Articles | Volume 18, issue 4
https://doi.org/10.5194/bg-18-1525-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1525-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Factors controlling the productivity of tropical Andean forests: climate and soil are more important than tree diversity
Plant Ecology and Ecosystems Research, University of Göttingen,
Untere Karspüle 2, 37073 Göttingen, Germany
Centre for Biodiversity and Sustainable Land Use, University of
Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Christoph Leuschner
Plant Ecology and Ecosystems Research, University of Göttingen,
Untere Karspüle 2, 37073 Göttingen, Germany
Centre for Biodiversity and Sustainable Land Use, University of
Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Related authors
Mateus Dantas de Paula, Tatiana Reichert, Laynara F. Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
Biogeosciences, 22, 2707–2732, https://doi.org/10.5194/bg-22-2707-2025, https://doi.org/10.5194/bg-22-2707-2025, 2025
Short summary
Short summary
This study explores how plant roots with different forms and functions rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root–fungal interactions should be considered in vegetation models.
Mateus Dantas de Paula, Tatiana Reichert, Laynara F. Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
Biogeosciences, 22, 2707–2732, https://doi.org/10.5194/bg-22-2707-2025, https://doi.org/10.5194/bg-22-2707-2025, 2025
Short summary
Short summary
This study explores how plant roots with different forms and functions rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root–fungal interactions should be considered in vegetation models.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Cited articles
Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jiménez, E., Navarrete, D., Almeida, S., Costa, A. C. L., Salinas, N., Phillips, O. L., Anderson, L. O., Alvarez, E., Baker, T. R., Goncalvez, P. H., Huamán-Ovalle, J., Mamani-Solórzano, M., Meir, P., Monteagudo, A., Patiño, S., Peñuela, M. C., Prieto, A., Quesada, C. A., Rozas-Dávila, A., Rudas, A., Silva Jr., J. A., and Vásquez, R.: Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils, Biogeosciences, 6, 2759–2778, https://doi.org/10.5194/bg-6-2759-2009, 2009.
Arbuckle, J. S.: IBM SPSS Amos 24 User's Guide, IBM, Chicago, USA, 2016.
Aiba, S., Takyu, M., and Kitayama, K.: Dynamics, productivity and species
richness of tropical rainforests along elevational and edaphic gradients on
Mount Kinabalu, Borneo, Ecol. Res., 20, 279–286, 2005.
Ashton, P. S.: Floristic zonation of tree communities on wet tropical
mountains revisited, Perspect. Plant Ecol., 6, 87–104,
https://doi.org/10.1078/1433-8319-00044, 2003.
Banin, L., Lewis, S. L., Lopez-Gonzalez, G., Baker, T. R., Quesada, C. A.,
Chao, K. J., Burslem, D. F. R. P., Nilus, R., Salim, K. A., Keeling, H. C.,
Tan, S., Davies, S. J., Mendoza, A. M., Vásquez, R., Lloyd, J., Neill,
D. A., Pitman, N., and Phillips, O. L.: Tropical forest wood production: a
cross-continental comparison, J. Ecol., 104, 1025–1037,
https://doi.org/10.1111/1365-2745.12263, 2014.
Bendix, J., Rollenbeck, R., Fabian, P., Emck, P., Richter, M., and Beck, E.:
Climate variability, in: Gradients in a tropical mountain ecosystem of
Ecuador, edited by: Beck, E., Kottke, I., Bendix, J., Makeschin, F., and
Mosandl, R., Springer, Berlin and Heidelberg, Germany, 281–290, 2008.
Benner, J., Vitousek, P. M., and Ostertag, R.: Nutrient cycling and nutrient
limitation in tropical montane cloud forests, in: Tropical montane cloud
forests: science for conservation and management, edited by: Bruijnzeel, L.
A., Scatena, F. N., and Hamilton, L., Cambidge University Press, Cambidge, UK, 90–100,
2010.
Bruijnzeel, L. A. and Veneklaas, E. J.: Climatic conditions and tropical
montane forest productivity: the fog has not lifted yet, Ecology, 79, 3–9,
1998.
