Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1769-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1769-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Debjani Sihi
Climate Change Science Institute and Environmental Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Department of Environmental Sciences, Emory
University, Atlanta, GA 30322, USA
Xiaofeng Xu
Department of Biology, San Diego State University, San Diego, CA
92182-4614, USA
Mónica Salazar Ortiz
Institute of Plant Science and Microbiology, University of
Hamburg, 20148 Hamburg, Germany
Christine S. O'Connell
Department of Environmental Science, Policy and Management, University
of California, Berkeley, CA 94720-3114, USA
Department of Environmental Studies, Macalester
College, St. Paul, MN 55105-1899, USA
Whendee L. Silver
Department of Environmental Science, Policy and Management, University
of California, Berkeley, CA 94720-3114, USA
Carla López-Lloreda
Department of Natural Resources and the Environment, University of New
Hampshire, Durham, NH 03824, USA
Julia M. Brenner
Climate Change Science Institute and Environmental Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
currently at: Research and Development Department for Jarðgerðarfélagið, 101 Reykjavík, Iceland
Ryan K. Quinn
Climate Change Science Institute and Environmental Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Department of Biology, Boston University, Boston, MA 02215, USA
Jana R. Phillips
Climate Change Science Institute and Environmental Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Brent D. Newman
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA
Climate Change Science Institute and Environmental Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Related authors
No articles found.
Rui Su, Kexin Li, Nannan Wang, Fenghui Yuan, Ying Zhao, Yunjiang Zuo, Ying Sun, Liyuan He, Lixin Yang, Xiaofeng Xu, and Lihua Zhang
Biogeosciences, 22, 5625–5634, https://doi.org/10.5194/bg-22-5625-2025, https://doi.org/10.5194/bg-22-5625-2025, 2025
Short summary
Short summary
This research examines the effect of sulfate on methane oxidation in soil, finding that sulfate may facilitate methane oxidation. Considering methane's role as a greenhouse gas and rising sulfate deposition, the study aims to predict changes in methane oxidation due to acid deposition. Future experiments will explore microbial mechanisms, as sulfate reduces methane emissions while also enhancing its consumption, providing insights for mitigation strategies.
Christian Mark Garcia Salvador, Jeffrey D. Wood, Emma Grace Cochran, Hunter A. Seubert, Bella D. Kamplain, Sam S. Overby, Kevin R. Birdwell, Lianhong Gu, and Melanie A. Mayes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1808, https://doi.org/10.5194/egusphere-2024-1808, 2024
Short summary
Short summary
Critical volatile organic compounds were continuously measured in a temperate deciduous and juniper forest in the midwestern US using PTR-ToF-MS. The forest included several sources of biogenic compounds and was influenced by short- and long-range transport of anthropogenic emissions. Extreme heat and wildfire emissions impacted the atmospheric conditions of the forest during the field measurement; such emissions are vital phenomena that provide insights into future climate.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Short summary
Degrading permafrost and shrub expansion are critically important to tundra biogeochemistry. We observed significant variability in soil pore water NO3-N in an alder-dominated permafrost hillslope in Alaska. Proximity to alder shrubs and the presence or absence of topographic gradients and precipitation events strongly influence NO3-N availability and mobility. The highly dynamic nature of labile N on small spatiotemporal scales has implications for nutrient responses to a warming Arctic.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Cited articles
Amaral, J. A., Ren, T., and Knowles, R.: Atmospheric methane consumption by
forest soils and extracted bacteria at different pH values, Appl. Environ.
Microbiol., 64, 2397–2402, 1998.
Andersen, B. L., Bidoglio, G., Leip, A., and Rembges, D.: A new method to
study simultaneous methane oxidation and methane production in soils, Global
Biogeochem. Cy., 12, 587–594, https://doi.org/10.1029/98GB01975, 1998.
