Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1823-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1823-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Michelle N. Simone
CORRESPONDING AUTHOR
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Kai G. Schulz
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Joanne M. Oakes
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Bradley D. Eyre
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Related authors
No articles found.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Stacy Deppeler, Kai G. Schulz, Alyce Hancock, Penelope Pascoe, John McKinlay, and Andrew Davidson
Biogeosciences, 17, 4153–4171, https://doi.org/10.5194/bg-17-4153-2020, https://doi.org/10.5194/bg-17-4153-2020, 2020
Short summary
Short summary
Our study showed how ocean acidification can exert both direct and indirect influences on the interactions among trophic levels within the microbial loop. Microbial grazer abundance was reduced at CO2 concentrations at and above 634 µatm, while microbial communities increased in abundance, likely due to a reduction in being grazed. Such changes in predator–prey interactions with ocean acidification could have significant effects on the food web and biogeochemistry in the Southern Ocean.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Denise Müller-Dum, Thorsten Warneke, Tim Rixen, Moritz Müller, Antje Baum, Aliki Christodoulou, Joanne Oakes, Bradley D. Eyre, and Justus Notholt
Biogeosciences, 16, 17–32, https://doi.org/10.5194/bg-16-17-2019, https://doi.org/10.5194/bg-16-17-2019, 2019
Short summary
Short summary
Southeast Asian peat-draining rivers are potentially strong sources of carbon to the atmosphere due to the large amounts of organic carbon stored in those ecosystems. We present the first assessment of CO2 emissions from the Rajang River, the largest peat-draining river in Malaysia. The peatlands’ influence on the CO2 emissions from the Rajang River was smaller than expected, probably due to their proximity to the coast. Therefore, the Rajang was only a moderate source of CO2 to the atmosphere.
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691–3701, https://doi.org/10.5194/bg-15-3691-2018, https://doi.org/10.5194/bg-15-3691-2018, 2018
Short summary
Short summary
To compare variations in physiological responses to pCO2 between populations, we measured growth, POC and PIC production rates at a pCO2 range from 120 to 2630 µatm for 17 strains of the coccolithophore Emiliania huxleyi from the Azores, Canary Islands, and Norwegian coast near Bergen. Optimal pCO2 for growth and POC production rates and tolerance to low pH was significantly higher for the Bergen population than the Azores and Canary Islands populations.
Natasha A. Gafar and Kai G. Schulz
Biogeosciences, 15, 3541–3560, https://doi.org/10.5194/bg-15-3541-2018, https://doi.org/10.5194/bg-15-3541-2018, 2018
Short summary
Short summary
Emiliania huxleyi and Gephyrocapsa oceanica are the most prolific calcifying phytoplankton in today's oceans. We compare their sensitivity to combined anthropogenic stressors of temperature, light and CO2. For the future, we project a niche contraction for G. oceanica. Furthermore, there was good correlation of our new metric, the CaCO3 production potential, with satellite-derived concentrations in the modern ocean, indicating means of assessing overall coccolithophorid success in the future.
Philip M. Riekenberg, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 15, 2873–2889, https://doi.org/10.5194/bg-15-2873-2018, https://doi.org/10.5194/bg-15-2873-2018, 2018
Short summary
Short summary
Shallow coastal waters are increasingly experiencing increased nutrient loading. Sediment algae within these systems are responsible for a large portion of C production, but we have limited knowledge of what happens to sediment microbial processing of MPB-C under increased nutrient conditions. This work examines how C-processing pathways change after increased short-term nutrient exposure, finding shifts in processing between microbial groups and increased export of algal C from the sediment.
Alyce M. Hancock, Andrew T. Davidson, John McKinlay, Andrew McMinn, Kai G. Schulz, and Rick L. van den Enden
Biogeosciences, 15, 2393–2410, https://doi.org/10.5194/bg-15-2393-2018, https://doi.org/10.5194/bg-15-2393-2018, 2018
Short summary
Short summary
Absorption of carbon dioxide (CO2) realized by humans is decreasing the ocean pH (ocean acidification). Single-celled organisms (microbes) support the Antarctic ecosystem, yet little is known about their sensitivity to ocean acidification. This study shows a shift in a natural Antarctic microbial community, with CO2 levels exceeding 634 μatm changing the community composition and favouring small cells. This would have significant flow effects for Antarctic food webs and elemental cycles.