Bruijnzeel, L. A., Scatena, F. N., and Hamilton, L. S.: Tropical
montane cloud forests: science for conservation and management, Cambridge
University Press, Cambridge, UK, 2010.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D.,
Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson,
B. W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry
and improved estimation of carbon stocks and balance in tropical forests,
Oecologia, 145, 87–99, https://doi.org/10.1007/s00442-005-0100-x, 2005.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne,
A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12,
351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Chen, Y., Wright, S. J., Muller-Landau, H. C., Hubbell, S. P., Wang, Y., and
Yu, S.: Positive effects of neighborhood complementarity on tree growth in a
Neotropical forest, Ecology, 97, 776–785,
https://doi.org/10.1890/15-0625.1, 2016.
Chisholm, R. A., Muller-Landau, H. C., Abdul Rahman, K., Bebber, D. P., Bin,
Y., Bohlman, S. A., Bourg, N. A., Brinks, J., Bunyavejchewin, S., Butt, N.,
Cao, H., Cao, M., Cárdenas, D., Chang, L.-W., Chiang, J.-M., Chuyong,
G., Condit, R., Dattaraja, H. S., Davies, S., Duque, A., Fletcher, C.,
Gunatilleke, N., Gunatilleke, S., Hao, Z., Harrison, R. D., Howe, R., Hsieh,
C.-F., Hubbell, S. P., Itoh, A., Kenfack, D., Kiratiprayoon, S., Larson,
A. J., Lian, J., Lin, D., Liu, H., Lutz, J. A., Ma, K., Malhi, Y., McMahon,
S., McShea, W., Meegaskumbura, M., Mohd. Razman, S., Morecroft, M. D., Nytch,
C. J., Oliveira, A., Parker, G. G., Pulla, S., Punchi-Manage, R.,
Romero-Saltos, H., Sang, W., Schurman, J., Su, S.-H., Sukumar, R., Sun,
I.-F., Suresh, H. S., Tan, S., Thomas, D., Thomas, S., Thompson, J.,
Valencia, R., Wolf, A., Yap, S., Ye, W., Yuan, Z., and Zimmerman, J. K.:
Scale-dependent relationships between tree species richness and ecosystem
function in forests, J. Ecol., 101, 1214–1224,
https://doi.org/10.1111/1365-2745.12132, 2013.
Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S.,
Bustamante, M. M., Chuyong, G., Dobrowski, S. Z., Grierson, P., Harms, K.
E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed, S. C.,
Sierra, C. A., Silver, W. L., Tanner, E. V. J., and Wieder, W. R.:
Relationships among net primary productivity, nutrients and climate in
tropical rain forest: a pan-tropical analysis, Ecol. Lett., 14, 939–947,
https://doi.org/10.1111/j.1461-0248.2011.01658.x, 2011.
Dalling, J. W., Heineman, K., Lopez, O. R., Wright, S. J., and Turner, B.
L.: Nutrient availability in tropical rain forests: the paradigm of
phosphorus limitation, in: Tropical Tree Physiology, edited by: Goldstein, G.
and Santiago, L. S., Springer, Cham, UK, 261–273, 2016a.
Dalling, J. W., Heineman, K., González, G., and Ostertag, R.:
Geographic, environmental and biotic sources of variation in the nutrient
relations of tropical montane forests, J. Trop. Ecol., 32, 368–383,
https://doi.org/10.1017/S0266467415000619, 2016b.
Doughty, C. E., Goldsmith, G. R., Raab, N., Girardin, C. A. J.,
Farfan-Amezquita, F., Huaraca-Huasco, W., Silva-Espejo, J. E.,
Araujo-Murakami, A., da Costa, A. C. L., Rocha, W., Galbraith, D., Meir, P.,
Metcalfe, D. B., and Malhi, Y.: What controls variation in carbon use
efficiency among Amazonian tropical forests?, Biotropica, 50, 16–25,
https://doi.org/10.1111/btp.12504, 2018.
Fahey, T. J., Sherman, R. E., and Tanner, E.: Tropical montane cloud forest:
environmental drivers of vegetation structure and ecosystem function, J. Trop.