Aronson, E. L., Dierick, D., Botthoff, J., Oberbauer, S., Zelikova, T. J.,
Harmon, T. C., Rundel, P., Johnson, R. F., Swanson, A. C., and
Pinto-Tomás, A. A.: ENSO-influenced drought drives methane flux dynamics
in a tropical wet forest soil, J. Geophys. Res.-Biogeo., 124, 2267–2276,
https://doi.org/10.1029/2018JG004832, 2019.
Atlas, R. M. and Bartha, R.: Microbial ecology: fundamentals and applications, The Benjamim/Cummings, Menlo Park, 2nd Edn., 533 pp., 1987.
Barcellos, D., O'Connell, C. S., Silver, W., Meile, C., and Thompson, A.:
Hot spots and hot moments of soil moisture explain fluctuations in iron and
carbon cycling in a humid tropical forest soil, Soil Systems, 2, 59,
https://doi.org/10.3390/soilsystems2040059, 2018.
Bhattacharyya, A., Campbell, A. N., Tfaily, M. M., Lin, Y., Kukkadapu, R.
K., Silver, W. L., Nico, P. S., and Pett-Ridge, J.: Redox fluctuations
control the coupled cycling of iron and carbon in tropical forest soils,
Environ. Sci. Technol., 52, 14129–14139,
https://doi.org/10.1021/acs.est.8b03408, 2018.
Bidot, C., Monod, H., and Taupin, M.-L.: A quick guide to multisensi, an R
package for multivariate sensitivity analyses, available at:
https://mran.microsoft.com/snapshot/2017-08-06/web/packages/multisensi/vignettes/multisensi-vignette.pdf (last access: 16 February 2021),
2018.
Birch, H.: The effect of soil drying on humus decomposition and nitrogen
availability, Plant Soil, 10, 9–31, 1958.
Blazewicz, S. J., Petersen, D. G., Waldrop, M. P., and Firestone, M. K.:
Anaerobic oxidation of methane in tropical and boreal soils: ecological
significance in terrestrial methane cycling, J. Geophys. Res., 117, G02033,
https://doi.org/10.1029/2011JG001864, 2012.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bosse, U. and Frenzel, P.: Methane emissions from rice microcosms: the
balance of production, accumulation and oxidation, Biogeochemistry, 41,
199–214, 1998.
Brenner, J., Porter, W., Phillips, J. R., Childs, J., Yang, X., and Mayes,
M. A.: Phosphorus sorption on tropical soils with relevance to Earth system
model needs, Soil Res., 57, 17–27, https://doi.org/10.1071/SR18197, 2019.
Buan, N. R.: Methanogens: pushing the boundaries of biology, Emerg. Top. Life Sci., 2, 629–646, https://doi.org/10.1042/ETLS20180031, 2018.
Cabrol, L., Marone, A., Tapia-Venegas, E., Steyer, J. P., Ruiz-Filippi, G.,
and Trably, E.: Microbial ecology of fermentative hydrogen producing
bioprocesses: useful insights for driving the ecosystem function, FEMS
Microbiol. Rev., 41, 158–181, 2017.
Cabugao, K. G., Yaffar, D., Stenson, N., Childs, J., Phillips, J., Mayes, M.
A., Yang, X., Weston, D. J., and Norby, R. J.: Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico, Ecol. Evol., 11, 1150–1164, https://doi.org/10.1002/ece3.7036, 2021.
Cao, M., Dent, J., and Heal, O.: Modeling methane emissions from rice
paddies, Global Biogeochem. Cy., 9, 183–195,
https://doi.org/10.1029/94GB03231, 1995.
Cattânio, J. H., Davidson, E. A., Nepstad, D. C., Verchot, L. V., and
Ackerman, I. L.: Unexpected results of a pilot throughfall exclusion
experiment on soil emissions of CO2, CH4, N2O, and NO in
eastern Amazonia, Biol. Fert. Soils, 36, 102–108, https://doi.org/10.1007/s00374-002-0517-x,
2002.
Chadwick, R., Good, P., Martin, G., and Rowell, D. P.: Large rainfall
changes consistently projected over substantial areas of tropical land, Nat.
Clim. Change, 6, 177–181, https://doi.org/10.1038/NCLIMATE2805, 2016.
