Articles | Volume 18, issue 4
https://doi.org/10.5194/bg-18-1511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Man Zhao
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, KU Leuven, 3001
Leuven, Belgium
Liesbet Jacobs
Department of Earth and Environmental Sciences, KU Leuven, 3001
Leuven, Belgium
Steven Bouillon
Department of Earth and Environmental Sciences, KU Leuven, 3001
Leuven, Belgium
Gerard Govers
Department of Earth and Environmental Sciences, KU Leuven, 3001
Leuven, Belgium
Related authors
No articles found.
Mona Huyzentruyt, Maarten Wens, Gregory Scott Fivash, David C. Walters, Steven Bouillon, Joell A. Carr, Glenn C. Guntenspergen, Matthew L. Kirwan, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3293, https://doi.org/10.5194/egusphere-2025-3293, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Vegetated environments from forests to peatlands store carbon in the soil, which mitigates climate change. But which environment does this best? In this study, we show how the levees of tidal marshes are one of the most effective carbon sequestering environments in the world. This is because soil water-logging and high salinity inhibits carbon degradation while the levee fosters fast vegetation growth, complimented also by the preferential settlement of carbon-rich sediments on the marsh levee.
Zita Kelemen, David P. Gillikin, and Steven Bouillon
Biogeosciences, 22, 2621–2635, https://doi.org/10.5194/bg-22-2621-2025, https://doi.org/10.5194/bg-22-2621-2025, 2025
Short summary
Short summary
We analysed the C and O stable isotope composition (δ13C, δ18O) across the growth axis of museum-archived and recent Chambardia wissmanni shells from the Oubangui River (Congo basin) covering sections of the past ~120 years. Recent shells showed a much wider range of δ18O values compared to historical specimens, consistent with the suggestion that dry periods in the upper Congo basin have become more extreme in recent times and highlighting the potential of this species to reconstruct hydroclimatic conditions.
Vao Fenotiana Razanamahandry, Alberto Vieira Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Biogeosciences, 22, 2403–2424, https://doi.org/10.5194/bg-22-2403-2025, https://doi.org/10.5194/bg-22-2403-2025, 2025
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the Lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation was the main source of dissolved OC, while phytoplankton contributed to the particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
Biogeosciences, 22, 1427–1446, https://doi.org/10.5194/bg-22-1427-2025, https://doi.org/10.5194/bg-22-1427-2025, 2025
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions as long as more data to constrain model parameters are not available.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Cédric Morana, Steven Bouillon, Vimac Nolla-Ardèvol, Fleur A. E. Roland, William Okello, Jean-Pierre Descy, Angela Nankabirwa, Erina Nabafu, Dirk Springael, and Alberto V. Borges
Biogeosciences, 17, 5209–5221, https://doi.org/10.5194/bg-17-5209-2020, https://doi.org/10.5194/bg-17-5209-2020, 2020
Short summary
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
Cited articles
Angst, G., Mueller, C. W., Prater, I., Angst, Š., Frouz, J.,
Jílková, V., Peterse, F., and Nierop, K. G. J.: Earthworms act as
biochemical reactors to convert labile plant compounds into stabilized soil
microbial necromass, Commun. Biol., 2, 1–7,
https://doi.org/10.1038/s42003-019-0684-z, 2019.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S.
C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of
biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol.
Environ., 9, 53–60, https://doi.org/10.1890/100014, 2011.
Berggren, M., Laudon, H., Jonsson, A., and Jansson, M.: Nutrient constraints
on metabolism affect the temperature regulation of aquatic bacterial growth
efficiency, Microb. Ecol., 60, 894–902,
https://doi.org/10.1007/s00248-010-9751-1, 2010.
Berggren, M., Lapierre, J. F., and Del Giorgio, P. A.: Magnitude and
regulation of bacterioplankton respiratory quotient across freshwater
environmental gradients, ISME J., 6, 984–993,
https://doi.org/10.1038/ismej.2011.157, 2012.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, Proc. Natl. Acad.
Sci., 108, 19473–19481, https://doi.org/10.1073/pnas.1017982108, 2011.