Ecol., 32 355–367, https://doi.org/10.1017/S0266467415000176, 2015.
Fei, S., Jo, I., Guo, Q., Wardle, D. A., Fang, J., Chen, A., Oswalt, C. M.,
and Brockerhoff, E. G.: Impacts of climate on the biodiversity-productivity
relationship in natural forests, Nat. Commun., 9, 1–7,
https://doi.org/10.1038/s41467-018-07880-w, 2018.
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N.,
Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S.,
Eguiguren Velepucha, P., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado
Negret, B., Vaz, M., and Poorter, L.: Does functional trait diversity predict
above-ground biomass and productivity of tropical forests? Testing three
alternative hypotheses, J. Ecol., 103, 191–201,
https://doi.org/10.1111/1365-2745.12346, 2015.
Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J.,
Meir, P., Silva-Espejo, J. E., and Huaraca Huasco, W.: Nutrient limitation
in rainforests and cloud forests along a 3000-m elevation gradient in the
Peruvian Andes, Oecologia, 172, 889–902,
https://doi.org/10.1007/s00442-012-2522-6, 2013.
Fortunel, C., Lasky, J. R., Uriarte, M., Valencia, R., Wright, S. J., Garwood,
N. C., and Kraft, N. J. B.: Topography and neighborhood crowding can interact to
shape species growth and distribution in a diverse Amazonian forest,
Ecology, 99, 2272–2283, https://doi.org/10.1002/ecy.2441, 2018.
Fyllas, N. M., Bentley, L. P., Shenkin, A., Asner, G. P., Atkin, O. K.,
Díaz, S., Enquist, B. J., Farfan-Rios, W., Gloor, E., Guerrieri, R.,
Huasco, W. H., Ishida, Y., Martin, R. E., Meir, P., Phillips, O., Salinas, N.,
Silman, M., Weerasinghe, L. K., Zaragoza-Castells, J., and Malhi, Y.: Solar
radiation and functional traits explain the decline of forest primary
productivity along a tropical elevation gradient, Ecol. Lett., 20, 730–740,
https://doi.org/10.1111/ele.12771, 2017.
Girardin, C. A. J., Malhi, Y., Aragão, L. E. O. C., Mamani, M., Huaraca
Huasco, W., Durand, L., Feeley, K. J., Rapp, J., Silva-Espejo, J. E., Silman,
M., Salinas, N., and Whittaker, R. J.: Net primary productivity allocation
and cycling of carbonalong a tropical forest elevational transect in the
Peruvian An-des, Glob. Change Biol., 16, 3176–3192,
https://doi.org/10.1111/j.1365-2486.2010.02235.x, 2010.
Girardin, C. A. J., Malhi, Y., Feeley, K. J., Rapp, J. M., Silman, M. R., Meir,
P., Huaraca Huarasco, W., Salinas, N., Mamani, M., Silva-Espejo, J. E.,
Garcia Cabrera, K., Farfan Rios, W., Metcalfe, D. B., Doughty, C. E., and
Aragão, L.: Seasonality of above-ground net primary productivity along
an Andean altitudinal transect in Peru, J. Trop. Ecol., 30, 503–519,
https://doi.org/10.1017/S0266467414000443, 2014.
Gotelli, N. J. and Colwell, R. K.: Quantifying biodiversity: procedures and
pitfalls in the measurement and comparison of species richness, Ecol.
Lett., 4, 379–391, https://doi.org/10.1046/j.1461-0248.2001.00230.x, 2001.
Graefe, S., Hertel, D., and Leuschner, C.: Estimating Fine Root Turnover in
Tropical Forests along an Elevational Transect using Minirhizotrons,
Biotropica, 40, 536–542, https://doi.org/10.1111/j.1744-7429.2008.00419.x,
2008.
Hoeber, S., Leuschner, C., Köhler, L., Arias-Aguilar, D., and Schuldt, B.:
The importance of hydraulic conductivity and wood density to growth
performance in eight tree species from a tropical semi-dry climate, Forest
Ecol. Manag., 300, 126–136,
https://doi.org/10.1016/j.foreco.2014.06.039, 2014.