Conrad, R.: Control of methane production in terrestrial ecosystems, in: John Wiley & Sons, Chichester, 39–58, 1989.
Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases
(H2, CO, CH4, OCS, N2O, and NO), Microbiol. Mol. Biol. Rev.,
60, 609–640, 1996.
Conrad, R. and Klose, M.: Anaerobic conversion of carbon dioxide to
methane, acetate and propionate on washed rice roots, FEMS Microbiol. Ecol.,
30, 147–155, https://doi.org/10.1111/j.1574-6941.1999.tb00643.x, 1999.
Cusack, D. F., Silver, W. L., and McDowell, W. H.: Biological
nitrogen fixation in two tropical forests: ecosystem-level patterns and
effects of nitrogen fertilization, Ecosystems, 12, 1299–1315, 2009.
Davidson, E. A. and Trumbore, S. E.: Gas diffusivity and production of
CO2 in deep soils of the eastern Amazon, Tellus B, 47, 550–565, https://doi.org/10.3402/tellusb.v47i5.16071, 1995.
Davidson, E. A., Ishida, F. Y., and Nepstad, D. C.: Effects of an
experimental drought on soil emissions of carbon dioxide, methane, nitrous
oxide, and nitric oxide in a moist tropical forest, Glob. Change Biol., 10,
718–730, https://doi.org/10.1111/j.1365-2486.2004.00762.x, 2004.
Davidson, E. A., Savage, K. E., Trumbore, S. E., and Borken, W.: Vertical
partitioning of CO2 production within a temperate forest soil, Glob.
Change Biol., 12, 944–956, https://doi.org/10.1111/j.1365-2486.2005.01142.x,
2006.
Davidson, E. A., Nepstad, D. C., Ishida, F. Y., and Brando, P. M.: Effects
of an experimental drought and recovery on soil emissions of carbon dioxide,
methane, nitrous oxide, and nitric oxide in a moist tropical forest, Glob.
Change Biol., 14, 2582–2590,
https://doi.org/10.1111/j.1365-2486.2008.01694.x, 2008.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual
Arrhenius and Michaelis–Menten kinetics model for decomposition of soil
organic matter at hourly to seasonal time scales, Glob. Change Biol., 18,
371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S., and
Kartal, B.: Archaea catalyze iron-dependent anaerobic oxidation of methane,
P. Natl. Acad. Sci. USA, 113, 12792–12796, https://doi.org/10.1073/pnas.1609534113,
2016.
Fennell, D. E. and Gossett, J. M.: Modeling the production of and competition for hydrogen in a dechlorinating culture, Environ. Sc. Technol., 32, 2450–2460, https://doi.org/10.1021/es980136l, 1998.
Goberna, M., Gadermaier, M., García, C., Wett, B., and Insam, H.:
Adaptation of methanogenic communities to the cofermentation of cattle
excreta and olive mill wastes at 37 ∘C and 55 ∘C,
Appl. Environ. Microb., 76, 19, 6564–6571, https://doi.org/10.1128/AEM.00961-10, 2010.
Grant, R. F.: Simulation of methanogenesis in the mathematical model ecosys, Soil Biol. Biochem., 30, 883–896, https://doi.org/10.1016/S0038-0717(97)00218-6, 1998.
Hall, S. J. and Silver, W. L.: Iron oxidation stimulates organic matter
decomposition in humid tropical forest soils, Glob. Change Biol., 19,
2804–2813, https://doi.org/10.1111/gcb.12229, 2013.
Hall, S. J. and Silver, W. L.: Reducing conditions, reactive metals, and
their interactions can explain spatial patterns of surface soil carbon in a
humid tropical forest, Biogeochemistry, 125, 149–165,
https://doi.org/10.1007/s10533-015-0120-5, 2015.
Hall, S. J., Liptzin, D., Buss, H. L., DeAngelis, K., and Silver, W. L.:
Drivers and patterns of iron redox cycling from surface to bedrock in a deep
tropical forest soil: A new conceptual model, Biogeochemistry, 130,
177–190, 2016.