Broothaerts, N., Verstraeten, G., Kasse, C., Bohncke, S., Notebaert, B., and
Vandenberghe, J.: From natural to human-dominated floodplain geoecology – A
Holocene perspective for the Dijle catchment, Belgium, Anthropocene, 8,
46–58, https://doi.org/10.1016/j.ancene.2014.12.001, 2014.
Butman, D. and Raymond, P. A.: Significant efflux of carbon dioxide from
streams and rivers in the United States, Nat. Geosci., 4, 839–842,
https://doi.org/10.1038/ngeo1294, 2011.
Cleveland, C. C., Nemergut, D. R., Schmidt, S. K., and Townsend, A. R.:
Increases in soil respiration following labile carbon additions linked to
rapid shifts in soil microbial community composition, Biogeochemistry,
82, 229–240, https://doi.org/10.1007/s10533-006-9065-z, 2007.
Cole, J. J. and Caraco, N. F.: Carbon in catchments: Connecting terrestrial
carbon losses with aquatic metabolism, Mar. Freshw. Res., 52, 101–110,
https://doi.org/10.1071/mf00084, 2001.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 172–185,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Dodds, W. K. and Cole, J. J.: Expanding the concept of trophic state in
aquatic ecosystems: It's not just the autotrophs, Aquat. Sci., 69,
427–439, https://doi.org/10.1007/s00027-007-0922-1, 2007.
FAO: World Reference Base for Soil Resources, World Soil Resources Reports
84, Food and Agriculture Organization of the United Nations, Rome, https://doi.org/10.1108/09504121011021959, 1998.
Gajic, B., Dugalic, G., and Djurovic, N.: Comparison of soil organic matter
content, aggregate composition and water stability of gleyic fluvisol from
adjacent forest and cultivated areas, Agron. Res., 4, 499–508, 2006.
Gillabel, J., Cebrian-Lopez, B., Six, J., and Merckx, R.: Experimental
evidence for the attenuating effect of SOM protection on temperature
sensitivity of SOM decomposition, Glob. Chang. Biol., 16, 2789–2798,
https://doi.org/10.1111/j.1365-2486.2009.02132.x, 2010.
Govers, G.: Rill Erosion on Arable Land in Central Belgium: Rates, Controls
and Predictability, Catena, 18, 133–155,
https://doi.org/10.1016/0341-8162(91)90013-n, 1991.
Göl, C.: The effects of land use change on soil properties and organic
carbon at Dagdami river catchment in Turkey, J. Environ. Biol., 30,
825–830, 2009.
Gudasz, C., Sobek, S., Bastviken, D., Koehler, B., and Tranvik, L. J.:
Temperature sensitivity of organic carbon mineralization in contrasting lake
sediments, J. Geophys. Res.-Biogeosci., 120, 1215–1225,
https://doi.org/10.1002/2015jg002928, 2015.
Guenet, B., Danger, M., Harrault, L., Allard, B., Jauset-Alcala, M.,
Bardoux, G., Benest, D., Abbadie, L., and Lacroix, G.: Fast mineralization of
land-born C in inland waters: First experimental evidences of aquatic
priming effect, Hydrobiologia, 721, 35–44,
https://doi.org/10.1007/s10750-013-1635-1, 2014.
Hu, Y., Xiang, D., Veresoglou, S. D., Chen, F., Chen, Y., Hao, Z., Zhang, X.,
and Chen, B.: Soil organic carbon and soil structure are driving microbial
abundance and community composition across the arid and semi-arid grasslands
in northern China, Soil Biol. Biochem., 77, 51–57,
https://doi.org/10.1016/j.soilbio.2014.06.014, 2014.
Kling, G. W.: Land-water interactions: the influence of terrestrial
diversity on aquatic ecosystems, in: Arctic and Alpine Biodiversity:
Patterns, Causes and Ecosystem Consequences, edited by: Chapin, F. S. and
Körner, C., Springer, Berlin and Heidelberg, Germany, 297–310,
https://doi.org/10.1007/978-3-642-78966-3, 1995.
Kögel-Knabner, I.: The macromolecular organic composition of plant and
microbial residues as inputs to soil organic matter, Soil Biol. Biochem.,
34, 139–162, https://doi.org/10.1016/s0038-0717(01)00158-4, 2002.