Hofhansl, F., Schnecker, J., Singer, G., and Wanek, W.: New insights into
mechanisms driving carbon allocation in tropical forests, New Phytol., 205,
137–146, https://doi.org/10.1111/nph.13007, 2015.
Homeier, J., Breckle, S.-W., Günter, S., Rollenbeck, R. T., and Leuschner,
C.: Tree Diversity, Forest Structure and Productivity along Altitudinal and
Topographical Gradients in a Species-Rich Ecuadorian Montane Rain Forest,
Biotropica, 42, 140–148, https://doi.org/10.1111/j.1744-7429.2009.00547.x,
2010.
Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N., Maraun, M., Martinson,
G. O., Poma, L. N., Rillig, M. C., Sandmann, D., Scheu, S., Veldkamp, E.,
Wilcke, W., Wullaert, H., and Leuschner, C.: Tropical Andean forests are
highly susceptible to nutrient inputs – Rapid effects of experimental N and
P addition to an Ecuadorian montane forest, PLOS ONE, 7, e47128,
https://doi.org/10.1371/journal.pone.0047128, 2012.
Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A., Li, Y., Härdtle, W., von Oheimb, G., Yang, X., Liu, X., Pei, K., Both, S., Yang, B., Eichenberg, D., Assmann, T., Bauhus, J., Behrens, T., Buscot, F., Chen, X.-Y., Chesters, D., Ding, B.-Y., Durka, W., Erfmeier, A., Fang, J., Fischer, M., Guo, L.-D., Guo, D., Gutknecht, J. L. M., He, J.-S., He, C.-L., Hector, A., Hönig, L., Hu, R.-Y., Klein, A.-M., Kühn, P., Liang, Y., Li, S., Michalski, S., Scherer-Lorenzen, M., Schmidt, K., Scholten, T., Schuldt, A., Shi, X., Tan, M.-Z., Tang, Z., Trogisch, S., Wang, Z., Welk, E., Wirth, C., Wubet, T., Xiang, W., Yu, M., Yu, X.-D., Zhang, J., Zhang, S., Zhang, N., Zhou, H.-Z., Zhu, C.-D., Zhu, L., Bruelheide, H., Ma, K., Niklaus, P. A., and Schmid, B.: Impacts of species richness on productivity in a large-scale
subtropical forest experiment, Science, 362, 80–83,
https://doi.org/10.1126/science.aat6405, 2018.
Jozsa, L. A. and Brix, H.: The effects of fertilization and thinning on
wood quality of a 24-year-old Douglas-fir stand, Can. J. Forest
Res., 19, 1137–1145, https://doi.org/10.1139/x89-172, 1989.
Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis,
S. L., Phillips, O. L., Qie, L., and Coomes, D. A.: Topography shapes the
structure, composition and function of tropical forest landscapes, Ecol.
Lett., 21, 989–1000, https://doi.org/10.1111/ele.12964, 2018.
Keeling, H. C. and Phillips, O. L.: The global relationship between forest
productivity and biomass, Global Ecol. Biogeogr., 16, 618–631,
https://doi.org/10.1111/j.1466-8238.2007.00314.x, 2007.
Kessler, M., Salazar, L., Homeier, J., and Kluge, J.: Species
richness – productivity relationships of tropical terrestrial ferns at
regional and local scales, J. Ecol., 102, 1623–1633,
https://doi.org/10.1111/1365-2745.12299, 2014.
Kitayama, K. and Aiba, S.-I.: Ecosystem structure and productivity of
tropical rain forests along altitudinal gradients with contrasting soil
phosphorus pools on Mount Kinabalu, Borneo, J. Ecol., 90, 37–51,
https://doi.org/10.1046/j.0022-0477.2001.00634.x, 2002.
Kotowska, M., Link, R., Röll, A., Hertel, D., Hölscher, D., Waite,
P.-A., Moser, G., Tjoa, A., Leuschner, C., and Schuldt, B.: Effects of wood
hydraulic properties on water use and productivity of tropical rainforest
trees, Front. For. Glob. Change, 3, 598759,
https://doi.org/10.3389/ffgc.2020.598759, 2021.
