500 m depth.
Gilles Reverdin, Hedinn Valdimarsson, Gael Alory, Denis Diverres, Francis Bringas, Gustavo Goni, Lars Heilmann, Leon Chafik, Tanguy Szekely, and Andrew R. Friedman
Earth Syst. Sci. Data, 10, 1403–1415, https://doi.org/10.5194/essd-10-1403-2018, https://doi.org/10.5194/essd-10-1403-2018, 2018
Short summary
Short summary
We report monthly time series of surface temperature, salinity, and density in the North Atlantic subpolar gyre in 1993–2017 from hydrographical data collected in particular from thermosalinographs onboard selected ships of opportunity. Most of the time, this data set reproduces well the large-scale variability, except for a few seasons with limited sampling, in particular in winter along western Greenland or northeast of Newfoundland in the presence of sea ice.
Virginie Racapé, Patricia Zunino, Herlé Mercier, Pascale Lherminier, Laurent Bopp, Fiz F. Pérèz, and Marion Gehlen
Biogeosciences, 15, 4661–4682, https://doi.org/10.5194/bg-15-4661-2018, https://doi.org/10.5194/bg-15-4661-2018, 2018
Short summary
Short summary
This study of a model–data comparison investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. It reveals the key role played by Central Water for storing Cant in the subtropical region and for supplying Cant into the deep ocean. The Cant transfer to the deep ocean occurred mainly north of the OVIDE section, and just a small fraction was exported to the subtropical gyre within the lower MOC.
Emilie Le Roy, Virginie Sanial, Matthew A. Charette, Pieter van Beek, François Lacan, Stéphanie H. M. Jacquet, Paul B. Henderson, Marc Souhaut, Maribel I. García-Ibáñez, Catherine Jeandel, Fiz F. Pérez, and Géraldine Sarthou
Biogeosciences, 15, 3027–3048, https://doi.org/10.5194/bg-15-3027-2018, https://doi.org/10.5194/bg-15-3027-2018, 2018
Short summary
Short summary
We report detailed sections of radium-226 (226Ra, T1/2 = 1602 y) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal–Greenland–Canada) in the framework of the international GEOTRACES program (GA01 section–GEOVIDE project, May–July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, which may reflect their similar chemical behavior.
Nolwenn Lemaitre, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Stéphanie Jacquet, Maribel I. García-Ibáñez, Arthur Gourain, Marie Cheize, Laurence Monin, Luc André, Priya Laha, Herman Terryn, and Frank Dehairs
Biogeosciences, 15, 2289–2307, https://doi.org/10.5194/bg-15-2289-2018, https://doi.org/10.5194/bg-15-2289-2018, 2018
Short summary
Short summary
We present the particulate biogenic barium distributions in the North Atlantic for the first time with the objective of estimating mesopelagic carbon remineralisation fluxes. The remineralisation fluxes balanced or slightly exceeded the upper-ocean carbon export fluxes. This is a key result as the North Atlantic is generally assumed to be efficient in transferring carbon to the deep ocean, but during our study, the North Atlantic was characterized by a near-zero carbon sequestration efficiency.
Daniel Cossa, Lars-Eric Heimbürger, Fiz F. Pérez, Maribel I. García-Ibáñez, Jeroen E. Sonke, Hélène Planquette, Pascale Lherminier, Julia Boutorh, Marie Cheize, Jan Lukas Menzel Barraqueta, Rachel Shelley, and Géraldine Sarthou
Biogeosciences, 15, 2309–2323, https://doi.org/10.5194/bg-15-2309-2018, https://doi.org/10.5194/bg-15-2309-2018, 2018
Short summary
Short summary
We first report the mercury distribution in the water section across the subpolar and subtropical gyres of the North Atlantic Ocean (GEOTRACES-GA01 transect). It allows the characterisation of various seawater types in terms of mercury content and the quantification of mercury transport associated with the Atlantic Meridional Overturning Circulation. It shows the nutrient-like biogeochemical behaviour of mercury in this ocean.
Rachel U. Shelley, William M. Landing, Simon J. Ussher, Helene Planquette, and Geraldine Sarthou
Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, https://doi.org/10.5194/bg-15-2271-2018, 2018
Short summary
Short summary
In this study, we discuss the regional variability in the fractional solubility of trace elements (Al, Ti, Fe, Mn, Co, Ni, Cu, Zn, Cd, Pb) from aerosol samples collected during three cruises to the North Atlantic Ocean. We present data that provides a
solubility window, covering a conservative, lower limit to an upper limit, the maximum potentially soluble fraction, and discuss why this upper limit could be used to represent the biologically available fraction in some regions.
Maribel I. García-Ibáñez, Fiz F. Pérez, Pascale Lherminier, Patricia Zunino, Herlé Mercier, and Paul Tréguer
Biogeosciences, 15, 2075–2090, https://doi.org/10.5194/bg-15-2075-2018, https://doi.org/10.5194/bg-15-2075-2018, 2018
Patricia Zunino, Pascale Lherminier, Herlé Mercier, Nathalie Daniault, Maribel I. García-Ibáñez, and Fiz F. Pérez
Biogeosciences, 14, 5323–5342, https://doi.org/10.5194/bg-14-5323-2017, https://doi.org/10.5194/bg-14-5323-2017, 2017
Short summary
Short summary
The heat content in the subpolar North Atlantic is in a new phase of long-term decrease from the mid-2000s, which intensified in 2013–2014. We focus on the pronounced heat content drop. In summer 2014, the MOC intensity was higher than the mean (2002–2012) and the heat transport was also relatively high. We show that the air–sea heat flux is responsible for most of the intense cooling. Concurrently, we observed freshwater content increase mainly explained by the air–sea freshwater flux.
V. Holly L. Winton, Ross Edwards, Andrew R. Bowie, Melita Keywood, Alistair G. Williams, Scott D. Chambers, Paul W. Selleck, Maximilien Desservettaz, Marc D. Mallet, and Clare Paton-Walsh
Atmos. Chem. Phys., 16, 12829–12848, https://doi.org/10.5194/acp-16-12829-2016, https://doi.org/10.5194/acp-16-12829-2016, 2016
Short summary
Short summary
The deposition of soluble aerosol iron (Fe) can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from northern Australia that reflect coincident dust and biomass burning sources of soluble Fe. Our results show that while biomass burning species are not a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust with fractional Fe solubility up to 12 % in mixed aerosols.
Holly Winton, Andrew Bowie, Melita Keywood, Pier van der Merwe, and Ross Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-12, https://doi.org/10.5194/amt-2016-12, 2016
Revised manuscript not accepted
Short summary
Short summary
Aerosols containing iron have been investigated over the remote Southern Ocean to constrain iron budgets in surface waters and related biological production. Protocols for the sampling of ambient air were used to assess the suitability of high-volume aerosol samplers for aerosol iron studies in pristine air masses. Significant evidence of airborne insect and local soil contamination was detected in exposure blank filters. Suggestions for future aerosol iron sampling in clean air are provided.
