Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Tobias R. Vonnahme
CORRESPONDING AUTHOR
Department of Arctic and Marine Biology, UiT – The Arctic University
of Norway, Tromsø, Norway
Martial Leroy
Université Grenoble Alpes, Grenoble, France
Silke Thoms
Department of Biogeosciences, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven,
Germany
Dick van Oevelen
Department of Estuarine and Delta Systems, Royal Netherlands
Institute for Sea Research (NIOZ), and Utrecht University, Texel, Yerseke,
the Netherlands
H. Rodger Harvey
Department of Ocean and Earth Sciences, Old Dominion University,
Norfolk, USA
Svein Kristiansen
Department of Arctic and Marine Biology, UiT – The Arctic University
of Norway, Tromsø, Norway
Rolf Gradinger
Department of Arctic and Marine Biology, UiT – The Arctic University
of Norway, Tromsø, Norway
Ulrike Dietrich
Department of Arctic and Marine Biology, UiT – The Arctic University
of Norway, Tromsø, Norway
Christoph Völker
Department of Biogeosciences, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven,
Germany
Related authors
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Clare Woulds, Dick Van Oevelen, Silvia Hidalgo-Martinez, and Filip Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3676, https://doi.org/10.5194/egusphere-2025-3676, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Marine sediments are locations of carbon storage. Only some deposited carbon remains stored, while most is lost as CO2 through respiration by organisms. We report experiments to investigate the organisms responsible for marine sediment respiration. Larger organisms and microbes contributed equally to respiration. The groups competed to feed on fresh carbon. Respiration of older carbon was stimulated when both groups were present, thus burrowing activities allow microbial activity to increase.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Miriam Seifert, Christopher Danek, Christoph Völker, and Judith Hauck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1495, https://doi.org/10.5194/egusphere-2025-1495, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) can help to remove CO2 from the atmosphere. Yet, our study is the first that investigates the link between OAE and phytoplankton in an Earth System Model. We show that OAE can indirectly decrease primary production, and that biological feedbacks can modify the efficiency of OAE. Our study provides hints for ecological risks of OAE and the quantification of carbon drawdown, and can serve as a kick-start for other models to consider OAE-ecosystem interactions.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025, https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change, the carbon storage in sediments slows down carbon cycling and influences feedbacks in the atmosphere–ocean–sediment system. This paper describes the coupling of a sediment model to an ocean biogeochemistry model and presents results under the pre-industrial climate and under CO2 perturbation.
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria L. Paulsen
Biogeosciences, 22, 601–623, https://doi.org/10.5194/bg-22-601-2025, https://doi.org/10.5194/bg-22-601-2025, 2025
Short summary
Short summary
Dissolved (DOM) and particulate organic matter (POM) are in constant exchange but are usually studied as distinct entities. We investigated the dynamics between POM and DOM in a sub-Arctic fjord across different seasons by conducting bi-monthly aggregation–dissolution experiments. During the productive period, POM concentrations increased in the experiment, and DOM molecules became more recalcitrant. During the winter period, POM concentrations decreased, and DOM molecules became more labile.
Evert de Froe, Igor Yashayaev, Christian Mohn, Johanne Vad, Furu Mienis, Gerard Duineveld, Ellen Kenchington, Erica Head, Steve W. Ross, Sabena Blackbird, George A. Wolff, J. Murray Roberts, Barry MacDonald, Graham Tulloch, and Dick van Oevelen
Biogeosciences, 21, 5407–5433, https://doi.org/10.5194/bg-21-5407-2024, https://doi.org/10.5194/bg-21-5407-2024, 2024
Short summary
Short summary
Deep-sea sponge grounds are distributed globally and are considered hotspots of biological diversity and biogeochemical cycling. To date, little is known about the environmental constraints that control where deep-sea sponge grounds occur and what conditions favour high sponge biomass. Here, we characterize oceanographic conditions at two contrasting sponge grounds. Our results imply that sponges and associated fauna benefit from strong tidal currents and favourable regional ocean currents.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Martin Butzin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler
Geosci. Model Dev., 17, 1709–1727, https://doi.org/10.5194/gmd-17-1709-2024, https://doi.org/10.5194/gmd-17-1709-2024, 2024
Short summary
Short summary
In this paper we describe the implementation of the carbon isotopes 13C and 14C into the marine biogeochemistry model FESOM2.1-REcoM3 and present results of long-term test simulations. Our model results are largely consistent with marine carbon isotope reconstructions for the pre-anthropogenic period, but also exhibit some discrepancies.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Cited articles
Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in
phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Alcaraz, M., Almeda, R., Calbet, A., Saiz, E., Duarte, C. M., Lasternas, S.,
Agusti, S., Santiago, R., Movilla, J., and Alonso, A.: The role of arctic
zooplankton in biogeochemical cycles: respiration and excretion of ammonia
and phosphate during summer, Polar Biol., 33, 1719–1731, 2010.