Lambers, H. and Oliveira, R. S.: Plant Physiological Ecology, 3rd edition,
Springer Nature, Cham, UK, 2019.
Leuschner, C., Zach, A., Moser, G., Homeier, J., Graefe, S., Hertel, D.,
Wittich, B., Soethe, N., Iost, S., Röderstein, M., Horna, V., and Wolf,
K.: The carbon balance of tropical mountain forests along an altitudinal
transect, in: Ecosystem services, biodiversity and environmental change in a
tropical mountain ecosystem of South Ecuador, edited by: Bendix, J., Beck,
E., Bräuning, A., Makeschin, F., Mosandl, R., Scheu, S., and Wilcke, W.,
Springer, Berlin and Heidelberg, Germany, 117–139,
https://doi.org/10.1007/978-3-642-38137-9_10, 2013.
Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G.,
Schulze, E.-D., Mcguire, A. D., Bozzato, F., Pretzsch, H., Paquette, A.,
Hérault, B., Scherer-Lorenzen, M., Barrett, C. B., Glick, H. B.,
Hengeveld, G. M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A. C.,
Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.
V., Chen, H. Y. H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D.,
Parfenova, E. I., Salas, C., Lee, E., Lee, B., Kim, H. S., Bruelheide, H.,
Coomes, D. A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S.,
Sonké, B., Tavani, R., Zhu, J., Brandl, S., Baraloto, C., Frizzera, L.,
Ba, R., Oleksyn, J., Peri, P. L., Gonmadje, C., Marthy, W., Brien, T. O.,
Martin, E. H., Marshall, A. R., Rovero, F., Bitariho, R., Niklaus, P. A.,
Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V.,
Engone-Obiang, N. L., Ferreira, L. V., Odeke, D. E., Vasquez, R. M., Lewis,
S. L., and Reich, P. B.: Positive biodiversity-productivity relationship
predominant in global forests, Science, 354, aaf8957,
https://doi.org/10.1126/science.aaf8957, 2016.
Lohbeck, M., Poorter, L., Martínez-Ramos, M., and Bongers, F.: Biomass
is the main driver of changes in ecosystem process rates during tropical
forest succession, Ecology, 96, 1242–1252,
https://doi.org/10.1890/14-0472.1, 2015.
Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M.,
Papale, D., Piao, S. L., Schulze, E.-D., Wingate, L., Matteuci, G., Aragao,
L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond,
J.-M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J.,
Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T.,
Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger,
D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kuzsch, W., Lagergren, F.,
Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y.,
Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J.,
Moors, E., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann,
C., Roupsard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith,
M.-L., Tang, J., Valentini, R., Vesala, T., and Janssens, I. A.: CO2
balance of boreal, temperate, and tropical forests derived from a global
database, Glob. Change Biol, 13, 2509–2537,
https://doi.org/10.1111/j.1365-2486.2007.01439.x, 2007.
Malhi, Y.: The productivity, metabolism and carbon cycle of tropical forest
vegetation, J. Ecol., 100, 65–75,
https://doi.org/10.1111/j.1365-2745.2011.01916.x, 2012.
Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo,
L., Chave, J., Czimczik, C. I., Fiore, A. D., Higuchi, N., Killeen, T. J.,
Laurance, S. G., Laurance, W. F., Lewis, S. L., Montoya, L. M. M., Monteagudo,
A., Neill, D. A., Vargas, P. N., Patiño, S., Pitman, N. C., Quesada, C. A.,
Salomão, R., Silva, J. N. M., Lezama, A. T., Martínez, R. V., Terborgh,
J., Vinceti, B., and Lloyd, J.: The above-ground coarse wood productivity of
104 Neotropical forest plots, Glob. Change Biol., 10, 563–591,
https://doi.org/10.1111/j.1529-8817.2003.00778.x, 2004.
Malhi, Y., Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N.,
Metcalfe, D. B., Huaraca Huasco, W., Silva-Espejo, J. E., del
Aguilla-Pasquell, J., Farfán Amézquita, F., Aragão, L. E. O. C.,
Guerrieri, R., Ishida, F. Y., Bahar, N. H. A., Farfan-Rios, W., Phillips, O. L.,
Meir, P., and Silman, M.: The variation of productivity and its allocation
along a tropical elevation gradient: a whole carbon budget perspective, New
Phytol., 214, 1019–1032, https://doi.org/10.1111/nph.14189, 2017.