J. L. Lieser, M. A. J. Curran, A. R. Bowie, A. T. Davidson, S. J. Doust, A. D. Fraser, B. K. Galton-Fenzi, R. A. Massom, K. M. Meiners, J. Melbourne-Thomas, P. A. Reid, P. G. Strutton, T. R. Vance, M. Vancoppenolle, K. J. Westwood, and S. W. Wright
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-6187-2015, https://doi.org/10.5194/tcd-9-6187-2015, 2015
Revised manuscript has not been submitted
A. R. Bowie, P. van der Merwe, F. Quéroué, T. Trull, M. Fourquez, F. Planchon, G. Sarthou, F. Chever, A. T. Townsend, I. Obernosterer, J.-B. Sallée, and S. Blain
Biogeosciences, 12, 4421–4445, https://doi.org/10.5194/bg-12-4421-2015, https://doi.org/10.5194/bg-12-4421-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilization.
F. Quéroué, G. Sarthou, H. F. Planquette, E. Bucciarelli, F. Chever, P. van der Merwe, D. Lannuzel, A. T. Townsend, M. Cheize, S. Blain, F. d'Ovidio, and A. R. Bowie
Biogeosciences, 12, 3869–3883, https://doi.org/10.5194/bg-12-3869-2015, https://doi.org/10.5194/bg-12-3869-2015, 2015
Short summary
Short summary
Dissolved Fe (dFe) concentrations were measured in the vicinity of the Kerguelen Islands. Direct island runoff, glacial melting, and resuspended sediments were identified as important inputs of dFe that could potentially fertilise the northern part of the plateau. Overall, heterogeneous sources of Fe over and off the plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study.
F. Planchon, D. Ballas, A.-J. Cavagna, A. R. Bowie, D. Davies, T. Trull, E. C. Laurenceau-Cornec, P. Van Der Merwe, and F. Dehairs
Biogeosciences, 12, 3831–3848, https://doi.org/10.5194/bg-12-3831-2015, https://doi.org/10.5194/bg-12-3831-2015, 2015
L. Farías, L. Florez-Leiva, V. Besoain, G. Sarthou, and C. Fernández
Biogeosciences, 12, 1925–1940, https://doi.org/10.5194/bg-12-1925-2015, https://doi.org/10.5194/bg-12-1925-2015, 2015
P. van der Merwe, A. R. Bowie, F. Quéroué, L. Armand, S. Blain, F. Chever, D. Davies, F. Dehairs, F. Planchon, G. Sarthou, A. T. Townsend, and T. W. Trull
Biogeosciences, 12, 739–755, https://doi.org/10.5194/bg-12-739-2015, https://doi.org/10.5194/bg-12-739-2015, 2015
Short summary
Short summary
Trace metal analysis of suspended and settling particles and underlying sediment was undertaken to elucidate the source to sink progression of the particulate trace metal pool near Kerguelen Island (Southern Ocean). Findings indicate that the Kerguelen Plateau is a source of trace metals via resuspended shelf sediments, especially below the mixed layer. However, glacial/fluvial runoff into shallow coastal waters is an important mode of fertilisation to areas downstream of Kerguelen Island.
P. Zunino, M. I. Garcia-Ibañez, P. Lherminier, H. Mercier, A. F. Rios, and F. F. Pérez
Biogeosciences, 11, 2375–2389, https://doi.org/10.5194/bg-11-2375-2014, https://doi.org/10.5194/bg-11-2375-2014, 2014
J. Bown, M. Boye, P. Laan, A. R. Bowie, Y.-H. Park, C. Jeandel, and D. M. Nelson
Biogeosciences, 9, 5279–5290, https://doi.org/10.5194/bg-9-5279-2012, https://doi.org/10.5194/bg-9-5279-2012, 2012
Related subject area
Biogeochemistry: Open Ocean
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Hydrological cycle amplification imposes spatial patterns on the climate change response of ocean pH and carbonate chemistry
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
Ocean Acidification trends and Carbonate System dynamics in the North Atlantic Subpolar Gyre during 2009–2019
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Allison Hogikyan and Laure Resplandy
Biogeosciences, 21, 4621–4636, https://doi.org/10.5194/bg-21-4621-2024, https://doi.org/10.5194/bg-21-4621-2024, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry, leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, not by the direct effect of warming on carbon chemistry and pH. These evaporation and rainfall patterns oppose acidification in saltier parts of the ocean and enhance acidification in fresher regions.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024, https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and analyzed its predictability, a strong O2–IPV connection, and predictability for IPV in the tropical Pacific. This opens new routes for monitoring ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1388, https://doi.org/10.5194/egusphere-2024-1388, 2024
Short summary
Short summary
The study evaluated CO2-carbonate system dynamics in the North Atlantic Subpolar Gyre from 2009 to 2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of Ocean Acidification and improve our knowledge about its impact on marine ecosystems.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Cited articles
Achterberg, E. P., Steigenberger, S., Marsay, C. M., LeMoigne, F. A.,
Painter, S. C., Baker, A. R., Connelly, D. P., Moore, C. M., Tagliabue, A.,
and Tanhua, T.: Iron Biogeochemistry in the High Latitude North Atlantic
Ocean, Sci. Rep., 8, 1–15, https://doi.org/10.1038/s41598-018-19472-1, 2018.
Aminot, A., and Kerouel, R.: Dosage automatique des nutriments dans les eaux
marines, Edn. Quae, 191 pp., 2007.
Annett, A. L., Skiba, M., Henley, S. F., Venables, H. J., Meredith, M. P.,
Statham, P. J., and Ganeshram, R. S.: Comparative roles of upwelling and
glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula,
Mar. Chem., 176, 21–33, https://doi.org/10.1016/j.marchem.2015.06.017, 2015.
Armi, L., Hebert, D., Oakey, N., Price, J., Richardson, P. L., Rossby, T.,
and Ruddick, B.: The history and decay of a Mediterranean salt lens, Nature,
333, 649–651, https://doi.org/10.1038/333649a0, 1988.
Bacon, S., Gould, W. J., and Jia, Y.: Open-ocean convection in the Irminger
Sea, Geophys. Res. Lett., 30, 1246, https://doi.org/10.1029/2002GL016271, 2003.
Baker, A. R., Adams, C., Bell, T. G., Jickells, T. D., and Ganzeveld, L.:
Estimation of atmospheric nutrient inputs to the Atlantic Ocean from
50∘ N to 50∘ S based on large-scale field sampling: Iron
and other dust-associated elements, Global Biogeochem. Cy., 27,
755–767, https://doi.org/10.1002/gbc.20062, 2013.
Baker, A. T. and German, C. R.: On the Global Distribution of Hydrothermal
vent Fields, in: Mid-Ocean Ridges: Hydrothermal Interactions Between the
Lithosphere and Oceans, Geophysical Monograph Series 148, edited by: German, C. R.,
Lin, J., and Parson, L. M., 245–266, 2004.
Barton, A. D., Greene, C. H., Monger, B. C., and Pershing, A. J.: The
Continuous Plankton Recorder survey and the North Atlantic Oscillation:
Interannual- to Multidecadal-scale patterns of phytoplankton variability in
the North Atlantic Ocean, Prog. Oceanogr., 58, 337–358,
https://doi.org/10.1016/j.pocean.2003.08.012, 2003.
