Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-1185-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1185-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Denitrification in soil as a function of oxygen availability at the microscale
Helmholtz Centre for Environmental Research – UFZ, Department of Soil
System Sciences, Theodor-Lieser Str. 4, 06120 Halle, Germany
Bernd Apelt
Helmholtz Centre for Environmental Research – UFZ, Department of Soil
System Sciences, Theodor-Lieser Str. 4, 06120 Halle, Germany
Hans-Jörg Vogel
Helmholtz Centre for Environmental Research – UFZ, Department of Soil
System Sciences, Theodor-Lieser Str. 4, 06120 Halle, Germany
Reinhard Well
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Gi-Mick Wu
Helmholtz Centre for Environmental Research – UFZ, PACE,
Permoserstraße 15, 04318 Leipzig, Germany
Steffen Schlüter
Helmholtz Centre for Environmental Research – UFZ, Department of Soil
System Sciences, Theodor-Lieser Str. 4, 06120 Halle, Germany
Related authors
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Sushmita Deb, Mikk Espenberg, Reinhard Well, Michał Bucha, Marta Jakubiak, Ülo Mander, Mariusz-Orion Jędrysek, and Dominika Lewicka-Szczebak
Biogeosciences, 22, 5535–5556, https://doi.org/10.5194/bg-22-5535-2025, https://doi.org/10.5194/bg-22-5535-2025, 2025
Short summary
Short summary
This study investigates nitrogen cycling in groundwater from an agricultural area using organic fertilizer. The research combines isotope and microbial studies to track transformations. High-nitrate samples were incubated with a low addition of 15N tracer. Results showed a shift from archaeal nitrification to bacterial denitrification under low oxygen with glucose, confirmed by isotope and microbial analyses. The findings offer insights for improving water quality and pollution management.
Hans-Jörg Vogel, Bibiana Betancur-Corredor, Leonard Franke, Sara König, Birgit Lang, Maik Lucas, Eva Rabot, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 9, 533–543, https://doi.org/10.5194/soil-9-533-2023, https://doi.org/10.5194/soil-9-533-2023, 2023
Short summary
Short summary
Our paper presents a new web-based software tool to support soil process research. It is designed to categorize publications in this field according to site and soil characteristics, as well as experimental conditions, which is of critical importance for the interpretation of the research results. The software tool is provided open access for the soil science community such that anyone can contribute to improve the contents of the literature data base.
Jan Nitzbon, Damir Gadylyaev, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike
The Cryosphere, 16, 3507–3515, https://doi.org/10.5194/tc-16-3507-2022, https://doi.org/10.5194/tc-16-3507-2022, 2022
Short summary
Short summary
The microstructure of permafrost soils contains clues to its formation and its preconditioning to future change. We used X-ray computed tomography (CT) to measure the composition of a permafrost drill core from Siberia. By combining CT with laboratory measurements, we determined the the proportions of pore ice, excess ice, minerals, organic matter, and gas contained in the core at an unprecedented resolution. Our work demonstrates the potential of CT to study permafrost properties and processes.
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022, https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Short summary
Soil structure is of central importance for soil functions. It is, however, ill defined. With the increasing availability of X-ray CT scanners, more and more soils are scanned and an undisturbed image of the soil's structure is produced. Often, a qualitative description is all that is derived from these images. We provide now a web-based Soil Structure Library where these images can be evaluated in a standardized quantitative way and can be compared to a world-wide data set.
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
Cited articles
Andersen, A. J. and Petersen, S. O.: Effects of C and N availability and
soil-water potential interactions on N2O evolution and PLFA
composition, Soil Biol. Biochem., 41, 1726–1733,
https://doi.org/10.1016/j.soilbio.2009.06.001, 2009.
Aon, M. A., Sarena, D. E., Burgos, J. L., and Cortassa, S.: Interaction
between gas exchange rates, physical and microbiological properties in soils
recently subjected to agriculture, Soil Tillage Res., 60, 163–171,
https://doi.org/10.1016/S0167-1987(01)00191-X, 2001.