Harris, N. L., Lugo, A. E., Brown, S., and Heartsill-Scalley, T. (Eds.):
Luquillo Experimental Forest: Research history and Opportunities, EFR-1,
Washington, DC, U.S. Department of Agriculture, 152 pp., 2012.
Heartsill-Scalley, T., Scatena, F. N., Estrada, C., McDowell, W., and Lugo,
A. E.: Disturbance and long-term patterns of rainfall and throughfall
nutrient fluxes in a subtropical wet forest in Puerto Rico, J. Hydrol., 333,
472–485, https://doi.org/10.1016/j.jhydrol.2006.09.019, 2007.
Johnson, A. H., Xing, H. X., and Scatena, F. N.: Controls on soil carbon
stocks in El Yunque National Forest, Puerto Rico, Soil Sci. Soc. Am. J., 79,
294–304, https://doi.org/10.2136/sssaj2014.05.0199, 2014.
Jones, D., Dennis, P., Owen, A., and Van Hees, P.: Organic acid behavior in
soils–misconceptions and knowledge gaps, Plant Soil, 248, 31–41, 2003.
Keller, M. and Matson, P. A.: Biosphere-atmosphere exchange of trace gases
in the tropics: Evaluating the effects of land use changes, in: Global
Atmospheric-Biospheric Chemistry, Springer, 103–117,
https://doi.org/10.1007/978-1-4615-2524-0, 1994.
Kettunen, A.: Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study, Global Biogeochem. Cy., 17, 1051, https://doi.org/10.1029/2002GB001958, 2003.
Liptzin, D., Silver, W. L., and Detto, M.: Temporal dynamics in soil oxygen
and greenhouse gases in two humid tropical forests, Ecosystems, 14, 171–182,
https://doi.org/10.1007/s10021-010-9402-x, 2011.
Massman, W.: A review of the molecular diffusivities of H2O, CO2,
CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in
air, O2 and N2 near STP, Atmos. Environ., 32, 1111–1127,
https://doi.org/10.1016/S1352-2310(97)00391-9, 1998.
McGill, W. B., Hunt, H. W., Woodmansee, R. G., and Reuss, J. O.: Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils, Ecol. Bull., 33, 49–115, 1981.
McNicol, G. and Silver, W. L.: Separate effects of flooding and
anaerobiosis on soil greenhouse gas emissions and redox sensitive
biogeochemistry, J. Geophys. Res.-Biogeo., 119, 557–566,
https://doi.org/10.1002/2013JG002433, 2014.
Megonigal, J. P. and Geunther, A. B.: Methane emissions from upland forest
soils and vegetation, Tree Physiol., 28, 491–498, 2008.
Narrowe, A. B., Borton, M. A., Hoyt, D. W., Smith, G. J., Daly, R. A.,
Angle, J. C., Eder, E. K., Wong, A. R., Wolfe, R. A., Pappas, A., Bohrer,
G., Miller, C. S., and Wrighton, K. A.: Uncovering the diversity and
activity of methylotrophic methanogens in freshwater wetland soils,
mSystems, 4, e00320-19, https://doi.org/10.1128/mSystems.00320-19, 2019.
Neelin, J. D., Münnich, M., Su, H., Meyerson, J. E., and Holloway, C.
E.: Tropical drying trends in global warming models and observations, P.
Natl. Acad. Sci. USA, 103, 6110–6115, https://doi.org/10.1073/pnas.0601798103,
2006.
O'Connell, C. S., Ruan, L., and Silver, W. L.: Drought drives rapid shifts
in tropical rainforest soil biogeochemistry and greenhouse gas emissions,
Nat. Commun., 9, 1–9, https://doi.org/10.1038/s41467-018-03352-3, 2018.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church, J. A., Clarke, L., Dahe, Q., and Dasgupta, P.: Climate
change 2014: Synthesis report. Contribution of Working Groups I, II and III
to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, IPCC, https://doi.org/10.1013/epic.45156.d001, 2014.