McIntire, E. J. B. and Fajardo, A.: Facilitation as a ubiquitous driver of
biodiversity, New Phytol., 201, 403–416, https://doi.org/10.1111/nph.12478,
2014.
Mori, A. S., Lertzman, K. P., and Gustafsson, L.: Biodiversity and ecosystem
services in forest ecosystems: a research agenda for applied forest ecology,
J. Appl. Ecol., 54, 12–27, https://doi.org/10.1111/1365-2664.12669, 2017.
Moser, G., Röderstein, M., Soethe, N., Hertel, D., and Leuschner, C.:
Altitudinal changes in stand structure and biomass allocation of tropical
mountain forests in relation to microclimate and soil chemistry, in:
Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by: Beck, E.,
Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., Springer, Berlin and
Heidelberg, Germany, 229–242,
https://doi.org/10.1007/978-3-540-73526-7_22, 2008.
Moser, G., Leuschner, C., Hertel, D., Graefe, S., Soethe, N., and Iost, S.:
Elevation effects on the carbon budget of tropical mountain forests (S
Ecuador): the role of the belowground compartment, Glob. Change Biol., 17,
2211–2226, https://doi.org/10.1111/j.1365-2486.2010.02367.x, 2011.
Muller-Landau, H. C.: Interspecific and inter-site variation in wood specific
gravity of tropical trees, Biotropica, 36, 20–32,
https://doi.org/10.1111/j.1744-7429.2004.tb00292.x, 2004.
Pan, Y., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The structure,
distribution, and biomass of the world's forests, Annu. Rev. Ecol. Evol. S., 44,
593–622, https://doi.org/10.1146/annurev-ecolsys-110512-135914, 2013.
Paoli, G. D. and Curran, L. M.: Soil nutrients limit fine litter production
and tree growth in mature lowland forest of southwestern Borneo, Ecosystems,
10, 503–518, https://doi.org/10.1007/s10021-007-9042-y, 2007.
Paquette, A. and Messier, C.: The effect of biodiversity on tree
productivity: from temperate to boreal forests, Global Ecol.
Biogeogr., 20, 170–180, https://doi.org/10.1111/j.1466-8238.2010.00592.x,
2011.
Pastor, J., Aber, J. D., McClaugherty, C. A., and Melillo, J. M.: Aboveground
Production and N and P Cycling Along a Nitrogen Mineralization Gradient on
Blackhawk Island, Wisconsin, Ecology, 65, 256–268,
https://doi.org/10.2307/1939478, 1984.
Pierick, K., Leuschner, C., and Homeier, J.: Topography as a factor driving
small-scale variation in tree fine root traits and root functional diversity
in a species-rich tropical montane forest, New Phytol.,
https://doi.org/10.1111/nph.17136, 2021.
Poorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R.,
Ibarra-Manríquez, G., Harms, K. E., Licona, J. C., Martínez-Ramos,
M., Mazer, S. J., Muller-Landau, H. C., Peña-Claros, M., Webb, C. O., and
Wright, I. J.: Are functional traits good predictors of demographic rates?
Evidence from five neotropical forests, Ecology, 89, 1908–1920,
https://doi.org/10.1890/07-0207.1, 2008.
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E. M., Killeen, T., Lezama, A. T., Lloyd, G., López-González, G., Luizão, F. J., Malhi, Y., Monteagudo, A., Neill, D. A., Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M. C., Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramírez, H., Rudas, A., Salomão, R., Santos, A. J. B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., and Lloyd, J.: Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate, Biogeosciences, 9, 2203–2246, https://doi.org/10.5194/bg-9-2203-2012, 2012.
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G.,
Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., and Fjeldså, J.:
Humboldt's enigma: What causes global patterns of mountain biodiversity?,
Science, 365, 1108–1113, https://doi.org/10.1126/science.aax0149,
2019.