Arah, J. R. M. and Smith, K. A.: Steady-state denitrification in aggregated
soil – A mathematical approach, J. Soil Sci., 40, 139–149,
https://doi.org/10.1111/j.1365-2389.1989.tb01262.x, 1989.
Arah, J. R. M. and Vinten, A. J. A.: Simplified models of anoxia and
denitrification in aggregated and simple-structured soils, Eur. J.
Soil Sci., 46, 507–517,
https://doi.org/10.1111/j.1365-2389.1995.tb01347.x, 1995.
Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., Meenken, E. D., and Ross, J. G.: Changes in relative gas diffusivity explain soil nitrous oxide flux dynamics, Soil Sci. Soc. Am. J., 77, 1496–1505, https://doi.org/10.2136/sssaj2013.04.0141, 2013.
Balaine, N., Clough, T. J., Kelliher, F. M., and van Koten, C.: Soil
aeration affects the degradation rate of the nitrification inhibitor
dicyandiamide, Soil Res., 53, 137–143, https://doi.org/10.1071/SR14162,
2015.
Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., and Meenken, E. D.:
Soil gas diffusivity controls N2O and N2 emissions and their
ratio, Soil Sc. Soc. Am. J., 80, 529–540,
https://doi.org/10.2136/sssaj2015.09.0350, 2016.
Beauchamp, E. G., Trevors, J. T., and Paul, J. W.: Carbon sources for
bacterial denitrification, in: Advances in Soil Science, Volume 10, edited
by: Stewart, B. A., Springer New York, New York, NY, 113–142, 1989.
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a
practical and powerful approach to multiple testing, J. Roy.
Stat. Soc. B Met., 57, 289–300, 1995.
Blagodatsky, S., Grote, R., Kiese, R., Werner, C., and Butterbach-Bahl, K.:
Modelling of microbial carbon and nitrogen turnover in soil with special
emphasis on N-trace gases emission, Plant Soil, 346, 297–330,
https://doi.org/10.1007/s11104-011-0821-z, 2011.
Bocking, C. R. and Blyth, M. G.: Oxygen uptake and denitrification in soil
aggregates, Acta Mech., 229, 595–612,
https://doi.org/10.1007/s00707-017-2042-x, 2018.
Braker, G. and Conrad, R.: Diversity, structure, and size of
N2O-producing microbial communities in soils-What matters for their
functioning?, Adv. Appl. Microbiol., 75, 33–70, 2011.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., and
Well, R.: Fluxes of N2 and N2O and contributing processes in
summer after grassland renewal and grassland conversion to maize cropping on
a Plaggic Anthrosol and a Histic Gleysol, Soil Biol. Biochem., 101, 6–19,
https://doi.org/10.1016/j.soilbio.2016.06.028, 2016.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. Roy. Soc. B, 368, 20130122,
https://doi.org/10.1098/rstb.2013.0122, 2013.
Cabello, P., Roldán, M. D., and Moreno-Vivián, C.: Nitrate reduction
and the nitrogen cycle in archaea, Microbiology, 150, 3527–3546,
https://doi.org/10.1099/mic.0.27303-0, 2004.
Canty, A. and Ripley, B.: boot: Bootstrap R (S-Plus) Functions, R package version 1.3-24, R Foundation for Statistical Computing, Vienna, Austria, available at: https://CRAN.R-project.org/package=boot (last access: 7 November 2020), 2019.
Clough, T. J., Sherlock, R. R., and Rolston, D. E.: A review of the movement
and fate of N2O in the subsoil, Nutr. Cycl. Agroecosys., 72,
3–11, https://doi.org/10.1007/s10705-004-7349-z, 2005.