Al Khudary, R., Stößer, N. I., Qoura, F., and Antranikian, G.:
Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from
Spitzbergen, Int. J. Syst. Evol. Microbiol., 58, 2018–2024, 2008.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.: Basic
local alignment search tool, J. Mol. Biol., 215, 403–410, 1990.
Alver, M. O., Broch, O. J., Melle, W., Bagøien, E., and Slagstad, D.:
Validation of an Eulerian population model for the marine copepod Calanus finmarchicus in the
Norwegian Sea, J. Mar. Syst., 160, 81–93, 2016.
Amin, S. A., Parker, M. S., and Armbrust, E. V.: Interactions between
diatoms and bacteria, Microbiol. Mol. Biol. Rev., 76, 667–684, 2012.
Amin, S. A., Hmelo, L. R., Van Tol, H. M., Durham, B. P., Carlson, L. T.,
Heal, K. R., Morales, R. L., Berthiaume, C. T., Parker, M. S., Djunaedi, B.,
Ingalls, A. E., Parsek, M. R., Moran, M. A., and Armbrust, E. V.: Interaction
and signalling between a cosmopolitan phytoplankton and associated bacteria,
Nature, 522, 98–101, 2015.
Andersen, R. A. and Kawachi, M.: Microalgae isolation techniques, in: Algal
culturing techniques, edited by: Andersen, R. A., Elsevier, San Diego, London, 83–100, 2005.
Anju, M., Sreeush, M. G., Valsala, V., Smitha, B. R., Hamza, F., Bharathi,
G., and Naidu, C. V.: Understanding the role of nutrient limitation on
plankton biomass over Arabian Sea via 1-D coupled biogeochemical model and
Bio-Argo observations, J. Geophys. Res.-Oceans, 125, 1–28, https://doi.org/10.1029/2019JC015502, 2020.
Banse, K.: Zooplankton: pivotal role in the control of ocean production: I.
Biomass and production, ICES J. Mar. Sci., 52, 265–277, 1995.
Bertani, G.: Lysogeny at mid-twentieth century: P1, P2, and other
experimental systems, J. Bacteriol., 186, 595–600, 2004.
Bidle, K. D. and Azam, F.: Accelerated dissolution of diatom silica by
marine bacterial assemblages, Nature, 397, 508–512, 1999.
Booth, B. C., Larouche, P., Bélanger, S., Klein, B., Amiel, D., and Mei,
Z. P.: Dynamics of Chaetoceros socialis blooms in the North Water, Deep Sea Res., 49, 5003–5025, 2002.
Brun, R., Reichert, P., and Kunsch, H. R.: Practical identifiability analysis
of large environmental simulation models, Water Resour. Res. 37,
1015–1030, 2001.
Burdige, D. J. and Homstead, J.: Fluxes of dissolved organic carbon from
Chesapeake Bay sediments, Geochim. Cosmochim. Ac., 58, 3407–3424, 1994.
Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J., and Scanlan,
D. J.: Nutrient recycling facilitates long-term stability of marine
microbial phototroph–heterotroph interactions, Nat. Microbiol., 2, 17100, https://doi.org/10.1038/nmicrobiol.2017.100,
2017.
Claquin, P., Martin-Jézéquel, V., Kromkamp, J. C., Veldhuis, M. J.
W., and Kraay, G. W.: Uncoupling of silicon compared with carbon and
nitrogen metabolisms and the role of the cell cycle in continuous cultures
of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control, J.
Phycol., 38, 922–930, 2002.
Cleveland, J. S. and Perry, M. J.: Quantum yield, relative specific
absorption and fluorescence in nitrogen-limited Chaetoceros gracilis, Mar. Biol., 94,
489–497, 1987.