Reich, P. B.: Key canopy traits drive forest productivity, Proc. R. Soc. Ser.
B, 279, 2128–2134,
https://doi.org/10.1098/rspb.2011.2270, 2012.
Reich, P. B. and Bolstad, P.: Productivity of evergreen and deciduous
temperate forests, in: Terrestrial global productivity, edited by: Roy, J.,
Saugier, B., and Mooney, H. A., Academic Press, San Diego, USA, 245–283, 2001.
Salazar, L., Homeier, J., Kessler, M., Abrahamczyk, S., Lehnert, M.,
Krömer, T., and Kluge, J.: Diversity patterns of ferns along elevational
gradients in Andean tropical forests, Plant Ecol. Divers., 8, 13–24,
https://doi.org/10.1080/17550874.2013.843036, 2015.
Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N., and Loreau,
M.: Tropical tree diversity enhances light capture through crown plasticity
and spatial and temporal niche differences, Ecology, 95, 2479–2492,
https://doi.org/10.1890/13-1366.1, 2014.
Schnabel, F., Schwarz, J. A., Dănescu, A., Fichtner, A., Nock, C. A.,
Bauhus, J., and Potvin, C.: Drivers of productivity and its temporal
stability in a tropical tree diversity experiment, Glob. Change Biol.,
25, 4257–4272, https://doi.org/10.1111/gcb.14792, 2019.
Schuur, E. A.: Productivity and global climate revisited: the sensitivity of
tropical forest growth to precipitation, Ecology, 84, 1165–1170,
https://doi.org/10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2, 2003.
Soethe, N., Lehmann, J., and Engels, C.: The vertical pattern of rooting and
nutrient uptake at different altitudes of a south Ecuadorian montane forest,
Plant Soil, 286, 287–299,
https://doi.org/10.1007/s11104-006-9044-0, 2006.
Spracklen, D. V. and Righelato, R.: Tropical montane forests are a larger than expected global carbon store, Biogeosciences, 11, 2741–2754, https://doi.org/10.5194/bg-11-2741-2014, 2014.
Tanner, E. V. J., Vitousek, P. M., and Cuevas, E.: Experimental
investigation of nutrient limitation of forest growth on wet tropical
mountains, Ecology, 79, 10–23
https://doi.org/10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2, 1998.
Tilman, D., Lehman, C. L., and Thomson, K. T.: Plant diversity and ecosystem
productivity: theoretical considerations, P. Natl. Acad. Sci. USA, 94,
1857–1861, https://doi.org/10.1073/pnas.94.5.1857, 1997.
Trabucco, A. and Zomer, R. J.: Global Aridity Index (Global-Aridity) and
Global Potential Evapo-Transpiration (Global-PET) Geospatial Database,
CGIAR Consortium for Spatial Information, CGIAR-CSI GeoPortal, available at:
http://www.csi.cgiar.org (last access: 31 August 2018), 2009.
Tuck, S. L., O'Brien, M. J. O., Philipson, C. D., Saner, P., Tanadini, M.,
Dzulkifli, D., Godfray, H. C. J., Godoong, E., Nilus, R., Ong, R. C.,
Schmid, B., Sinun, W., Snaddon, J. L., Snoep, M., Tangki, H., Tay, J., Ulok,
P., Wai, Y. S., Weilenmann, M., Reynolds, G., and Hector, A.: The value of
biodiversity for the functioning of tropical forests: insurance effects
during the first decade of the Sabah biodiversity experiment, Proc. R. Soc. B,
283, 20161451, https://doi.org/10.1098/rspb.2016.1451, 2016.
Unger, M., Leuschner, C., and Homeier, J.: Variability of indices of
macronutrient availability in soils at different spatial scales along an
elevation transect in tropical moist forests (NE Ecuador), Plant Soil,
336, 443–458, https://doi.org/10.1007/s11104-010-0494-z, 2010.
Unger, M., Homeier, J., and Leuschner, C.: Effects of soil chemistry on
tropical forest biomass and productivity at different elevations in the
equatorial Andes, Oecologia, 170, 263–274,
https://doi.org/10.1007/s00442-012-2295-y, 2012.