Davidson, E. A., Verchot, L. V., Cattânio, J. H., Ackerman, I. L., and
Carvalho, J. E. M.: Effects of soil water content on soil respiration in
forests and cattle pastures of eastern amazonia, Biogeochemistry, 48, 53–69,
https://doi.org/10.1023/A:1006204113917, 2000.
Davison, A. C. and Hinkley, D. V.: Bootstrap methods and their application,
Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge
University Press, Cambridge, 1997.
Deepagoda, T., Moldrup, P., Schjonning, P., de Jonge, L. W., Kawamoto, K.,
and Komatsu, T.: Density-corrected models for gas diffusivity and air
permeability in unsaturated soil, Vadose Zone J., 10, 226–238,
https://doi.org/10.2136/vzj2009.0137, 2011.
Deepagoda, T., Jayarathne, J., Clough, T. J., Thomas, S., and Elberling, B.:
Soil-gas diffusivity and soil-moisture effects on N2O emissions from
intact pasture soils, Soil Sc. Soc. Am. J., 83, 1032–1043,
https://doi.org/10.2136/sssaj2018.10.0405, 2019.
Ebrahimi, A. and Or, D.: Dynamics of soil biogeochemical gas emissions
shaped by remolded aggregate sizes and carbon configurations under hydration
cycles, Glob. Change Biol., 24, e378–e392,
https://doi.org/10.1111/gcb.13938, 2018.
Efron, B.: Better bootstrap confidence intervals, J. Am.
Stat. Ass., 82, 171–185, https://doi.org/10.2307/2289144, 1987.
Elberling, B., Askaer, L., Jørgensen, C. J., Joensen, H. P., Kühl,
M., Glud, R. N., and Lauritsen, F. R.: Linking soil O2, CO2, and
CH4 concentrations in a wetland soil: implications for CO2 and
CH4 fluxes, Environ. Sci. Technol., 45, 3393–3399,
https://doi.org/10.1021/es103540k, 2011.
Greenwood, D. J.: The effect of oxygen concentration on the decomposition of
organic materials in soil, Plant Soil, 14, 360–376,
https://doi.org/10.1007/BF01666294, 1961.
Groffman, P. M. and Tiedje, J. M.: Denitrification hysteresis during
wetting and drying cycles in soil, Soil Sci. Soc. Am. J., 52, 1626–1629,
https://doi.org/10.2136/sssaj1988.03615995005200060022x, 1988.
Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David,
M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., and
Voytek, M. A.: Methods for measuring denitrification: Diverse approaches to
a difficult problem, Ecol. Appl., 16, 2091–2122, 2006.
Harter, J., Guzman-Bustamante, I., Kuehfuss, S., Ruser, R., Well, R., Spott,
O., Kappler, A., and Behrens, S.: Gas entrapment and microbial N2O
reduction reduce N2O emissions from a biochar-amended sandy clay loam
soil, Sci. Rep.-UK, 6, 39574, https://doi.org/10.1038/srep39574, 2016.
Hayatsu, M., Tago, K., and Saito, M.: Various players in the nitrogen cycle:
Diversity and functions of the microorganisms involved in nitrification and
denitrification, Soil Sci. Plant Nutr., 54, 33–45,
https://doi.org/10.1111/j.1747-0765.2007.00195.x, 2008.
Herbst, M., Tappe, W., Kummer, S., and Vereecken, H.: The impact of sieving
on heterotrophic respiration response to water content in loamy and sandy
topsoils, Geoderma, 272, 73–82,
https://doi.org/10.1016/j.geoderma.2016.03.002, 2016.
Højberg, O., Revsbech, N. P., and Tiedje, J. M.: Denitrification in soil
aggregates analyzed with microsensors for nitrous oxide and oxygen, Soil Sc.
Soc. Am. J., 58, 1691–1698,
https://doi.org/10.2136/sssaj1994.03615995005800060016x, 1994.
Iassonov, P. and Tuller, M.: Application of segmentation for correction of
intensity bias in X-ray computed tomography images, Vadose Zone J., 9,
187–191, 2010.