Batchelli, S., Muller, F. L. L., Chang, K. C., and Lee, C. L.: Evidence for
Strong but Dynamic Iron-Humic Colloidal Associations in Humic-Rich Coastal
Waters, Environ. Sci. Technol., 44, 8485–8490,
https://doi.org/10.1021/es101081c, 2010.
Benetti, M., Reverdin, G., Pierre, C., Khatiwala, S., Tournadre, B.,
Olafsdottir, S., and Naamar, A.: Variability of sea ice melt and meteoric
water input in the surface Labrador Current off Newfoundland, J.
Geophys. Res.-Ocean., 121, 2841–2855, https://doi.org/10.1002/2015JC011302,
2016.
Benetti, M., Reverdin, G., Lique, C., Yashayaev, I., Holliday, N. P., Tynan,
E., Torres-Valdes, S., Lherminier, P., Tréguer, P., and Sarthou, G.:
Composition of freshwater in the spring of 2014 on the southern Labrador
shelf and slope, J. Geophys. Res.-Ocean., 122, 1102–1121,
10.1002/2016jc012244, 2017.
Bergquist, B. A. and Boyle, E. A.: Dissolved iron in the tropical and
subtropical Atlantic Ocean, Global Biogeochem. Cy., 20, GB1015,
https://doi.org/10.1029/2005GB002505, 2006.
Bersch, M., Yashayaev, I., and Koltermann, K. P.: Recent changes of the
thermohaline circulation in the subpolar North Atlantic, Ocean Dynam., 57,
223–235, https://doi.org/10.1007/s10236-007-0104-7, 2007.
Bonnet, S. and Guieu, C.: Dissolution of atmospheric iron in seawater,
Geophys. Res. Lett., 31, L03303, https://doi.org/10.1029/2003gl018423, 2004.
Bonnet, S. and Guieu, C.: Atmospheric forcing on the annual iron cycle in
the western Mediterranean Sea: A 1-year survey, J. Geophys.
Res., 111, C09010, https://doi.org/10.1029/2005jc003213, 2006.
Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the
ocean, Nat. Geosci., 3, 675–682, https://doi.org/10.1038/ngeo964, 2010.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette,
M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J.,
Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.
T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi,
K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and
Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean
stimulated by iron fertilization, Nature, 407, 695–702, https://doi.org/10.1038/35037500,
2000.
Boyd, P. W., Ibisanmi, E., Sander, S. G., Hunter, K. A., and Jackson, G. A.:
Remineralization of upper ocean particles: Implications for iron
biogeochemistry, Limnol. Oceanogr., 55, 1271–1288,
https://doi.org/10.4319/lo.2010.55.3.1271, 2010.
Buck, C. S., Landing, W. M., Resing, J. A., and Measures, C. I.: The
solubility and deposition of aerosol Fe and other trace elements in the
North Atlantic Ocean: Observations from the A16N CLIVAR ∕ CO2 repeat
hydrography section, Mar. Chem., 120, 57–70,
https://doi.org/10.1016/j.marchem.2008.08.003, 2010.
Canário, J., Vale, C., Caetano, M., and Madureira, M. J.: Mercury in
contaminated sediments and pore waters enriched in sulphate (Tagus Estuary,
Portugal), Environ. Pollut., 126, 425–433,
https://doi.org/10.1016/S0269-7491(03)00234-3, 2003.
Charette, M. A., Morris, P. J., Henderson, P. B., and Moore, W. S.: Radium
isotope distributions during the US GEOTRACES North Atlantic cruises, Mar.
Chem., 177, 184–195, https://doi.org/10.1016/j.marchem.2015.01.001, 2015.
Chen, Y. J.: Influence of the Iceland mantle plume on crustal accretion at
the inflated Reykjanes Ridge: Magma lens and low hydrothermal activity,
J. Geophys. Res., 108, 2524,
https://doi.org/10.1029/2001JB000816, 2003.
Chester, R., Murphy, K. J. T., Lin, F. J., Berry, A. S., Bradshaw, G. A.,
and Corcoran, P. A.: Factors controlling the solubilities of trace-metals
from nonremote aerosols deposited to the sea-surface by the dry deposition
mode, Mar. Chem., 42, 107–126, https://doi.org/10.1016/0304-4203(93)90241-f, 1993.
Conway, T. M. and John, S. G.: Quantification of dissolved iron sources to
the North Atlantic Ocean, Nature, 511, 212–215, https://doi.org/10.1038/nature13482, 2014.
Cooper, L. W., Whitledge, T. E., Grebmeier, J. M., and Weingartner, T.: The
nutrient, salinity, and stable oxygen isotope composition of Bering and
Chukchi Seas waters in and near the Bering Strait, J. Geophys.
Res., 102, 12563–512573, 1997.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J.
J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers
(δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers, Geophys.
Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL035007, 2008.
Crane, K., Johnson, L., Appelgate, B., Nishimura, C., Buck, R., Jones, C.,
Vogt, P., and Kos'yan, R.: Volcanic and Seismic Swarm Events on the Reykjanes
Ridge and Their Similarities to Events on Iceland: Results of a Rapid
Response Mission, Mar. Geophys. Res., 19, 319–338,
https://doi.org/10.1023/A:1004298425881
Croot, P. L., Streu, P., and Baker, A. R.: Short residence time for iron in
surface seawater impacted by atmospheric dry deposition from Saharan dust
events, Geophys. Res. Lett., 31, L23S08, https://doi.org/10.1029/2004GL020153, 2004.
Cutter, G., Casciotti, K., Croot, P., Geibert, W., Heimburger, L. E., Lohan,
M., Planquette, H., and van de Flierdt, T.: Sampling and the Sample-handling
Protocols for GEOTRACES Cruises, 1–178, 2017.
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A.,
Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T.,
Thierry, V., and Gladyshev, S.: The northern North Atlantic Ocean mean
circulation in the early 21st century, Prog. Oceanogr., 146,
142–158, https://doi.org/10.1016/j.pocean.2016.06.007, 2016.
de Baar, H. J. W. and de Jong, J. T. M.: Distributions, Sources and Sinks of
Iron in Seawater, in: Biogeochemistry of Fe in Seawater, chap. 5,
edited by: Turner D. R. and Hunter, K. A., SCOR-IUPAC series, J
Wiley, Baltimore, 123–253, 2001.
de Barros, M. C.: A case study of waste inputs in the Tagus estuary, in: The
role of the Oceans as a Waste Disposal Option, edited by: Kullenberg, G.,
NATO ASI Series; Series C: Mathematical and Physical Sciences, 172, Springer
Netherlands, 307–324, 1986.
de Jong, M. F., van Aken, H. M., Våge, K., and Pickart, R. S.:
Convective mixing in the central Irminger Sea: 2002–2010, Deep-Sea Res.
Pt. I, 63, 36–51, https://doi.org/10.1016/j.dsr.2012.01.003,
2012.
Dehairs, F., Shopova, D., Ober, S., Veth, C., and Goeyens, L.: Particulate
barium stocks and oxygen consumption in the Southern Ocean mesopelagic water
column during spring and early summer: Relationship with export production,
Deep-Sea Res. Pt. II, 44, 497–516, https://doi.org/10.1016/S0967-0645(96)00072-0, 1997.