Conover, R. J. and Gustavson, K. R.: Sources of urea in arctic seas:
zooplankton metabolism, Mar. Ecol. Prog. Ser., 179, 41–54, 1999.
Degerlund, M. and Eilertsen, H. C.: Main species characteristics of
phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80 N),
Estuar. Coast, 33, 242–269, 2010.
Dortch, Q.: The interaction between ammonium and nitrate uptake in
phytoplankton, Mar. Ecol. Prog. Ser., 61, 183–201, 1990.
Durant, J. M., Hjermann, D. Ø., Ottersen, G., and Stenseth, N. C.:
Climate and the match or mismatch between predator requirements and resource
availability, Clim. Res., 33, 271–283, 2007.
Egge, J. K. and Aksnes, D. L.: Silicate as regulating nutrient in
phytoplankton competition, Mar. Ecol. Prog. ser., 83, 281–289, 1992.
Eilertsen, H. C. and Frantzen, S.: Phytoplankton from two sub-Arctic fjords
in northern Norway 2002–2004: I. Seasonal variations in chlorophyll a and
bloom dynamics, Mar. Biol. Res., 3, 319–332, 2007.
Eilertsen, H. C., Taasen, J. P., and WesIawski, J. M.: Phytoplankton studies
in the fjords of West Spitzbergen: physical environment and production in
spring and summer, J. Plankton Res., 11, 1245–1260, 1989.
Eppley, R. W.: Autotrophic production of particulate matter, in: Analysis of marine ecosystems, edited by: Longhurst, A. R., Academic Press, New York, 343–361, 1981.
Eppley, R. W., Rogers, J. N., and McCarthy, J. J.: Half-saturation constants
for uptake of nitrate and ammonium by marine phytoplankton, Limnol.
Oceanogr., 14, 912–920, 1969.
Falkowski, P. G. and Oliver, M. J.: Mix and match: how climate selects
phytoplankton, Nat. Rev. Microbiol., 5, 813–819, 2007.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: integrating terrestrial and oceanic
components, Science, 281, 237–240, 1998.
Firme, G. F., Rue, E. L., Weeks, D. A., Bruland, K. W., and Hutchins, D. A.:
Spatial and temporal variability in phytoplankton iron limitation along the
California coast and consequences for Si, N, and C biogeochemistry, Global
Biogeochem. Cy., 17, 1–13, https://doi.org/10.1029/2001GB001824, 2003.
Flynn, K. J.: Nitrate transport and ammonium-nitrate interactions at high
nitrate concentrations and low temperature, Mar. Ecol. Prog. Ser., 187,
283–287, 1999.
Flynn, K. J.: A mechanistic model for describing dynamic multi-nutrient,
light, temperature interactions in phytoplankton, J. Plankton Res., 23,
977–997, 2001.
Flynn, K. J.: Modelling multi-nutrient interactions in phytoplankton;
balancing simplicity and realism, Prog. Oceanogr., 56, 249–279, 2003.
Flynn, K. J. and Fasham, M. J.: A short version of the ammonium-nitrate
interaction model, J. Plankton Res., 19, 1881–1897, 1997.
Flynn, K. J., Fasham, M. J., and Hipkin, C. R.: Modelling the interactions
between ammonium and nitrate uptake in marine phytoplankton, Philos. T. R. Soc.
A, 352, 1625–1645, 1997.
Flynn, K. J., Marshall, H., and Geider, R. J.: A comparison of two
N-irradiance interaction models of phytoplankton growth, Limnol. Oceanogr.,
46, 1794–1802, 2001.
Flynn, K. J., Skibinski, D. O., and Lindemann, C.: Effects of growth rate,
cell size, motion, and elemental stoichiometry on nutrient transport
kinetics, PLoS Comput. Biol., 14, e1006118, https://doi.org/10.1371/journal.pcbi.1006118, 2018.
Fransner, F., Gustafsson, E., Tedesco, L., Vichi, M., Hordoir, R., Roquet,
F., Spilling, K., Kuznetsov, I., Eilola, K., Mörth, C., Humborg, C., and
Nycander, J.: Non-Redfieldian dynamics explain seasonal pCO2 drawdown in the
Gulf of Bothnia, J. Geophys. Res.-Oceans, 123, 166–188, 2017.
Fritz, M., Vonk, J. E., and Lantuit, H.: Collapsing arctic coastlines, Nat.