Jäger, H. J., Schmidt, S. W., Kammann, C., Grunhage, L., Muller, C., and
Hanewald, K.: The University of Giessen Free-Air Carbon dioxide Enrichment
study: Description of the experimental site and of a new enrichment system,
J. Appl. Bot.-Angew. Bot., 77, 117–127, 2003.
Jansson, P.-E. and Karlberg, L.: COUP Manual: Coupled heat and mass
transfer model for soil-plant-atmosphere systems, available at:
https://www.coupmodel.com/documentation (last access: 20 March 2020), 2011.
John, B., Yamashita, T., Ludwig, B., and Flessa, H.: Storage of organic
carbon in aggregate and density fractions of silty soils under different
types of land use, Geoderma, 128, 63–79,
https://doi.org/10.1016/j.geoderma.2004.12.013, 2005.
Jones, C. M., Stres, B., Rosenquist, M., and Hallin, S.: Phylogenetic
analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes
reveal a complex evolutionary history for denitrification, Mol. Biol. Evol.,
25, 1955–1966, https://doi.org/10.1093/molbev/msn146, 2008.
Kammann, C., Müller, C., Grünhage, L., and Jäger, H.-J.:
Elevated CO2 stimulates N2O emissions in permanent grassland, Soil
Biol. Biochem., 40, 2194–2205,
https://doi.org/10.1016/j.soilbio.2008.04.012, 2008.
Keiluweit, M., Nico, P. S., Kleber, M., and Fendorf, S.: Are oxygen
limitations under recognized regulators of organic carbon turnover in upland
soils?, Biogeochemistry, 127, 157–171,
https://doi.org/10.1007/s10533-015-0180-6, 2016.
Keiluweit, M., Gee, K., Denney, A., and Fendorf, S.: Anoxic microsites in
upland soils dominantly controlled by clay content, Soil Biol. Biochem.,
118, 42–50, https://doi.org/10.1016/j.soilbio.2017.12.002, 2018.
Klefoth, R. R., Clough, T. J., Oenema, O., and Van Groenigen, J. W.: Soil Bulk Density and Moisture Content Influence Relative Gas Diffusivity and the Reduction of Nitrogen-15 Nitrous Oxide, Vadose Zone J., 13, 8, https://doi.org/10.2136/vzj2014.07.0089, 2014.
Knowles, R.: Denitrification, Microbiol. Rev., 46, 43–70, 1982.
Kravchenko, A. N., Guber, A. K., Quigley, M. Y., Koestel, J., Gandhi, H.,
and Ostrom, N. E.: X-ray computed tomography to predict soil N2O
production via bacterial denitrification and N2O emission in
contrasting bioenergy cropping systems, GCB Bioenergy, 10, 894–909,
https://doi.org/10.1111/gcbb.12552, 2018.
Kravchenko, A. N., Guber, A. K., Razavi, B. S., Koestel, J., Quigley, M. Y.,
Robertson, G. P., and Kuzyakov, Y.: Microbial spatial footprint as a driver
of soil carbon stabilization, Nat. Commun., 10, 3121,
https://doi.org/10.1038/s41467-019-11057-4, 2019.
Kremen, A., Bear, J., Shavit, U., and Shaviv, A.: Model demonstrating the
potential for coupled nitrification denitrification in soil aggregates,
Environ. Sci. Technol., 39, 4180–4188,
https://doi.org/10.1021/es048304z, 2005.
Kuzyakov, Y.: Microbial hotspots and hot moments in soil: Concept &
review, Soil Biol. Biochem., 83, 184–199,
https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Legland, D., Arganda-Carreras, I., and Andrey, P.: MorphoLibJ: integrated
library and plugins for mathematical morphology with ImageJ, Bioinformatics,
32, 3532–3534, 2016.
Lewicka-Szczebak, D., Well, R., Giesemann, A., Rohe, L., and Wolf, U.: An
enhanced technique for automated determination of 15N signatures of
N2, (N2+N2O) and N2O in gas samples, Rapid Commun.