Fagel, N., Robert, C., and Hilaire-Marcel, C.: Clay mineral signature of the
NW Atlantic Boundary Undercurrent, Mar. Geol., 130, 19–28,
https://doi.org/10.1016/0025-3227(95)00134-4, 1996.
Fagel, N., Robert, C., Preda, M., and Thorez, J.: Smectite composition as a
tracer of deep circulation: the case of the Northern North Atlantic, Mar.
Geol., 172, 309–330, https://doi.org/10.1016/S0025-3227(00)00123-7, 2001.
Ferron, B., Kokoszka, F., Mercier, H., Lherminier, P., Huck, T., Rios, A.,
and Thierry, V.: Variability of the Turbulent Kinetic Energy Dissipation
along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012,
J. Phys. Oceanogr., 46, 1989–2003, https://doi.org/10.1175/jpo-d-15-0186.1,
2016.
Figueres, G., Martin, J. M., Meybeck, M., and Seyler, P.: A comparative
study of mercury contamination in the Tagus estuary (Portugal) and major
French estuaries (Gironde, Loire, Rhone), Estuarine, Coast. Shelf
Sci., 20, 183–203, https://doi.org/10.1016/0272-7714(85)90037-X, 1985.
Fiuza, A.: Hidrologia e dinamica das aguas costeiras de Portugal, Ph. D.,
Universidade de Lisboa, Lisboa, Portugal, unpublished, 194 pp., 1984.
Follows, M. and Dutkiewicz, S.: Meteorological modulation of the North
Atlantic Spring Bloom, Deep-Sea Res. Pt. II, 49, 321–344, https://doi.org/10.1016/S0967-0645(01)00105-9,
2001.
García-Ibáñez, M. I., Pardo, P. C., Carracedo, L. I., Mercier,
H., Lherminier, P., Ríos, A. F., and Pérez, F. F.: Structure,
transports and transformations of the water masses in the Atlantic Subpolar
Gyre, Prog. Oceanogr., 135, 18–36, https://doi.org/10.1016/j.pocean.2015.03.009,
2015.
García-Ibáñez, M. I., Pérez, F. F., Lherminier, P., Zunino,
P., Mercier, H., and Tréguer, P.: Water mass distributions and
transports for the 2014 GEOVIDE cruise in the North Atlantic,
Biogeosciences, 15, 2075–2090, https://doi.org/10.5194/bg-15-2075-2018, 2018.
Gaudencio, M. J., Guerra, M. T., and Glemarec, M.: Recherches
biosedimentaires sur la zone maritime de l'estuaire du Tage, Portugal:
donnees sedimentaires preliminaires, in: Estuaries and Coasts: Spatial and
Temporal Intercomparisons, edited by: Elliot, M. and Ducrotoy, J. C., Olsen
and Olsen, Fredensborg, 11–16, 1991.
German, C. R., Briem, J., Chin, C. S., Danielsen, M., Holland, S., James, R.
H., Jonsdottir, A., Ludford, E., Moser, C., Olafsson, J., Palmer, M. R., and
Rudnicki, M. D.: Hydrothermal activity on the Reykjanes Ridge: the
Steinahóll vent-field at 63∘06′ N, Earth Planet.
Sc. Lett., 121, 647–654, https://doi.org/10.1016/0012-821X(94)90098-1,
1994.
Gerringa, L. J. A., Blain, S., Laan, P., Sarthou, G., Veldhuis, M. J. W.,
Brussaard, C. P. D., Viollier, E., and Timmermans, K. R.: Fe-binding
dissolved organic ligands near the Kerguelen Archipelago in the Southern
Ocean (Indian sector), Deep-Sea Res. Pt. II, 55, 606–621, https://doi.org/10.1016/j.dsr2.2007.12.007, 2008.
Gerringa, L. J. A., Rijkenberg, M. J. A., Schoemann, V., Laan, P., and de
Baar, H. J. W.: Organic complexation of iron in the West Atlantic Ocean,
Mar. Chem., 177, 434–446, https://doi.org/10.1016/j.marchem.2015.04.007, 2015.
Gerringa, L. J. A., Slagter, H. A., Bown, J., van Haren, H., Laan, P., de
Baar, H. J. W., and Rijkenberg, M. J. A.: Dissolved Fe and Fe-binding
organic ligands in the Mediterranean Sea – GEOTRACES G04, Mar. Chem.,
194, 100–113, https://doi.org/10.1016/j.marchem.2017.05.012, 2017.
Gourain, A., Planquette, H., Cheize, M., Lemaitre, N., Menzel Barraqueta,
J.-L., Shelley, R., Lherminier, P., and Sarthou, G.: Inputs and processes
affecting the distribution of particulate iron in the North Atlantic along
the GEOVIDE (GEOTRACES GA01) section, Biogeosciences, 16, 1563–1582,
https://doi.org/10.5194/bg-16-1563-2019, 2019.
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loye-Pilot, M.-D.,
Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam,
C., Soudine, A., and Ziveri, P.: The role of atmospheric deposition in the
biogeochemistry of the Mediterranean Sea, Prog. Oceanogr., 44,
147–190, https://doi.org/10.1016/S0079-6611(99)00024-5, 1999.
Guieu, C., Loÿe-Pilot, M. D., Benyahya, L., and Dufour, A.: Spatial
variability of atmospheric fluxes of metals (Al, Fe, Cd, Zn and Pb) and
phosphorus over the whole Mediterranean from a one-year monitoring
experiment: Biogeochemical implications, Mar. Chem., 120, 164–178,
https://doi.org/10.1016/j.marchem.2009.02.004, 2010.
Guieu, C., Aumont, O., Paytan, A., Bopp, L., Law, C. S., Mahowald, N.,
Achterberg, E. P., Marañón, E., Salihoglu, B., Crise, A., Wagener,
T., Herut, B., Desboeufs, K., Kanakidou, M., Olgun, N., Peters, F.,
Pulido-Villena, E., Tovar-Sanchez, A., and Völker, C.: The significance
of the episodic nature of atmospheric deposition to Low Nutrient Low
Chlorophyll regions, Global Biogeochem. Cy., 28, 1179–1198,
https://doi.org/10.1002/2014gb004852, 2014.
Harrison, W. G., Yngve Børsheim, K., Li, W. K. W., Maillet, G. L., Pepin,
P., Sakshaug, E., Skogen, M. D., and Yeats, P. A.: Phytoplankton production
and growth regulation in the Subarctic North Atlantic: A comparative study
of the Labrador Sea-Labrador/Newfoundland shelves and
Barents/Norwegian/Greenland seas and shelves, Prog. Oceanogr., 114,
26–45, https://doi.org/10.1016/j.pocean.2013.05.003, 2013.
Hatta, M., Measures, C. I., Wu, J., Roshan, S., Fitzsimmons, J. N., Sedwick,
P., and Morton, P.: An overview of dissolved Fe and Mn distributions during
the 2010-2011 US GEOTRACES north Atlantic cruises: GEOTRACES GA03, Deep-Sea
Res. Pt. II, 116, 117–129,
https://doi.org/10.1016/j.dsr2.2014.07.005, 2015.