Koehler, B., Von Wachenfeldt, E., Kothawala, D., and Tranvik, L. J.:
Reactivity continuum of dissolved organic carbon decomposition in lake
water, J. Geophys. Res.-Biogeosci., 117, G01024,
https://doi.org/10.1029/2011jg001793, 2012.
Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29,
437–450, https://doi.org/10.1016/S0160-4120(02)00192-7, 2003.
Lapierre, J. F., Guillemette, F., Berggren, M., and Del Giorgio, P. A.:
Increases in terrestrially derived carbon stimulate organic carbon
processing and CO2 emissions in boreal aquatic ecosystems, Nat.
Commun., 4, 1–7, https://doi.org/10.1038/ncomms3972, 2013.
Le Bissonnais, Y. L.: Aggregate stability and assessment of soil
crustability and erodibility: I. Theory and methodology, Eur. J. Soil Sci.,
47, 425–437, https://doi.org/10.1111/j.1365-2389.1996.tb01843.x, 1996.
Lennon, J. T. and Pfaff, L. E.: Source and supply of terrestrial organic
matter affects aquatic microbial metabolism, Aquat. Microb. Ecol., 39,
107–119, https://doi.org/10.3354/ame039107, 2005.
Li, J., Wu, X., Gebremikael, M. T., Wu, H., Cai, D., Wang, B., Li, B.,
Zhang, J., Li, Y., and Xi, J.: Response of soil organic carbon fractions,
microbial community composition and carbon mineralization to high-input
fertilizer practices under an intensive agricultural system, PLoS One,
13, e0195144, https://doi.org/10.1371/journal.pone.0195144, 2018.
Liang, X., Yuan, J., Yang, E., and Meng, J.: Responses of soil organic carbon
decomposition and microbial community to the addition of plant residues with
different C : N ratio, Eur. J. Soil Biol., 82, 50–55,
https://doi.org/10.1016/j.ejsobi.2017.08.005, 2017.
Marín-Spiotta, E., Gruley, K. E., Crawford, J., Atkinson, E. E., Miesel, J.
R., Greene, S., Cardona-Correa, C., and Spencer, R. G.: Paradigm shifts in soil
organic matter research affect interpretations of aquatic carbon cycling:
transcending disciplinary and ecosystem boundaries, Biogeochemistry,
117, 279–297, https://doi.org/10.1007/s10533-013-9949-7, 2014.
Marwick, T. R., Tamooh, F., Teodoru, C. R., Borges, A. V, Darchambeau, F.,
and Bouillon, S.: The age of river-transported carbon: a global perspective,
Global Biogeochem. Cy., 29, 122–137,
https://doi.org/10.1002/2014gb004911, 2015.
Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J.
I., Quay, P. D., Richey, J. E., and Brown, T. A.: Young organic matter as a
source of carbon dioxide outgassing from Amazonian rivers, Nature,
436, 538–541, https://doi.org/10.1038/nature03880, 2005.
McCallister, S. L. and Del Giorgio, P. A.: Evidence for the respiration of
ancient terrestrial organic C in northern temperate lakes and streams, Proc.
Natl. Acad. Sci., 109, 16963–16968,
https://doi.org/10.1073/pnas.1207305109, 2012.
Raymond, P. A. and Bauer, J. E.: Riverine export of aged terrestrial organic
matter to the North Atlantic Ocean, Nature, 409, 497–500,
https://doi.org/10.1038/35054034, 2001.
Richardson, D. C., Newbold, J. D., Aufdenkampe, A. K., Taylor, P. G., and
Kaplan, L. A.: Measuring heterotrophic respiration rates of suspended
particulate organic carbon from stream ecosystems, Limnol. Oceanogr., 11, 247–261, https://doi.org/10.4319/lom.2013.11.247, 2013.