Clim. Chang, 7, 6–7, https://doi.org/10.1038/nclimate3188, 2017.
Fu, W., Randerson, J. T., and Moore, J. K.: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models, Biogeosciences, 13, 5151–5170, https://doi.org/10.5194/bg-13-5151-2016, 2016.
Geider, R. and La Roche, J.: Redfield revisited: variability of C: N: P in
marine microalgae and its biochemical basis, Eur. J. Phycol., 37,
1–17, 2002.
Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, 1998.
Gilpin, L.: The influence of changes in nitrogen: silicon ratios on diatom
growth dynamics, J. Sea Res., 51, 21–35, 2004.
Goldman, J. C. and Caron, D. A.: Experimental studies on an omnivorous
microflagellate: implications for grazing and nutrient regeneration in the
marine microbial food chain, Deep Sea Res., 32, 899–915, 1985.
Gruber, N., Frenzel, H., Doney, S. C., Marchesiello, P., McWilliams, J. C.,
Moisan, J. R., Oram, J. J., Plattner, G., and Stolzenbach, K. D.:
Eddy-resolving simulation of plankton ecosystem dynamics in the California
Current System, Deep Sea Res., 53, 1483–1516,
2006.
Guillard, R. L. L.: Culture of phytoplankton for feeding marine
invertebrates, in: Culture of marine invertebrates animals, edited by:
Smith, W. L. and Chanley, M. H., Plenum Press, New York, USA, 29–60, 1975.
Haecky, P. and Andersson, A.: Primary and bacterial production in sea ice
in the northern Baltic Sea, Aquat. Microb. Ecol., 20, 107–118, 1999.
Harrison, W. G. and Cota, G. F.: Primary production in polar waters:
relation to nutrient availability, Polar Res., 10, 87–104, 1991.
Harrison, W. G., Head, E. J. H., Conover, R. J., Longhurst, A. R., and
Sameoto, D. D.: The distribution and metabolism of urea in the eastern
Canadian Arctic, Deep Sea Res., 32, 23–42, 1985.
Hauck, J., Völker, C., Wang, T., Hoppema, M., Losch, M., and
Wolf-Gladrow, D. A.: Seasonally different carbon flux changes in the
Southern Ocean in response to the southern annular mode, Global Biogeochem.
Cy., 27, 1–10, 2013.
Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P., and Yool, A.:
Detection of climate change-driven trends in phytoplankton phenology, Glob.
Change Biol., 24, 101–111, 2018.
Hildebrand, M.: Lack of coupling between silicon and other elemental
metabolisms in diatoms, J. Phycol., 38, 841–843, 2002.
Hohn, S.: A model of the carbon:nitrogen:silicon stoichiometry of diatoms
based on metabolic processes, PhD thesis, Universität Bremen, Bremen, Germany, 135 pp., 2009.
Hünken, M., Harder, J., and Kirst, G. O.: Epiphytic bacteria on the
Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal
photosynthesis, Plant Biol., 10, 519–526, 2008.
Iversen, K. R. and Seuthe, L.: Seasonal microbial processes in a
high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria,
picoplankton and nanoflagellates, Polar Biol., 34, 731–749, 2011.
Jacobsen, T. R. and Rai, H.: Comparison of spectrophotometric, fluorometric
and high performance liquid chromatography methods for determination of
chlorophyll a in aquatic samples: effects of solvent and extraction
procedures, Int. Rev. ges. Hydrobio., 75, 207–217, 1990.
Johnson, M., Sanders, R., Avgoustidi, V., Lucas, M., Brown, L., Hansell, D.,
Moore, M., Gibb, S., Liss, P., and Jickells, T.: Ammonium accumulation
during a silicate-limited diatom bloom indicates the potential for ammonia
emission events, Mar. Chem., 106, 63–75, 2007.
Jansson, M., Hickler, T., Jonsson, A., and Karlsson, J.: Links between
terrestrial primary production and bacterial production and respiration in
lakes in a climate gradient in subarctic Sweden, Ecosystems, 11, 367–376,
2008.
Kamatani, A.: Dissolution rates of silica from diatoms decomposing at
various temperatures, Mar. Biol., 68, 91–96, 1982.
Keck, A. and Wassmann, P.: Temporal and spatial patterns of sedimentation
in the subarctic fjord Malangen, northern Norway, Sarsia, 80, 259–276, 1996.