Henson, S. A., Dunne, J. P., and Sarmiento, J. L.: Decadal variability in
North Atlantic phytoplankton blooms, J. Geophys. Res., 114, C04013,
https://doi.org/10.1029/2008jc005139, 2009.
Ho, T.-Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski,
P. G., and Morel, F. M. M.: The elemental composition of some marine
phytoplankton, J. Phycol., 39, 1145–1159,
https://doi.org/10.1111/j.0022-3646.2003.03-090.x, 2003.
Homoky, W. B., Hembury, D. J., Hepburn, L. E., Mills, R. A., Statham, P. J.,
Fones, G. R., and Palmer, M. R.: Iron and manganese diagenesis in deep sea
volcanogenic sediments and the origins of pore water colloids, Geochim.
Cosmochim. Ac., 75, 5032–5048, https://doi.org/10.1016/j.gca.2011.06.019, 2011.
Homoky, W. B., John, S. G., Conway, T. M., and Mills, R. A.: Distinct iron
isotopic signatures and supply from marine sediment dissolution, Nat.
Commun., 4, 2143, https://doi.org/10.1038/ncomms3143, 2013.
Humphreys, M. P., Griffiths, A. M., Achterberg, E. P., Holliday, N. P.,
Rérolle, V., Menzel Barraqueta, J. L., Couldrey, M. P., Oliver, K. I.,
Hartman, S. E., and Esposito, M.: Multidecadal accumulation of anthropogenic
and remineralized dissolved inorganic carbon along the Extended Ellett Line
in the northeast Atlantic Ocean, Global Biogeochem. Cy., 30, 293–310,
https://doi.org/10.1002/2015GB005246, 2016.
Janssens, J., Meiners, K. M., Tison, J.-L., Dieckmann, G., Delille, B., and
Lannuzel, D.: Incorporation of iron and organic matter into young Antarctic
sea ice during its initial growth stages, Elementa, 4, p.000123, https://doi.org/10.12952/journal.elementa.000123, 2016.
Jickells, T. and Moore, C. M.: The importance of atmospheric deposition for
ocean productivity, Annu. Rev. Ecol. Evol. Syst.,
46, 481–501, https://doi.org/10.1146/annurev-ecolsys-112414-054118, 2015.
Jickells, T. D., An, Z. C., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Jones, E. P., Anderson, L. G., and Swift, J. H.: Distribution of Atlantic
and Pacific waters in the upper Arctic Ocean: Implications for circulation,
Geophys. Res. Lett., 25, 765–768,
https://doi.org/10.1029/98GL00464, 1998.
Kan, C. C., Chen, W. H., Wan, M. W., Phatai, P., Wittayakun, J., and Li, K.
F.: The preliminary study of iron and manganese removal from groundwater by
NaOCl oxidation and MF filtration, Sustain. Environ. Res., 22, 25–30, 2012.
Kanzow, T. and Zenk, W.: Structure and transport of the Iceland Scotland
Overflow plume along the Reykjanes Ridge in the Iceland Basin, Deep-Sea
Res. Pt. I, 86, 82–93,
https://doi.org/10.1016/j.dsr.2013.11.003, 2014
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: An optimal definition for
ocean mixed layer depth, J. Geophys. Res., 105,
16803–816821, https://doi.org/10.1029/2000JC900072, 2000.
Käse, R. H., Girton, J. B. and Sanford, T. B.: Structure and variability
of the Denmark Strait Overflow: Model and observations, J.
Geophys. Res.-Ocean., 108, C63181, https://doi.org/10.1029/2002JC001548, 2003.
Klunder, M. B., Bauch, D., Laan, P., de Baar, H. J. W., van Heuven, S. M. A.
C., and Ober, S.: Dissolved iron in the Arctic shelf seas and surface waters
of the Central Arctic Ocean: impact of Arctic river water and ice-melt,
J. Geophys. Res., 117, 1–18,
https://doi.org/10.1029/2011JC007133, 2012.
Lackschewitz, K. S., Endler, R., Gehrke, B., Wallrabe-Adams, H.-J., and
Thiede, J.: Evidence for topography- and current-controlled deposition on
the reykjanes Ridge between 59∘ N and 60∘ N, Deep-Sea
Res. Pt. I, 43, 1683–1711, https://doi.org/10.1016/S0967-0637(96)00090-8,
1996.
Laës, A., Blain, S., Laan, P., Achterberg, E. P., Sarthou, G., and de Baar,
H. J. W.: Deep dissolved iron profiles in the eastern North Atlantic in
relation to water masses, Geophys. Res. Lett., 30, 1902,
https://doi.org/10.1029/2003gl017902, 2003.
Lagerström, M. E., Field, M. P., Seguret, M., Fischer, L., Hann, S., and
Sherrell, R. M.: Automated on-line flow-injection ICP-MS determination of
trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: Application
to the GEOTRACES program, Mar. Chem., 155, 71–80,
https://doi.org/10.1016/j.marchem.2013.06.001, 2013.
Lambelet, M., van de Flierdt, T., Crocket, K., Rehkamper, M., Katharina, K.,
Coles, B., Rijkenberg, M. J. A., Gerringa, L. J. A., de Baar, H. J. W., and
Steinfeldt, R.: Neodymium isotopic composition and concentration in the
western North Atlantic Ocean: Results from the GEOTRACES GA02 section,
Geochim. Cosmochim. Ac., 177, 1–29,
https://doi.org/10.1016/j.gca.2015.12.019, 2016.
Le Roy, E., Sanial, V., Charette, M. A., van Beek, P., Lacan, F., Jacquet,
S. H. M., Henderson, P. B., Souhaut, M., García-Ibáñez, M. I.,
Jeandel, C., Pérez, F. F., and Sarthou, G.: The 226Ra–Ba
relationship in the North Atlantic during GEOTRACES-GA01, Biogeosciences,
15, 3027–3048, https://doi.org/10.5194/bg-15-3027-2018, 2018.
Lemaitre, N., Planchon, F., Planquette, H., Dehairs, F., Fonseca-Batista,
D., Roukaerts, A., Deman, F., Tang, Y., Mariez, C., and Sarthou, G.: High
variability of particulate organic carbon export along the North Atlantic
GEOTRACES section GA01 as deduced from 234Th fluxes, Biogeosciences, 15,
6417–6437, https://doi.org/10.5194/bg-15-6417-2018, 2018a.
Lemaitre, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S.,
García-Ibáñez, M. I., Gourain, A., Cheize, M., Monin, L.,
André, L., Laha, P., Terryn, H., and Dehairs, F.: Particulate barium
tracing of significant mesopelagic carbon remineralisation in the North
Atlantic, Biogeosciences, 15, 2289–2307,
https://doi.org/10.5194/bg-15-2289-2018, 2018b.
Lohan, M. C. and Bruland, K. W.: Elevated Fe(II) and Dissolved Fe in
Hypoxic Shelf Waters off Oregon and Washington: An Enhanced Source of Iron
to Coastal Upwelling Regimes, Environ. Sci. Technol., 42,
6462–6468, https://doi.org/10.1021/es800144j, 2008.
Longhurst, A. R.: Ecological geography of the Sea, Second Edition ed.,
Elsevier Academic Press publications, Burlington, 542 pp., 2007.