Rosenheim, B. E., Roe, K. M., Roberts, B. J., Kolker, A. S., Allison, M. A.,
and Johannesson, K. H.: River discharge influences on particulate organic
carbon age structure in the Mississippi/Atchafalaya River System, Global
Biogeochem. Cy., 27, 154–166, https://doi.org/10.1002/gbc.20018,
2013.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature,
478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Spencer, R. G. M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K.,
Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu, A. M.,
Wabakanghanzi, J. N., and Six, J.: Photochemical degradation of dissolved
organic matter and dissolved lignin phenols from the Congo River, J.
Geophys. Res.-Biogeosci., 114, G03010, https://doi.org/10.1029/2009jg000968,
2009.
Takken, I., Beuselinck, L., Nachtergaele, J., Govers, G., Poesen, J., and
Degraer, G.: Spatial evaluation of a physically-based distributed erosion
model (LISEM), Catena, 37, 431–447,
https://doi.org/10.1016/s0341-8162(99)00031-4, 1999.
Tian, Q., Yang, X., Wang, X., Liao, C., Li, Q., and Wang, M.: Microbial
community mediated response of organic carbon mineralization to labile
carbon and nitrogen addition in topsoil and subsoil, Biogeochemistry,
128, 125–139, https://doi.org/10.1007/s10533-016-0198-4, 2016.
Trumbore, S.: Age of soil organic matter and soil respiration: Radiocarbon
constraints on belowground C dynamics, Ecol. Appl., 10, 399–411,
https://doi.org/10.1890/1051-0761(2000)010[0399:aosoma]2.0.co;2, 2000.
Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C.,
Dittmar, T., Yager, P. L., Krusche, A. V., and Richey, J. E.: Degradation of
terrestrially derived macromolecules in the Amazon River, Nat. Geosci.,
6, 530–533, https://doi.org/10.1038/ngeo1817, 2013.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where Carbon Goes When Water Flows: Carbon
Cycling across the Aquatic Continuum, Front. Mar. Sci., 4, 7,
https://doi.org/10.3389/fmars.2017.00007, 2017.
Ward, N. D., Sawakuchi, H. O., Neu, V., Less, D. F. S., Valerio, A. M.,
Cunha, A. C., Kampel, M., Bianchi, T. S., Krusche, A. V., Richey, J. E., and
Keil, R. G.: Velocity-amplified microbial respiration rates in the lower
Amazon River, Limnol. Oceanogr. Lett., 3, 265–274,
https://doi.org/10.1002/lol2.10062, 2018.
Ward, N. D., Sawakuchi, H. O., Richey, J. E., Keil, R. G., and Bianchi, T.
S.: Enhanced Aquatic Respiration Associated With Mixing of Clearwater
Tributary and Turbid Amazon River Waters, Front. Earth Sci., 7, 1–6,
https://doi.org/10.3389/feart.2019.00101, 2019a.
Ward, N. D., Morrison, E. S., Liu, Y., Rivas-Ubach, A., Osborne, T. Z.,
Ogram, A. V., and Bianchi, T. S.: Marine microbial community responses
related to wetland carbon mobilization in the coastal zone, Limnol.
Oceanogr. Lett., 4, 25–33, https://doi.org/10.1002/lol2.10101, 2019b.
Weyhenmeyer, G. A., Fröberg, M., Karltun, E., Khalili, M., Kothawala,
D., Temnerud, J., and Tranvik, L. J.: Selective decay of terrestrial organic
carbon during transport from land to sea, Glob. Change Biol., 18,
349–355, https://doi.org/10.1111/j.1365-2486.2011.02544.x, 2012.
Wilkinson, G. M., Pace, M. L., and Cole, J. J.: Terrestrial dominance of
organic matter in north temperate lakes, Global Biogeochem. Cy., 27,
43–51, https://doi.org/10.1029/2012gb004453, 2013.
Wu, X., Wu, L., Liu, Y., Zhang, P., Li, Q., Zhou, J., Hess, N. J., Hazen, T.
C., Yang, W., and Chakraborty, R.: Microbial interactions with dissolved
organic matter drive carbon dynamics and community succession, Front.
Microbiol., 9, 1234, https://doi.org/10.3389/fmicb.2018.01234, 2018.
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
We investigate the relative importance of two individual factors (hydrodynamical disturbance and...
Altmetrics
Final-revised paper
Preprint