Kim, S. J., Kim, B. G., Park, H. J., and Yim, J. H.: Cryoprotective
properties and preliminary characterization of exopolysaccharide (P-Arcpo
15) produced by the Arctic bacterium Pseudoalteromonas elyakovii Arcpo 15, Prep. Biochem. Biotechnol.,
46, 261–266, 2016.
Kirchman, D. L.: Uptake and regeneration of inorganic nutrients by
marine heterotrophic bacteria, in: Microbial ecology of the oceans, edited by: Kirchmann, D. L., John Wiley & Sons,
Kirchman, D. L., Morán, X. A. G., and Ducklow, H.: Microbial growth in
the polar oceans – role of temperature and potential impact of climate
change, Nat. Rev. Microbiol., 7, 451–459, 2009.
Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L.,
Werner, F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., Hashimoto, S.,
Huang, D., Iizumi, H., Ishida, Y., Kang, S., Kantakov, G. A., Kim, H.,
Komatsu, K., Navrotsky, V. V., Smith, S. L., Tadokoro, K., Tsuda, A.,
Yamamura, O., Yamanaka, Y., Yokouchi, K., Yoshie, N., Zhang, J., Zuenko, Y.
I., and Zvalinsky, V. I.: NEMURO – a lower trophic level model for the
North Pacific marine ecosystem, Ecol. Model., 202, 12–25, 2007.
Krause, J. W., Schulz, I. K., Rowe, K. A., Dobbins, W., Winding, M. H.,
Sejr, M. K., Duarte, C. M., and Agustí, S.: Silicic acid limitation
drives bloom termination and potential carbon sequestration in an Arctic
bloom, Sci. Rep., 9, 1–11, 2019.
Lachmann, S. C., Mettler-Altmann, T., Wacker, A., and Spijkerman, E.:
Nitrate or ammonium: Influences of nitrogen source on the physiology of a
green algae, Ecol. Evol., 9, 1070–1082, 2019.
Lannuzel, D., Tedesco, L., Van Leeuwe, M., Campbell, K., Flores, H.,
Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K.,
Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B., Fransson, A.,
Fripiat, F., Geilfus, N., Jacques, C., Jones, E., Kaartokallio, H.,
Kotovitch, M., Meiners, K., Moreau, S., Nomura, D., Peeken, I., Rintala, J.,
Steiner, N., Tison, J., Vancoppenolle, M., van der Linden, F., Vichi, M.,
and Wongpan, P.: The future of Arctic sea-ice biogeochemistry and
ice-associated ecosystems, Nat. Clim. Change, 10, 1–10, 2020.
Lee, S. and Fuhrman, J. A.: Relationships between biovolume and biomass of
naturally derived marine bacterioplankton, Appl. Environ. Microbiol., 53,
1298–1303, 1987.
Legendre, L. and Rassoulzadegan, F.: Plankton and nutrient dynamics in
marine waters, Ophelia, 41, 153–172, 1995.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Lippemeier, S., Hartig, P., and Colijn, F.: Direct impact of silicate on the
photosynthetic performance of the diatom Thalassiosira weissflogii assessed
by on-and off-line PAM fluorescence measurements, J. Plankton Res., 21, 269–283,
1999.
Loebl, M., Colijn, F., van Beusekom, J. E., Baretta-Bekker, J. G., Lancelot,
C., Philippart, C. J., Rousseau, V., and Wiltshire, K. H.: Recent patterns
in potential phytoplankton limitation along the Northwest European
continental coast, J. Sea Res., 61, 34–43, 2009.
Ma, L. Y., Chi, Z. M., Li, J., and Wu, L. F.: Overexpression of alginate
lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and
characterization of the recombinant alginate lyase, World J. Microbiol.
Biotechnol., 24, 89–96, 2008.
Martin-Jézéquel, V., Hildebrand, M., and Brzezinski, M. A.: Silicon
Metabolism in Diatoms: Implications for Growth, J. Phycol., 36, 821–840,
2000.
McCarthy, J. J. and Taylor, W. R.: and Taft, J. L., Nitrogenous nutrition of the plankton in the Chesapeake Bay, 1. Nutrient availability and phytoplankton preferences, Limnol. Oceanogr., 22, 996–1011, https://doi.org/10.4319/lo.1977.22.6.0996, 1977.