Mass Sp., 27, 1548–1558, https://doi.org/10.1002/rcm.6605, 2013.
Lewicka-Szczebak, D., Augustin, J., Giesemann, A., and Well, R.: Quantifying N2O reduction to N2 based on N2O isotopocules – validation with independent methods (helium incubation and 15N gas flux method), Biogeosciences, 14, 711–732, https://doi.org/10.5194/bg-14-711-2017, 2017.
Li, C. S., Frolking, S., and Frolking, T. A.: A model of nitrous oxide
evolution from soil driven by rainfall events: 1. Model structure and
sensitivity, J. Geophys. Res.-Atmos., 97, 9759–9776,
https://doi.org/10.1029/92jd00509, 1992.
Malique, F., Ke, P., Boettcher, J., Dannenmann, M., and Butterbach-Bahl, K.:
Plant and soil effects on denitrification potential in agricultural soils,
Plant Soil, 439, 459–474, https://doi.org/10.1007/s11104-019-04038-5, 2019.
Mathieu, O., Lévêque, J., Hénault, C., Milloux, M. J., Bizouard,
F., and Andreux, F.: Emissions and spatial variability of N2O, N2
and nitrous oxide mole fraction at the field scale, revealed with 15N
isotopic techniques, Soil Biol. Biochem., 38, 941–951,
https://doi.org/10.1016/j.soilbio.2005.08.010, 2006.
Millington, R. and Quirk, J. P.: Permeability of porous solids,
T. Faraday Soc., 57, 1200–1207,
https://doi.org/10.1039/tf9615701200, 1961.
Millington, R. J. and Quirk, J. M.: Transport in porous media, in: 7th Trans. Int. Congr. Soil Sci., Madison, WI, 14–21 August 1960, Elsevier, Amsterdam, 97–106, 1960.
Moldrup, P., Olesen, T., Yamaguchi, T., Schjønning, P., and Rolston, D.
E.: Modeling diffusion and reaction in soils: IX. The
Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed
soil, Soil Science, 164, 542–551, 1999.
Moldrup, P., Olesen, T., Gamst, J., Schjonning, P., Yamaguchi, T., and
Rolston, D. E.: Predicting the gas diffusion coefficient in repacked soil:
Water-induced linear reduction model, Soil Sc. Soc. Am. J., 64, 1588–1594,
https://doi.org/10.2136/sssaj2000.6451588x, 2000.
Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P., and Rolston, D. E.:
Tortuosity, diffusivity, and permeability in the soil liquid and gaseous
phases, Soil Sc. Soc. Am. J., 65, 613–623,
https://doi.org/10.2136/sssaj2001.653613x, 2001.
Morley, N. J., Richardson, D. J., and Baggs, E. M.: Substrate induced
denitrification over or under estimates shifts in soil N2 N2O
ratios, Plos One, 9, 6, https://doi.org/10.1371/journal.pone.0108144, 2014.
Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, A., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke, J.-A., Thomsen, I. K., and Chenu, C.: The moisture response of soil heterotrophic respiration: interaction with soil properties, Biogeosciences, 9, 1173–1182, https://doi.org/10.5194/bg-9-1173-2012, 2012.
Müller, C., Stevens, R. J., Laughlin, R. J., and Jäger, H. J.:
Microbial processes and the site of N2O production in a temperate
grassland soil, Soil Biol. Biochem., 36, 453–461,
https://doi.org/10.1016/j.soilbio.2003.08.027, 2004.
Müller, C. and Clough, T. J.: Advances in understanding nitrogen flows
and transformations: gaps and research pathways, J. Agric. Sci., 152,
S34–S44, https://doi.org/10.1017/s0021859613000610, 2014.
Nengsih, T. A., Bertrand, F., Maumy-Bertrand, M., and Meyer, N.: Determining
the number of components in PLS regression on incomplete data set, Stat.