Papendick, R. and Campbell, G. S.: Theory and measurement of water
potential, Water Potential Relations in Soil Microbiology, 9, 1–22, 1981.
Parfitt, R. L., Atkinson, R. J., and Smart, R. S. C.: The mechanism of
phosphate fixation by iron oxides, Soil Sci. Soc. Am. J., 39, 837–841,
https://doi.org/10.2136/sssaj1975.03615995003900050017x, 1975.
Parton, W., Silver, W. L., Burke, I., Grassens, L., Harmon, M. E., Currie,
W. S., King, J. Y., Adair, E. C., Brandt, L. A., Hart, S. C., and Fasth, B.:
Global-scale similarities in nitrogen release patterns during long-term
decomposition, Science, 315, 361–364, https://doi.org/10.1126/science.1134853, 2007.
Patil, I.: ggstatsplot: “ggplot2” Based Plots with Statistical Details,
Zenodo, https://doi.org/10.5281/zenodo.2074621, 2018.
Pavlov, M. Y. and Ehrenberg, M.: Optimal control of gene expression for
fast proteome adaptation to environmental change, Proc. Natl. Acad. Sci.
USA, 110, 20527–20532, https://doi.org/10.1073/pnas.1309356110, 2013.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T.,
Niinistö, S., Lohila, A., Larmola, T., Morero, M., and Pihlatie, M.:
Comparison of different chamber techniques for measuring soil CO2
efflux, Agr. Forest Meteorol., 123, 159–176,
https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
R Core Team.: R: A language and environment for statistical computing,
Vienna, Austria, available at: https://www.r-project.org/ (last access: 16 February 2021), 2018.
Roussel E. G., Cragg, B. A., Webster, G., Sass, H., Tang, X., Williams, A.
S., Gorra, R., Weightman, A. J., and Parkes, R. J.: Complex coupled
metabolic and prokaryotic community responses to increasing temperatures in
anaerobic marine sediments: Critical temperatures and substrate changes,
FEMS Microbiol. Ecol., 91, fiv084, https://doi.org/10.1093/femsec/fiv084,
2015.
Scatena, F. and Lugo, A. E.: Geomorphology, disturbance, and the soil and
vegetation of two subtropical wet steepland watersheds of Puerto Rico,
Geomorphology, 13, 199–213, https://doi.org/10.1016/0169-555X(95)00021-V,
1995.
Scatena, F. N.: An introduction to the physiography and history of the
Bisley Experimental Watersheds in the Luquillo Mountains of Puerto Rico,
Gen. Tech. Rep. SO-72, New Orleans, LA: US Dept of Agriculture, Forest
Service, Southern Forest Experiment Station, Vol. 72, 22 pp., 1989.
Segers, R.: Methane production and methane consumption: a review of processes underlying wetland methane fluxes, Biogeochemistry, 41, 23–51, https://doi.org/10.1023/A:1005929032764, 1998.
Servais, P., Billen, G., and Rego, J. V.: Rate of bacterial mortality in aquatic environments, Appl. Environ. Microbiol., 49, 1448–1454, 1985.
Sihi, D.: PR-model v1.0., Zenodo, https://doi.org/10.5281/zenodo.3890562, 2020.
Sihi, D., Davidson, E. A., Chen, M., Savage, K. E., Richardson, A. D.,
Keenan, T. F., and Hollinger, D. Y.: Merging a mechanistic enzymatic model
of soil heterotrophic respiration into an ecosystem model in two AmeriFlux
sites of northeastern USA, Agr. Forest Meteorol., 252, 155–166,
https://doi.org/10.1016/j.agrformet.2018.01.026, 2018.
Sihi, D., Davidson, E. A., Savage, K. E., and Liang, D.: Simultaneous
numerical representation of soil microsite production and consumption of
carbon dioxide, methane, and nitrous oxide using probability distribution
functions, Glob. Change Biol., 26, 200–218,
https://doi.org/10.1111/gcb.14855, 2020a.