Mills, M. M., Brown, Z. W., Laney, S. R., Ortega-Retuerta, E., Lowry, K. E.,
Van Dijken, G. L., and Arrigo, K. R.: Nitrogen limitation of the summer
phytoplankton and heterotrophic prokaryote communities in the Chukchi Sea,
Front. Mar. Sci., 5, 362, https://doi.org/10.3389/fmars.2018.00362, 2018.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp,L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L.,
Jickells, T. D., La Roche, J., Lenton, T. M., Ma-howald, N. M., Maranon, E.,
Marinov, I., Moore, J. K., Nakat-suka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, 2013.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004.
Morris, I.: Nitrogen assimilation and protein synthesis, in: Algal physiology and biochemistry, edited by: Stewart, W. D. P., University of California press, 583–609, 1974.
Mühlenbruch, M., Grossart, H. P., Eigemann, F., and Voss, M.:
Mini-review: Phytoplankton-derived polysaccharides in the marine environment
and their interactions with heterotrophic bacteria, Environ. Microbiol., 20,
2671–2685, 2018.
Nelson, D. M. and Gordon, L. I.: Production and pelagic dissolution of
biogenic silica in the Southern Ocean, Geochim. Cosmochim. Ac., 46,
491–501, 1982.
Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A., and Queguiner,
B.: Production and dissolution of biogenic silica in the ocean: revised
global estimates, comparison with regional data and relationship to biogenic
sedimentation, Global Biogeochem. Cy., 9, 359–372, 1995.
Opdal, A. F., Lindemann, C., and Aksnes, D. L.: Centennial decline in North
Sea water clarity causes strong delay in phytoplankton bloom timing, Glob.
Change Biol., 25, 3946–3953, 2019.
Pahlow, M.: Linking chlorophyll-nutrient dynamics to the Redfield N: C ratio
with a model of optimal phytoplankton growth, Mar. Ecol. Prog. Ser., 287,
33–43, 2005.
Pedersen, M. F. and Borum, J.: Nutrient control of algal growth in
estuarine waters. Nutrient limitation and the importance of nitrogen
requirements and nitrogen storage among phytoplankton and species of
macroalgae, Mar. Ecol. Prog. Ser., 142, 261–272, 1996
Pella, E. and Colombo, B.: Study of carbon, hydrogen and nitrogen determination by
combustion-gas chromatography, Microchim. Ac., 61, 697–719, 1973.
Porter, K. G. and Feig, Y. S.: The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25, 943–948, https://doi.org/10.4319/lo.1980.25.5.0943, 1980.
Price, W. L.: A controlled random search procedure for global optimisation, Computer J., 20, 367–370, 1977.
Ratkova, T. N. and Wassmann, P.: Seasonal variation and spatial distribution of
phyto- and protozooplankton in the central Barents Sea, J. Mar. Syst., 38,
47–75, 2002.
Redfield, A. C.: On the proportions of organic derivatives in sea water and their relation to the composition of plankton, James Johnstone memorial volume, 176–192, 1934.
Rey, F. and Skjoldal, H. R.: Consumption of silicic acid below the euphotic
zone by sedimenting diatom blooms in the Barents Sea, MEPS, 36, 307–312,
1987.
Ross, O. N. and Geider, R. J.: New cell-based model of photosynthesis and
photo-acclimation: accumulation and mobilisation of energy reserves in
phytoplankton, Mar. Ecol. Prog. Ser., 383, 53–71, 2009.
Saiz, E., Calbet, A., Isari, S., Anto, M., Velasco, E. M., Almeda, R.,
Movilla, J., and Alcaraz, M.: Zooplankton distribution and feeding in the
Arctic Ocean during a Phaeocystis pouchetii bloom, Deep Sea Res., 72,
17–33, 2013.
Schartau, M., Engel, A., Schröter, J., Thoms, S., Völker, C., and Wolf-Gladrow, D.: Modelling carbon overconsumption and the formation of extracellular particulate organic carbon, Biogeosciences, 4, 433–454, https://doi.org/10.5194/bg-4-433-2007, 2007.
Schourup-Kristensen, V., Wekerle, C., Wolf-Gladrow, D., and Völker, C.:
Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model,
Prog. Oceanogr., 168, 65–81, https://doi.org/10.1016/j.pocean.2018.09.006, 2018.