Appl. Genet. Mol. Biol., 18, 28, https://doi.org/10.1515/sagmb-2018-0059,
2019.
Otsu, N.: A threshold selection method from gray-level histograms,
Automatica, 11, 23–27, 1975.
Philippot, L., Hallin, S., and Schloter, M.:
Ecology of denitrifying prokaryotes in agricultural soil, Adv. Agronomy, 96, 249–305, https://doi.org/10.1016/S0065-2113(07)96003-4, 2007.
Porre, R. J., van Groenigen, J. W., De Deyn, G. B., de Goede, R. G. M., and
Lubbers, I. M.: Exploring the relationship between soil mesofauna, soil
structure and N2O emissions, Soil Biol. Biochem., 96, 55–64,
https://doi.org/10.1016/j.soilbio.2016.01.018, 2016.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 27 November 2020), 2018.
Rabot, E., Lacoste, M., Henault, C., and Cousin, I.: Using X-ray computed
tomography to describe the dynamics of nitrous oxide emissions during soil
drying, Vadose Zone J., 14, 10, https://doi.org/10.2136/vzj2014.12.0177,
2015.
Regan, K., Kammann, C., Hartung, K., Lenhart, K., Müller, C., Philippot,
L., Kandeler, E., and Marhan, S.: Can differences in microbial abundances
help explain enhanced N2O emissions in a permanent grassland under
elevated atmospheric CO2?, Glob. Change Biol., 17, 3176–3186,
https://doi.org/10.1111/j.1365-2486.2011.02470.x, 2011.
Reichstein, M. and Beer, C.: Soil respiration across scales: The importance
of a model-data integration framework for data interpretation, J.
Plant Nutr. Soil Sci., 171, 344–354,
https://doi.org/10.1002/jpln.200700075, 2008.
Resurreccion, A. C., Moldrup, P., Kawamoto, K., Hamamoto, S., Rolston, D.
E., and Komatsu, T.: Hierarchical, bimodal model for gas diffusivity in
aggregated, unsaturated soils, Soil Sc. Soc. Am. J., 74, 481–491,
https://doi.org/10.2136/sssaj2009.0055, 2010.
Ryan, M. G. and Law, B. E.: Interpreting, measuring, and modeling soil
respiration, Biogeochemistry, 73, 3–27,
https://doi.org/10.1007/s10533-004-5167-7, 2005.
Scheer, C., Fuchs, K., Pelster, D. E., and Butterbach-Bahl, K.: Estimating
global terrestrial denitrification from measured
N2O : (N2O+N2) product ratios, Curr. Opin.
Env. Sust., 47, 72–80,
https://doi.org/10.1016/j.cosust.2020.07.005, 2020.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,
Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., and Schmid, B.: Fiji:
an open-source platform for biological-image analysis, Nat. Methods, 9,
676–682, 2012.
Schlüter, S., Sheppard, A., Brown, K., and Wildenschild, D.: Image
processing of multiphase images obtained via X-ray microtomography: A
review, Water Resour. Res., 50, 3615–3639,
https://doi.org/10.1002/2014wr015256, 2014.
Schlüter, S., Leuther, F., Vogler, S., and Vogel, H.-J.: X-ray microtomography analysis of soil structure deformation caused by centrifugation, Solid Earth, 7, 129–140, https://doi.org/10.5194/se-7-129-2016, 2016.
Schlüter, S., Zawallich, J., Vogel, H.-J., and Dörsch, P.: Physical constraints for respiration in microbial hotspots in soil and their importance for denitrification, Biogeosciences, 16, 3665–3678, https://doi.org/10.5194/bg-16-3665-2019, 2019.
Senbayram, M., Chen, R., Budai, A., Bakken, L., and Dittert, K.: N2O
emission and the N2O/(N2O+N2) product ratio of
denitrification as controlled by available carbon substrates and nitrate
concentrations, Agr. Ecosys. Env., 147, 4–12,
https://doi.org/10.1016/j.agee.2011.06.022, 2012.