Louanchi, F. and Najjar, R. G.: Annual cycles of nutrients and oxygen in
the upper layers of the North Atlantic Ocean, Deep-Sea Res. Pt. II, 48, 2155–2171,
https://doi.org/10.1016/S0967-0645(00)00185-5, 2001.
Magaldi, M. G., Haine, T. W. N., and Pickart, R. S.: On the Nature and Variability of the East Greenland Spill Jet: A Case Study in Summer 2003, J. Phys. Oceanogr., 41, 2307–2327, https://doi.org/10.1175/JPO-D-10-05004.1, 2011.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys.
Res., 114, C12024, https://doi.org/10.1029/2009jc005436, 2009.
Marshall, J. and Schott, F.: Open-ocean convection: observations, theory,
and models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999.
Martin, J. D. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–343, 1988.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiencies limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, https://doi.org/10.1029/GB004i001p00005, 1990.
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R.
M., Tanner, S. J., Hunter, C. N., Elrod, V. A., Nowicki, J. L., Coley, T.
L., Barber, R. T., Lindley, S., Watson, A. J., Van Scoy, K., Law, C. S.,
Liddicoat, M. I., Ling, R., Stanton, T., Stockel, J., Collins, C., Anderson,
A., Bidigare, R., Ondrusek, M., Latasa, M., Millero, F. J., Lee, K., Yao,
W., Zhang, J. Z., Friederich, G., Sakamoto, C., Chavez, F., Buck, K.,
Kolber, Z., Greene, R., Falkowski, P., Chisholm, S. W., Hoge, F., Swift, R.,
Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P., and Tindale,
N. W.: Testing the Iron Hypothesis in Ecosystems of the Equatorial Pacific
Ocean, Nature, 371, 123–129, https://doi.org/10.1038/371123a0, 1994.
Martin, J.-M., Elbaz-Poulichet, F., Guieu, C., Loÿe-Pilot, M.-D., and
Han, G.: River versus atmospheric input of material to the Mediterranean
Sea: an overview, Mar. Chem., 28, 159–182,
https://doi.org/10.1016/0304-4203(89)90193-X, 1989.
Measures, C. I., Brown, M. T., Selph, K. E., Apprill, A., Zhou, M., Hatta,
M., and Hiscock, W. T.: The influence of shelf processes in delivering
dissolved iron to the HNLC waters of the Drake Passage, Antarctica, Deep-Sea
Res. Pt. II, 90, 77–88,
https://doi.org/10.1016/j.dsr2.2012.11.004, 2013.
Melling, H. and Moore, R. M.: Modification of halocline source waters
during freezing on the Beaufort Sea shelf: Evidence from oxygen isotopes and
dissolved nutrients, Cont. Shelf Res., 15, 89–113,
https://doi.org/10.1016/0278-4343(94)P1814-R, 1995.
Menzel Barraqueta, J.-L., Schlosser, C., Planquette, H., Gourain, A.,
Cheize, M., Boutorh, J., Shelley, R., Contreira Pereira, L., Gledhill, M.,
Hopwood, M. J., Lacan, F., Lherminier, P., Sarthou, G., and Achterberg, E.
P.: Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES
GA01 section): roles of continental inputs and biogenic particle removal,
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018,
2018.
Mercier, H., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault, N.,
Desbruyères, D., Falina, A., Ferron, B., Gourcuff, C., Huck, T., and
Thierry, V.: Variability of the meridional overturning circulation at the
Greenland–Portugal OVIDE section from 1993 to 2010, Prog.
Oceanogr., 132, 250–261, https://doi.org/10.1016/j.pocean.2013.11.001, 2015.
Mil-Homens, M., Branco, V., Lopes, C., Vale, C., Abrantes, F., Boer, W., and
Vicente, M.: Using factor analysis to charactierise historical trends of
trace metal contamination in a sediment core from the Tagus Prodelta,
Portugal, Water Air Soil Poll., 197, 277–287,
https://doi.org/10.1007/s11270-008-9810-0, 2009.
Moore, C. M., Mills, M. M., Langlois, R., Milne, A., Achterberg, E. P., La
Roche, J., and Geider, R. J.: Relative influence of nitrogen and phosphorus
availability on phytoplankton physiology and productivity in the
oligotrophic sub-tropical North Atlantic Ocean, Limnol. Oceanogr.,
53, 291–205, https://doi.org/10.4319/lo.2008.53.1.0291,
2008.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Moore, G. W. K.: Gale force winds over the Irminger Sea to the east of Cape
Farewell, Greenland, Geophys. Res. Lett., 30, 1894,
https://doi.org/10.1029/2003gl018012, 2003.
Morel, F. M. M., Kustka, A. B., and Shaked, Y.: The role of unchelated Fe in the iron nutrition of phytoplankton, Limnol. Oceanogr., 53, 400–404, 2008.
Nielsdóttir, M. C., Moore, C. M., Sanders, R., Hinz, D. J., and
Achterberg, E. P.: Iron limitation of the postbloom phytoplankton
communities in the Iceland Basin, Global Biogeochem. Cy., 23, GB3001,
https://doi.org/10.1029/2008GB003410, 2009.
Olaffson, J., Thors, K., and Cann, J. R.: A sudden cruise off Iceland, RIDGE
Events, 2, 35–28, 1991.
Oschlies, A.: Nutrient supply to the surface waters of the North Atlantic: A
model study, J. Geophys. Res., 107, 3046, https://doi.org/10.1029/2000jc000275,
2002.
Painter, S. C., Henson, S. A., Forryan, A., Steigenberger, S., Klar, J.,
Stinchcombe, M. C., Rogan, N., Baker, A. R., Achterberg, E. P., and Moore,
C. M.: An assessment of the vertical diffusive flux of iron and other
nutrients to the surface waters of the subpolar North Atlantic Ocean,
Biogeosciences, 11, 2113–2130, https://doi.org/10.5194/bg-11-2113-2014, 2014.
Palmer, M. R., Ludford, E. M., German, C. R., and Lilley, M. D.: Dissolved
methane and hydrogen in the Steinahóll hydrothermal plume, 63∘
N, Reykjanes Ridge, in: Hydrothermal Vents and Processes, edited by: Parson,
L. M., Walker, C. L., and Dixon, D. R., Special Publications, Geological
Society, London, 111–120, 1995.
Parekh, P., Follows, M. J., and Boyle, E. A.: Decoupling of iron and
phosphate in the global ocean, Global Biogeochem. Cy., 19, GB2020,
https://doi.org/10.1029/2004GB002280, 2005.
Parra, M., Delmont, P., Ferragne, A., Latouche, C., Pons, J. C., and
Puechmaille, C.: Origin and evolution of smectites in recent marine
sediments of the NE Atlantic, Clay Miner., 20, 335–346,
https://doi.org/10.1180/claymin.1985.020.3.06, 1985.
Pérez, F. F., Mercier, H., Vázquez-Rodríguez, M., Lherminier,
P., Velo, A., Pardo, P. C., Rosón, G., and Ríos, A. F.: Atlantic
Ocean CO2 uptake reduced by weakening of the meridional overturning
circulation, Nat. Geosci., 6, 146–152, https://doi.org/10.1038/ngeo1680, 2013.