Slagstad, D., Wassmann, P. F., and Ellingsen, I.: Physical constrains and
productivity in the future Arctic Ocean, Front. Mar. Sci., 2, 1–23, https://doi.org/10.3389/fmars.2015.00085, 2015.
Smith, K. M., Kern, S., Hamlington, P. E., Zavatarelli, M., Pinardi, N., Klee, E. F., and Niemeyer, K. E.: BFM17 v1.0: Reduced-Order Biogeochemical Flux Model for Upper Ocean Biophysical Simulations, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-134, in review, 2020.
Soetaert, K. and Herman, P. M. J.: A Practical Guide to Ecological Modelling
– Using R as a Simulation Platform, Springer, Springer-Verlag, New York, 2009.
Soetaert, K. and Petzoldt, T.: Inverse Modelling, Sensitivity and Monte Carlo
Analysis in R Using Package FME, J. Stat. Softw., 33, 1–28, https://doi.org/10.18637/jss.v033.i03, 2010.
Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving Differential
Equations in R: Package deSolve, J. Stat. Softw., 33, 1548–7660, https://doi.org/10.18637/jss.v033.i09, 2010.
Sommer, U., Aberle, N., Engel, A., Hansen, T., Lengfellner, K., Sandow, M.,
Wohlers, J., Zollner, E., and Riebesell, U.: An indoor mesocosm system to
study the effect of climate change on the late winter and spring succession
of Baltic Sea phyto-and zooplankton, Oecologia, 150, 655–667, 2007.
Spilling, K., Tamminen, T., Andersen, T., and Kremp, A.: Nutrient kinetics
modeled from time series of substrate depletion and growth: dissolved
silicate uptake of Baltic Sea spring diatoms, Mar. Biol., 157, 427–436, 2010.
Stow, C. A., Jolliff, J., McGillicuddy Jr., D. J., Doney, S. C., Allen, J.
I., Friedrichs, M. A., Kenneth, A. R., and Wallhead, P.: Skill assessment
for coupled biological/physical models of marine systems, J. Mar. Syst., 76,
4–15, 2009.
Sturluson, M., Nielsen, T. G., and Wassmann, P.: Bacterial abundance,
biomass and production during spring blooms in the northern Barents Sea,
Deep Sea Res., 55, 2186–2198, 2008.
Sverdrup, H. U.: On conditions for the vernal blooming of phytoplankton, Cons.
Perm. Int. Expl. Mer., 18, 287–295, 1953.
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke,
C. M., Kassabgy, M., Huang, S., Mann, A. J., Waldmann, J., Weber, M.,
Klindworth, A., Otto, A., Lange, J., Bernhardt, J., Reinsch, C., Hecker, M.,
Peplies, J., Bockelmann, F. D., Callies, U., Gerdts, G., Wichels, A.,
Wiltshire, K. H., Glöckner, F. O., Schweder, T., and Amann, R.:
Substrate-controlled succession of marine bacterioplankton populations
induced by a phytoplankton bloom, Science, 336, 608–611, 2012.
Teeling, H., Fuchs, B. M., Bennke, C. M., Krueger, K., Chafee, M.,
Kappelmann, L., Reintjes, G., Waldmann, J., Quast, C., Glöckner, F. O.,
Lucas, J., Wichels, A., Gerdts, G., Wiltshire, K. H., and Amann, R.: Recurring
patterns in bacterioplankton dynamics during coastal spring algae blooms,
Elife, 5, e11888, https://doi.org/10.7554/eLife.11888, 2016.
Tezuka, Y.: The C: N: P ratio of phytoplankton determines the relative
amounts of dissolved inorganic nitrogen and phosphorus released during
aerobic decomposition, Hydrobiologia, 173, 55–62, 1989.
Thangaraj, S., Shang, X., Sun, J., and Liu, H.: Quantitative proteomic
analysis reveals novel insights into intracellular silicate
stress-responsive mechanisms in the diatom Skeletonema dohrnii, Int. J. Mol. Sci., 20,
2540, https://doi.org/10.3390/ijms20102540, 2019.
Thornton, D.: Diatom aggregation in the sea: mechanisms and ecological
implications, Eur. J. Phycol., 37, 149–161, 2002.