Sihi, D., López-Lloreda, C., Brenner J. M., Quinn R. K., Phillips J. R.,
and Mayes, M. A.: Soil chemistry data across a catena in the Luquillo
Experimental Forest, Puerto Rico: A Comprehensive Framework for Modeling
Emissions from Tropical Soils and Wetlands, https://doi.org/10.15485/1618870, 2020b.
Sihi, D., López-Lloreda, C. Brenner J. M., Quinn R. K., Phillips J. R.,
Newman B. D., and Mayes, M. A.: Porewater data across a catena in the Luquillo
Experimental Forest, Puerto Rico: A Comprehensive Framework for Modeling
Emissions from Tropical Soils and Wetlands, https://doi.org/10.15485/1618869, 2020c.
Sihi, D., Salazar-Ortiz, M., and Mayes, M. A.: Soil chamber fluxes (CO2 and CH4)
across a catena in the Luquillo Experimental Forest, Puerto Rico: A
Comprehensive Framework for Modeling Emissions from Tropical Soils and
Wetlands, https://doi.org/10.15485/1632882, 2020d.
Silver, W.: LCZO – Soil Moisture – Soil Respiration, Oxygen and Water Content – El Verde – (2014–2016), HydroShare, available at: http://www.hydroshare.org/resource/4f025f6ba647411c8c16800f607d5baf (last access: 16 February 2021), 2019.
Silver, W. L., Lugo, A., and Keller, M.: Soil oxygen availability and
biogeochemistry along rainfall and topographic gradients in upland wet
tropical forest soils, Biogeochemistry, 44, 301–328, 1999.
Silver, W. L., Liptzin, D., and Almaraz, M.: Soil redox dynamics and
biogeochemistry along a tropical elevation gradient, in: Ecological gradient
analyses in a tropical landscape, edited by: González, G., Willig, M.
R., and Waide, R. B., Ecol. Bull., Wiley-Blackwell, Hoboken, NJ, Vol. 54,
195–210, 2013.
Six, J., Bossuyt, H., Dergryze, S., and Denef, K.: A history of research on the
link between (micro)aggregates, soil biota, and soil organic matter
dynamics, Soil Till. Res., 79, 7–31, 2004.
Smith, P. H. and Mah, R. A.: Kinetics of acetate metabolism during sludge digestion, Appl. Microbiol., 14, 368–371, 1966.
Soetaert, K.: R Package FME: Inverse modelling, sensitivity, Monte
Carlo – Applied to a dynamic simulation model, (CRAN Vignette 2), available
at: https://cran.r-project.org/web/packages/FME/vignettes/FMEdyna.pdf (last access: 16 February 2021),
2016.
Soil Survey Staff: Order 1 Soil Survey of the Luquillo Long-Term Ecological
Research Grid, Puerto Rico, USDA, NRCS, available
at: https://luq.lter.network/content/ (last access: 16 February 2021),
1995.
Tang, G., Zheng, J., Xu, X., Yang, Z., Graham, D. E., Gu, B., Painter, S.
L., and Thornton, P. E.: Biogeochemical modeling of CO2 and CH4
production in anoxic Arctic soil microcosms, Biogeosciences, 13, 5021,
https://doi.org/10.5194/bg-13-5021-2016, 2016.
Teh, Y. A. and Silver, W. L.: Effects of soil structure destruction on
methane production and carbon partitioning between methanogenic pathways in
tropical rain forest soils, J. Geophys. Res.-Biogeo., 111, G01003,
https://doi.org/10.1029/2005JG000020, 2006.
Teh, Y. A., Silver, W. L., and Conrad, M. E.: Oxygen effects on methane
production and oxidation in humid tropical forest soils, Glob. Change Biol.,
11, 1283–1297, https://doi.org/10.1111/j.1365-2486.2005.00983.x, 2005.