Sexstone, A. J., Revsbech, N. P., Parkin, T. B., and Tiedje, J. M.: Direct
measurement of oxygen profiles and denitrification rates in soil aggregates,
Soil Sc. Soc. Am. J., 49, 645–651, 1985.
Shoun, H., Kim, D.-H., Uchiyama, H., and Sugiyama, J.: Denitrification by
fungi, FEMS Microbiol. Lett., 94, 277–281, 1992.
Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey,
A.: Exchange of greenhouse gases between soil and atmosphere: interactions
of soil physical factors and biological processes, Eur. J. Soil Sci., 54, 779–791, https://doi.org/10.1046/j.1351-0754.2003.0567.x, 2003.
Spott, O., Russow, R., Apelt, B., and Stange, C. F.: A 15N-aided
artificial atmosphere gas flow technique for online determination of soil
N2 release using the zeolite Köstrolith SX6®, Rapid
Commun. Mass Sp., 20, 3267–3274, https://doi.org/10.1002/rcm.2722, 2006.
Surey, R., Lippold, E., Heilek, S., Sauheitl, L., Henjes, S., Horn, M. A.,
Mueller, C. W., Merbach, I., Kaiser, K., Böttcher, J., and Mikutta, R.:
Differences in labile soil organic matter explain potential denitrification
and denitrifying communities in a long-term fertilization experiment, Appl.
Soil. Ecol., 153, 103630, https://doi.org/10.1016/j.apsoil.2020.103630,
2020.
Syakila, A. and Kroeze, C.: The global nitrous oxide budget revisited,
Greenhouse Gas Measurement and Management, 1, 17–26,
https://doi.org/10.3763/ghgmm.2010.0007, 2011.
Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C.,
Gressent, A., Koffi, E. N., Chipperfield, M. P., Winiwarter, W., Davidson,
E. A., Tian, H., and Canadell, J. G.: Acceleration of global N2O
emissions seen from two decades of atmospheric inversion, Nat. Clim.
Change, 9, 993–998, https://doi.org/10.1038/s41558-019-0613-7, 2019.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S.,
Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins,
J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B.,
Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara,
T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G.,
Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J.,
Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A
comprehensive quantification of global nitrous oxide sources and sinks,
Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Tiedje, J. M.: Ecology of denitrification and dissimilatory nitrate
reduction to ammonium, in: Environmental Microbiology of Anaerobes, edited
by: Zehnder, A. J. B., John Wiley and Sons, N.Y., 179–244, 1988.
Ussiri, D. and Lal, R.: Soil emission of nitrous oxide and its mitigation,
Springer, the Netherlands, 2013.
van Cleemput, O.: Subsoils: chemo- and biological denitrification, N2O
and N2 emissions, Nutr. Cycl. Agroecosys., 52, 187–194,
https://doi.org/10.1023/a:1009728125678, 1998.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
New York, 2016.
Wiegmann, A. and Bube, K. P.: The explicit-jump immersed interface method:
Finite difference methods for PDEs with piecewise smooth solutions, SIAM J.
Num. Anal., 37, 827–862, https://doi.org/10.1137/S0036142997328664, 2000.
Wiegmann, A. and Zemitis, A.: EJ-HEAT: A fast explicit jump harmonic
averaging solver for the effective heat conductivity of composite materials,
Berichte des Fraunhofer ITWM, Technical report 94, 1–21, 2006.
Wolodzko, T.: Kernelboot: Smoothed bootstrap and random generation from
kernel densities, available at: https://CRAN.R-project.org/package=kernelboot, last access: 7 November 2020.
Zumft, W. G.: Cell biology and molecular basis of denitrification,
Microbiol. Mol. Biol. Rev., 61, 533–616, 1997.
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for...
Altmetrics
Final-revised paper
Preprint