Tremblay, J. É. and Gagnon, J.: The effects of irradiance and nutrient
supply on the productivity of Arctic waters: a perspective on climate
change, in: Influence of climate change on the changing arctic and
sub-arctic conditions, edited by: Nihoul, J. C., J. and Kostianoy, A. G.,
Springer, Dordrecht, The Netherlands, 73–93, 2009.
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phytoplankton
class-specific primary production in the world's oceans: Seasonal and
interannual variability from satellite observations, Global Biogeochem.
Cy., 24, GB3016, https://doi.org/10.1029/2009GB003680, 2010.
Van den Meersche, K., Middelburg, J. J., Soetaert, K., Van Rijswijk, P.,
Boschker, H. T., and Heip, C. H.: Carbon-nitrogen coupling and
algal-bacterial interactions during an experimental bloom: Modeling a 13C
tracer experiment, Limnol. Oceanogr., 49, 862–878, 2004.
Vichi, M., Pinardi, N., and Masina, S.: A generalized model of pelagic
biogeochemistry for the global ocean ecosystem. Part I: Theory, J. Mar. Syst.,
64, 89–109, 2007.
Vonnahme, T. R.: Model code for: Modelling Silicate – Nitrate – Ammonium co-limitation of algal growth and the importance of bacterial remineralisation based on an experimental Arctic coastal spring bloom culture study (Version 6.0), https://doi.org/10.5281/zenodo.4459550, 2021a.
Vonnahme, T. R.: Dynamic-Algae-Bacteria-model, available at: https://github.com/tvonnahm/Dynamic-Algae-Bacteria-model (last access: 29 January 2021), 2021b.
Vonnahme, T. R., Leroy, M., Thoms, S., van Oevelen, D., Harvey, R., Kristiansen, S., Dietrich, U., Gradinger, R., and Völker, C.: Replication data for: Modelling Silicate – Nitrate – Ammonium co-limitation of algal growth and the importance of bacterial remineralisation based on an experimental Arctic coastal spring bloom culture study, https://doi.org/10.18710/VA4IU9, 2021.
von Quillfeldt, C. H.: Common diatom species in Arctic spring blooms: Their
distribution and abundance, Bot. Mar., 43, 499–516,
https://doi.org/10.1515/BOT.2000.050, 2005.
Wassmann, P., Slagstad, D., Riser, C. W., and Reigstad, M.: Modelling the
ecosystem dynamics of the Barents Sea including the marginal ice zone: II.
Carbon flux and interannual variability, J. Mar. Syst., 59, 1–24, 2006.
Weitz, J. S., Stock, C. A., Wilhelm, S. W., Bourouiba, L., Coleman, M. L.,
Buchan, A., Follows, M. J., Fuhrman, J. A., Jover, L., Lennon, J. T.,
Middelboe, M., Sonderegger, D. L., Suttle, C. A., Taylor, B. P., Thingstad,
T. F., Wilson, W., and Wommack, K. E.: A multitrophic model to quantify the
effects of marine viruses on microbial food webs and ecosystem processes,
ISME J., 9, 1352–1364, 2015.
Werner, D.: Silicate metabolism, in: The biology of diatoms, edited by:
Werner, D., Blackwell Scientific Publications, Berkeley, 111–149,
1977.
Werner, D.: Regulation of metabolism by silicate in diatoms, in:
Biochemistry of silicon and related problems, edited by: Bendz, G. and
Lindqvist, I., Springer, Boston, USA, 149–176, 1978.
Westberry, T. K., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based
primary productivity modeling with vertically resolved photoacclimation,
Global Biogeochem. Cy., 22, 1–18, 2008.
Wu, Y., Liu, S., Huang, Z., and Yan, W.: Parameter optimization,
sensitivity, and uncertainty analysis of an ecosystem model at a forest flux
tower site in the United States, J. Adv. Model. Earth Sy., 6, 405–419,
2014.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The
significance of nitrification for oceanic new production, Nature, 447,
999–1002, 2007.
Yool, A., Popova, E. E., and Anderson, T. R.: Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain, Geosci. Model Dev., 4, 381–417, https://doi.org/10.5194/gmd-4-381-2011, 2011.
Zambrano, J., Krustok, I., Nehrenheim, E., and Carlsson, B.: A simple model
for algae-bacteria interaction in photo-bioreactors, Algal Res., 19, 155–161,
2016.
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by...
Altmetrics
Final-revised paper
Preprint