Pérez, F. F., Treguer, P., Branellec, P., García-Ibáñez, M.
I., Lherminier, P., and Sarthou, G.: The 2014 Greenland-Portugal GEOVIDE
bottle data (GO-SHIP A25 and GEOTRACES GA01), SEANOE, https://doi.org/10.17882/54653, 2018.
Petrich, C. and Eicken, H.: Growth, structure and properties of sea ice,
in: Sea Ice, 2nd Edn., edited by: Thomas, D. N. and Dieckmann, G. S.,
Wiley-Blackwell, Oxford, UK, 23–77, 2010.
Pickart, R. S., Straneo, F., and Moore, G. W. K.: Is Labrador Sea Water
formed in the Irminger basin?, Deep-Sea Res. Pt. I, 50, 23–52,
https://doi.org/10.1016/S0967-0637(02)00134-6, 2003.
Piron, A., Thierry, V., Mercier, H., and Caniaux, G.: Argo float
observations of basin-scale deep convection in the Irminger sea during
winter 2011–2012, Deep-Sea Res. Pt. I,
109, 76–90, https://doi.org/10.1016/j.dsr.2015.12.012, 2016.
R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna. R foundation for Statistical Computing. available at: http://www.R-project.org/ (last access: 18 February 2020), 2012.
Radic, A., Lacan, F., and Murray, J. W.: Iron isotopes in the seawater of
the equatorial Pacific Ocean: New constraints for the oceanic iron cycle,
Earth Planet. Sc. Lett., 306, 1–10, https://doi.org/10.1016/j.epsl.2011.03.015,
2011.
Ras, J., Claustre, H., and Uitz, J.: Spatial variability of phytoplankton
pigment distribution in the Subtropical South Pacific Ocean: comparison
between in situ and predicted data, Biogeosciences, 5, 353–369,
https://doi.org/10.5194/bg-5-353-2008, 2008.
Riebesell, U., Schloss, I., and Smetacek, V.: Aggregation of algae released
from melting sea ice: implications for seeding and sedimentation, Pol.
Biol., 11, 239–248, https://doi.org/10.1007/BF00238457, 1991.
Rijkenberg, M. J., Middag, R., Laan, P., Gerringa, L. J., van Aken, H. M.,
Schoemann, V., de Jong, J. T., and de Baar, H. J.: The distribution of
dissolved iron in the West Atlantic Ocean, PLoS One, 9, e101323,
https://doi.org/10.1371/journal.pone.0101323, 2014.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic sink
for anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Sanders, R., Brown, L., Henson, S., and Lucas, M.: New production in the
Irminger Basin during 2002, J. Mar. Sys., 55, 291–310, https://doi.org/10.1016/j.jmarsys.2004.09.002, 2005.
Santos-Echeandia, J., Vale, C., Caetano, M., Pereira, P., and Prego, R.:
Effect of tidal flooding on metal distribution in pore waters of marsh
sediments and its transport to water column (Tagus estuary, Portugal), Mar.
Environ. Res., 70, 358–367, https://doi.org/10.1016/j.marenvres.2010.07.003, 2010.
Sarthou, G. and Jeandel, C.: Seasonal variations of iron concentrations in
the Ligurian Sea and iron budget in the Western Mediterranean Sea, Mar.
Chem., 74, 115–129, https://doi.org/10.1016/s0304-4203(00)00119-5, 2001.
Sarthou, G., Baker, A. R., Kramer, J., Laan, P., Laës, A., Ussher, S.,
Achterberg, E. P., de Baar, H. J. W., Timmermans, K. R., and Blain, S.:
Influence of atmospheric inputs on the iron distribution in the subtropical
North-East Atlantic Ocean, Mar. Chem., 104, 186–202,
https://doi.org/10.1016/j.marchem.2006.11.004, 2007.
Sarthou, G., Laan, P., Ussher, S., Kramer, J., Timmermans, K. R., and Blain,
S.: Influence of high atmospheric inputs on the iron distribution in the
water column of the North Atlantic Ocean, Deep-Sea Res. Pt. I, 50, 1339–1352, 2003.
Sarthou, G., Vincent, D., Christaki, U., Obernosterer, I., Timmermans, K.
R., and Brussaard, C. P. D.: The fate of biogenic iron during a
phytoplankton bloom induced by natural fertilisation: Impact of copepod
grazing, Deep-Sea Res. Pt. II, 55,
734–751, https://doi.org/10.1016/j.dsr2.2007.12.033, 2008.
Sarthou, G., Lherminier, P., Achterberg, E. P., Alonso-Pérez, F.,
Bucciarelli, E., Boutorh, J., Bouvier, V., Boyle, E. A., Branellec, P.,
Carracedo, L. I., Casacuberta, N., Castrillejo, M., Cheize, M., Contreira
Pereira, L., Cossa, D., Daniault, N., De Saint-Léger, E., Dehairs, F.,
Deng, F., Desprez de Gésincourt, F., Devesa, J., Foliot, L.,
Fonseca-Batista, D., Gallinari, M., García-Ibáñez, M. I.,
Gourain, A., Grossteffan, E., Hamon, M., Heimbürger, L. E., Henderson,
G. M., Jeandel, C., Kermabon, C., Lacan, F., Le Bot, P., Le Goff, M., Le
Roy, E., Lefèbvre, A., Leizour, S., Lemaitre, N., Masqué, P.,
Ménage, O., Menzel Barraqueta, J.-L., Mercier, H., Perault, F.,
Pérez, F. F., Planquette, H. F., Planchon, F., Roukaerts, A., Sanial,
V., Sauzède, R., Schmechtig, C., Shelley, R. U., Stewart, G., Sutton, J.
N., Tang, Y., Tisnérat-Laborde, N., Tonnard, M., Tréguer, P., van
Beek, P., Zurbrick, C. M., and Zunino, P.: Introduction to the French
GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise, Biogeosciences,
15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, 2018.
Schlitzer, R.: Ocean Data View, version 4.7.6, available at: http://odv.awi.de (last access: 30 January 2020), 2016.
Schmidt, S. and Reyss, J.-L.: Radium as internal tracer of Mediterranean
Outflow Water, J. Geophys. Res., 101, 3589–3596, 1996.
Shelley, R. U., Morton, P. L., and Landing, W. M.: Elemental ratios and
enrichment factors in aerosols from the US-GEOTRACES North Atlantic
transects, Deep-Sea Res., 116, 262–272,
https://doi.org/10.1016/j.dsr2.2014.12.005, 2015.
Shelley, R. U., Roca-Martí, M., Castrillejo, M., Sanial, V.,
Masqué, P., Landing, W. M., van Beek, P., Planquette, H., and Sarthou,
G.: Quantification of trace element atmospheric deposition fluxes to the
Atlantic Ocean (> 40∘ N; GEOVIDE, GEOTRACES GA01)
during spring 2014, Deep-Sea Res. Pt. I,
119, 34–49, https://doi.org/10.1016/j.dsr.2016.11.010, 2017.
Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou,
G.: Regional trends in the fractional solubility of Fe and other metals from
North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a
two-stage leach, Biogeosciences, 15, 2271–2288,
https://doi.org/10.5194/bg-15-2271-2018, 2018.
