Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-1185-2021
https://doi.org/10.5194/bg-18-1185-2021
Research article
 | 
16 Feb 2021
Research article |  | 16 Feb 2021

Denitrification in soil as a function of oxygen availability at the microscale

Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter

Related authors

Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022,https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021,https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary

Related subject area

Biogeochemistry: Soils
Global patterns and drivers of phosphorus fractions in natural soils
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023,https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023,https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Soil priming effects and involved microbial community along salt gradients
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-114,https://doi.org/10.5194/bg-2023-114, 2023
Revised manuscript accepted for BG
Short summary
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023,https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023,https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary

Cited articles

Andersen, A. J. and Petersen, S. O.: Effects of C and N availability and soil-water potential interactions on N2O evolution and PLFA composition, Soil Biol. Biochem., 41, 1726–1733, https://doi.org/10.1016/j.soilbio.2009.06.001, 2009. 
Aon, M. A., Sarena, D. E., Burgos, J. L., and Cortassa, S.: Interaction between gas exchange rates, physical and microbiological properties in soils recently subjected to agriculture, Soil Tillage Res., 60, 163–171, https://doi.org/10.1016/S0167-1987(01)00191-X, 2001. 
Arah, J. R. M. and Smith, K. A.: Steady-state denitrification in aggregated soil – A mathematical approach, J. Soil Sci., 40, 139–149, https://doi.org/10.1111/j.1365-2389.1989.tb01262.x, 1989. 
Arah, J. R. M. and Vinten, A. J. A.: Simplified models of anoxia and denitrification in aggregated and simple-structured soils, Eur. J. Soil Sci., 46, 507–517, https://doi.org/10.1111/j.1365-2389.1995.tb01347.x, 1995. 
Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., Meenken, E. D., and Ross, J. G.: Changes in relative gas diffusivity explain soil nitrous oxide flux dynamics, Soil Sci. Soc. Am. J., 77, 1496–1505, https://doi.org/10.2136/sssaj2013.04.0141, 2013. 
Download
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Altmetrics
Final-revised paper
Preprint