Unger, M., Homeier, J., and Leuschner, C.: Relationships among leaf area
index, below-canopy light availability and tree diversity along a transect
from tropical lowland to montane forests in NE Ecuador, Trop. Ecol.,
54, 33–45, 2013.
van der Sande, M. T., Arets, E. J., Peña-Claros, M., Hoosbeek, M. R.,
Cáceres-Siani, Y., van der Hout, P., and Poorter, L.: Soil fertility and
species traits, but not diversity, drive productivity and biomass stocks in
a Guyanese tropical rainforest, Funct. Ecol., 32, 461–474,
https://doi.org/10.1111/1365-2435.12968, 2018.
van de Weg, M. J., Meier, P., Williams, M., Girardin, C., Malhi, Y.,
Silva-Espejo, J., and Grace, J.: Gross primary productivity of a high
elevation tropical montane cloud forest, Ecosystems, 17, 751–764,
https://doi.org/10.1007/s10021-014-9758-4, 2014.
Vicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin III, F. S.,
Ciais, P., Heinemeyer, A., Högberg, P., Kutsch, W. L., Law, B. E., Malhi,
Y., Papale, D., Piao, S. L., Reichstein, M., Schulze, E. D., and Janssens,
I. A.: Fertile forests produce biomass more efficiently, Ecol. Lett., 15,
520–526, https://doi.org/10.1111/j.1461-0248.2012.01775.x, 2012.
Vitousek, P. M. and Sanford, R. L.: Nutrient cycling in moist tropi-cal
forest, Annu. Rev. Ecol. Syst., 17, 137–167, 1986.
Wallis, C. I., Homeier, J., Peña, J., Brandl, R., Farwig, N., and
Bendix, J.: Modeling tropical montane forest biomass, productivity and
canopy traits with multispectral remote sensing data, Remote Sens. Environ., 225, 77–92, https://doi.org/10.1016/j.rse.2019.02.021, 2019.
Werner, F. A. and Homeier, J.: Is tropical montane forest heterogeneity
promoted by a resource-driven feedback cycle? Evidence from nutrient
relations, herbivory and litter decomposition along a topographical
gradient, Funct. Ecol., 29, 430–440, https://doi.org/10.1111/1365-2435.12351,
2015.
Wittich, B., Horna, V., Homeier, J., and Leuschner, C.: Altitudinal change
in the photosynthetic capacity of tropical trees: a case study from Ecuador
and a pantropical literature analysis, Ecosystems, 15, 958–973,
https://doi.org/10.1007/s10021-012-9556-9, 2012.
Wolf, K., Veldkamp, E., Homeier, J., and Martinson, G. O.: Nitrogen
availability links forest productivity, soil nitrous oxide and nitric oxide
fluxes of a tropical montane forest in southern Ecuador, Global Biogeochem.
Cy., 25, GB4009, https://doi.org/10.1029/2010GB003876, 2011.
Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V. J.,
Sayer, E. J., Santiago, L. S., Kaspari, M., Hedin, L. O., Harms, K. E., Garcia,
M. N., and Corre, M. D.:Potassium, phosphorus, or nitrogen limit root
allocation, tree growth, or litter production in a lowland tropical forest,
Ecology, 92, 1616–1625, https://doi.org/10.1890/10-1558.1, 2011.
Zimmermann, M., Meir, P., Bird, M. I., Malhi, Y., and Ccahuana, A. J. Q.:
Temporal variation and climate dependence of soil respiration and its
components along a 3000 m altitudinal tropical forest gradient, Global
Biogeochem. Cy., 24, GB4012, https://doi.org/10.1029/2010GB003787, 2010.
Short summary
We studied aboveground productivity in humid tropical montane old-growth forests in two highly diverse Andean regions with large geological and topographic heterogeneity and related productivity to tree diversity and climatic, edaphic and stand structural factors. From our results we conclude that the productivity of highly diverse Neotropical montane forests is primarily controlled by thermal and edaphic factors and stand structural properties, while tree diversity is of minor importance.
We studied aboveground productivity in humid tropical montane old-growth forests in two highly...
Altmetrics
Final-revised paper
Preprint