Sinha, M. C., Navin, D. A., MacGregor, L. M., Constable, S., Peirce, C.,
White, A., Heinson, G., and Inglis, M. A.: Evidence for accumulated melt
beneath the slow-spreading Mid-Atlantic Ridge, Philos. T.
R. Soc. A, 355, 233–253, https://doi.org/10.1098/rsta.1997.0008,
1997.
Slagter, H. A., Reader, H. E., Rijkenberg, M. J. A., Rutgers van der Loeff,
M., de Baar, H. J. W., and Gerringa, L. J. A.: Organic Fe speciation in the
Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM,
Mar. Chem., 197, 11–25, https://doi.org/10.1016/j.marchem.2017.10.005, 2017.
Smallwood, J. R. and White, R. S.: Crustal accretion at the Reykjanes
Ridge, 61∘–62∘ N, J. Geophys. Res.-Sol. Ea., 103, 5185–5201, https://doi.org/10.1029/97jb03387, 1998.
Statham, P. J., Skidmore, M., and Tranter, M.: Inputs of glacially derived
dissolved and colloidal iron to the coastal ocean and implications for
primary productivity, Global Biogeochem. Cy., 22, 1–11,
https://doi.org/10.1029/2007GB003106, 2008.
Sunda, W. G. and Huntsman, S. A.: Iron uptake and growth limitation in
oceanic and coastal phytoplankton, Mar. Chem., 50, 189–206,
https://doi.org/10.1016/0304-4203(95)00035-p, 1995.
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K., Jane
Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J.
Geophys. Res., 114, C05020, https://doi.org/10.1029/2008jc004808, 2009.
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S.,
Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock,
C., Vichi, M., Völker, C., and Yool, A.: How well do global ocean
biogeochemistry models simulate dissolved iron distributions?, Global
Biogeochem. Cy., 30, 149–174, https://doi.org/10.1002/2015GB005289, 2016.
Tanhua, T., Olsson, K. A., and Jeansson, E.: Formation of Denmark Strait
overflow water and its hydro-chemical composition, J. Marine
Syst., 57, 264–288, https://doi.org/10.1016/j.jmarsys.2005.05.003, 2005.
Teng, Z., Huang, J. Y., Fujito, K., and Takizawa, S.: Manganese removal by
hollow fiber micro-filter.Membrane separation for drinking water, Euroopean
Conference on Desalination and the Environment, Amsterdam, 28 May, 2001.
Thuróczy, C. E., Gerringa, L. J. A., Klunder, M. B., Middag, R., Laan,
P., Timmermans, K. R., and de Baar, H. J. W.: Speciation of Fe in the
Eastern North Atlantic Ocean, Deep-Sea Res. Pt. I, 57, 1444–1453, https://doi.org/10.1016/j.dsr.2010.08.004, 2010.
Tonnard, M., Donval, A., Lampert, L., Tréguer, P., Bowie, A. R., van der
Merwe, P., planquette, H., Claustre, H., Dimier, C., Ras, J., and Sarthou,
G.: Phytoplankton assemblages in the North Atlantic Ocean and in the
Labrador Sea along the GEOVIDE section (GEOTRACES section GA01) determined
by CHEMTAX analysis from HPLC pigment data, Biogeosciences, in preparation, 2020.
Tovar-Sanchez, A., Duarte, C. M., Alonso, J. C., Lacorte, S., Tauler, R.,
and Galban-Malagon, C.: Impacts of metals and nutrients released from
melting multiyear Arctic sea ice, J. Geophys. Res.-Ocean.,
115, C05020, https://doi.org/10.1029/2009jc005685, 2010.
Tréguer, P. J. and De La Rocha, C. L.: The world ocean silica cycle,
Annu. Rev. Mar. Sci., 5, 477–501, https://doi.org/10.1146/annurev-marine-121211-172346, 2013.
Twining, B. S., Baines, S. B., Fisher, N. S., and Landry, M. R.: Cellular
iron contents of plankton during the Southern Ocean Iron Experiment (SOFeX),
Deep-Sea Res. Pt. I, 51, 1827–1850,
https://doi.org/10.1016/j.dsr.2004.08.007, 2004.
Van Beusekom, J. E. E.: Distribution of aluminium in surface waters of the
North Sea: influence of suspended matter, in: Biogeochemistry and
Distribution of Suspended Matter in the North Sea and Implications to
fisheries Biology, edited by: Kempe, S., Mittleitungen aus dem
Geologisch-Paläontologischen Institut der Universität Hamburg,
SCOPE/UNEP Sonderband, 117–136, 1988.
Van Heukelem, L. and Thomas, C. S.: Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments, J. Chromatogr. A, 910, 31–49, 2001.
von Appen, W.-J., Koszalka, I. M., Pickart, R. S., Haine, T. W. N.,
Mastropole, D., Magaldi, M. G., Valdimarsson, H., Girton, J., Jochumsen, K.,
and Krahmann, G.: The East Greenland Spill Jet as an important component of
the Atlantic Meridional Overturning Circulation, Deep-Sea Res. Pt. I, 92, 75–84, https://doi.org/10.1016/j.dsr.2014.06.002, 2014.
Wadhams, P.: Ice in the Ocean, Gordon and Breach Science Publishers, London,
UK, 2000.
Wagener, T., Guieu, C., and Leblond, N.: Effects of dust deposition on iron
cycle in the surface Mediterranean Sea: results from a mesocosm seeding
experiment, Biogeosciences, 7, 3769–3781,
https://doi.org/10.5194/bg-7-3769-2010, 2010. .
Woodgate, R. A. and Aagaard, K.: Revising the Bering Strait freshwater flux
into the Arctic Ocean, Geophys. Res. Lett., 32, L02602,
https://doi.org/10.1029/2004GL021747, 2005.
Wuttig, K., Wagener, T., Bressac, M., Dammshäuser, A., Streu, P., Guieu,
C., and Croot, P. L.: Impacts of dust deposition on dissolved trace metal
concentrations (Mn, Al and Fe) during a mesocosm experiment, Biogeosciences,
10, 2583–2600, https://doi.org/10.5194/bg-10-2583-2013, 2013.
Yashayaev, I., Bersch, M., and Aken, H. M. van: Spreading of the Labrador Sea
Water to the Irminger and Iceland basins, Geophys. Res. Lett.,
34, L10602, https://doi.org/10.1029/2006GL028999, 2007.
Zou, S., Lozier, S., Zenk, W., Bower, A., and Johns, W.: Observed and
modeled pathways of the Iceland Scotland Overflow Water in the eastern North
Atlantic, Prog. Oceanogr., 159, 211–222,
https://doi.org/10.1016/j.pocean.2017.10.003, 2017.
Zunino, P., Lherminier, P., Mercier, H., Daniault, N.,
García-Ibáñez, M. I., and Pérez, F. F.: The GEOVIDE cruise
in May–June 2014 reveals an intense Meridional Overturning Circulation over
a cold and fresh subpolar North Atlantic, Biogeosciences, 14, 5323–5342,
https://doi.org/10.5194/bg-14-5323-2017, 2017.
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to...
Altmetrics
Final-revised paper
Preprint