Teh, Y. A., Dubinsky, E. A., Silver, W. L., and Carlson, C. M.: Suppression
of methanogenesis by dissimilatory Fe (III)-reducing bacteria in tropical
rain forest soils: Implications for ecosystem methane flux, Glob. Change
Biol., 14, 413–422, https://doi.org/10.1111/j.1365-2486.2007.01487.x, 2008.
Thomas, G. W.: Soil pH and soil acidity, Methods of Soil Analysis: Part 3
Chemical Methods, SSSA Book Series no. 5, Soil Science Society of America, Madison, WI, USA 5, 475–490, https://doi.org/10.2136/sssabookser5.3.c16,
1996.
Thompson, A., Chadwick, O. A., Boman, S., and Chorover, J.: Colloid
mobilization during soil iron redox oscillations, Environ. Sci. Technol.,
40, 5743–5749, https://doi.org/10.1021/es061203b, 2006.
van Hulzen, J. B., Segers, R., van Bodegom, P. M., and Leffelaar, P. A.: Temperature effects on soil methane production: an explanation for observed variability, Soil Biol. Biochem., 31, 1919–1929, https://doi.org/10.1016/S0038-0717(99)00109-1, 1999.
Verchot, L. V., Davidson, E. A., Cattânio, J. H., and Ackerman, I. L.:
Land-use change and biogeochemical controls of methane fluxes in soils of
eastern Amazonia, Ecosystems, 3, 41–56,
https://doi.org/10.1007/s100210000009, 2000.
von Fischer, J. C. and Hedin, L. O.: Separating methane production and
consumption with a field-based isotope pool dilution technique, Global
Biogeochem. Cy., 16, 1034, https://doi.org/10.1029/2001GB001448, 2002.
Wadsworth, F. H.: Forest management in the Luquillo mountains, I-setting,
Caribbean Forester, 12, 114–124, 1951.
Wang, Y., Yuan, F., Yuan, F., Gu, B., Hahn, M. S., Torn, M. S., Ricciuto, D.
M., Kumar, J., He, L., Zona, D., Lipson, D. L., Wagner, R., Oechel, W. C.,
Wullschleger, S. D., Thornton, P. E., and Xu, X.: Mechanistic modeling of
microtopographic impact on CH4 processes in an Alaskan tundra ecosystem
using the CLM-Microbe model, J. Adv. Model. Earth Sy., 11, 4228–4304, 2019.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer-Verlag,
New York, 213 pp., https://doi.org/10.1007/978-0-387-98141-3, 2016.
Wood, T. E. and Silver, W. L.: Strong spatial variability in trace gas
dynamics following experimental drought in a humid tropical forest, Global
Biogeochem. Cy., 26, GB3005, https://doi.org/10.1029/2010GB004014, 2012.
Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L.,
Wullschleger, S. D., and Thornton, P. E.: A microbial functional group-based
module for simulating methane production and consumption: Application to an
incubated permafrost soil, J. Geophys. Res.-Biogeo., 120, 1315–1333,
https://doi.org/10.1002/2015jg002935, 2015.
Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian, H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, 2016.
Xu, X. F., Tian, H. Q., Zhang, C., Liu, M. L., Ren, W., Chen, G. S., Lu, C.
Q., and Bruhwiler, L.: Attribution of spatial and temporal variations in
terrestrial methane flux over North America, Biogeosciences, 7, 3637–3655,
https://doi.org/10.5194/bg-7-3637-2010, 2010.
Zheng, J., Thornton, P. E., Painter, S. L., Gu, B., Wullschleger, S. D., and
Graham, D. E.: Modeling anaerobic soil organic carbon decomposition in
Arctic polygon tundra: insights into soil geochemical influences on carbon
mineralization, Biogeosciences, 16, 663–680, https://doi.org/10.5194/bg-16-663-2019, 2019.
Zimmerman, J.: Meteorological data from El Verde Field Station: NADP Tower, 2000–2020, Luquillo LTER dataset, https://doi.org/10.6073/pasta/d62b391ee1c4e26, 2000.
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Humid tropical soils are important sources and sinks of methane. We used model simulation to...
Altmetrics
Final-revised paper
Preprint