Georgina Robinson, Thomas MacTavish, Candida Savage, Gary S. Caldwell, Clifford L. W. Jones, Trevor Probyn, Bradley D. Eyre, and Selina M. Stead
Biogeosciences, 15, 1863–1878, https://doi.org/10.5194/bg-15-1863-2018, https://doi.org/10.5194/bg-15-1863-2018, 2018
Short summary
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
Stacy Deppeler, Katherina Petrou, Kai G. Schulz, Karen Westwood, Imojen Pearce, John McKinlay, and Andrew Davidson
Biogeosciences, 15, 209–231, https://doi.org/10.5194/bg-15-209-2018, https://doi.org/10.5194/bg-15-209-2018, 2018
Short summary
Short summary
We combined productivity and photophysiology measurements to investigate the effects of ocean acidification on a natural Antarctic marine microbial community. Our study identifies a threshold for CO2 tolerance in the phytoplankton community between 953 and 1140 μatm of CO2, above which productivity declines. Bacteria were tolerant to CO2 up to 1641 μatm. We identify physiological changes in the phytoplankton at high CO2 that allowed them to acclimate to the high CO2 treatment.
Coulson A. Lantz, Kai G. Schulz, Laura Stoltenberg, and Bradley D. Eyre
Biogeosciences, 14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, https://doi.org/10.5194/bg-14-5377-2017, 2017
Short summary
Short summary
This study examined the combined effect of seawater warming and organic matter enrichment on coral reef sediment metabolism. Sediments under control conditions were net autotrophic and net calcifying. Warming shifted the sediment to net heterotrophy and net dissolution, while organic matter enrichment increased net production and net calcification. When combined, the effects of each treatment were counterbalanced and sediment metabolism did not significantly differ from control treatments.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Hanieh T. Farid, Kai G. Schulz, and Andrew L. Rose
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-129, https://doi.org/10.5194/bg-2017-129, 2017
Manuscript not accepted for further review
Short summary
Short summary
This study provides new insights into: (a) how organic exudates from a marine cyanobacterium may influence iron speciation and bioavailability in the extracellular milieu; and (b) approaches for evaluating rate constants for Fe(II) oxidation in the presence of unknown organic ligands. Given that microorganisms play critical roles in biochemical cycling of trace metals in water systems, the findings are expected to improve nutrient uptake models and be of interest to broad range of readers.
Mitchell Call, Kai G. Schulz, Matheus C. Carvalho, Isaac R. Santos, and Damien T. Maher
Biogeosciences, 14, 1305–1313, https://doi.org/10.5194/bg-14-1305-2017, https://doi.org/10.5194/bg-14-1305-2017, 2017
Short summary
Short summary
The conventional method for determining dissolved inorganic carbon (DIC) and it carbon stable isotope ratio (δ13C–DIC) can be a laborious process which can limit sampling frequency. This paper presents a new approach to autonomously determine DIC & δ13C–DIC at high temporal resolution. The simple method requires no customised design. Instead it uses two commercially available instruments and achieved a sampling resolution of 16 mins with precision and accuracy comparable to conventional methods.
Silke Lischka, Lennart T. Bach, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 14, 447–466, https://doi.org/10.5194/bg-14-447-2017, https://doi.org/10.5194/bg-14-447-2017, 2017
Short summary
Short summary
We conducted a large-scale field experiment using 55 m3 floating containers (mesocosms) to investigate consequences of near-future projected CO2 elevations (ocean acidification) on a Baltic Sea plankton community in Storfjärden (Finland). The focus of our study was on single- and multicelled small-sized organisms dwelling in the water column. Our results suggest that increasing CO2 concentrations may change the species composition and promote specific food web interactions.
Hilton B. Swan, Graham B. Jones, Elisabeth S. M. Deschaseaux, and Bradley D. Eyre
Biogeosciences, 14, 229–239, https://doi.org/10.5194/bg-14-229-2017, https://doi.org/10.5194/bg-14-229-2017, 2017
Short summary
Short summary
We measured the sulfur gas dimethylsulfide (DMS) in marine air at a coral cay on the Great Barrier Reef. DMS is well known to be released from the world's oceans, but environmental evidence of coral reefs releasing DMS has not been clearly demonstrated. We showed the coral reef can sometimes release DMS to the air, which was seen as spikes above the DMS released from the ocean. The DMS from the reef supplements the DMS from the ocean to assist formation of clouds that influence local climate.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Kristian Spilling, Kai G. Schulz, Allanah J. Paul, Tim Boxhammer, Eric P. Achterberg, Thomas Hornick, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Kate Crawfurd, Corina P. D. Brussaard, Hans-Peter Grossart, and Ulf Riebesell
Biogeosciences, 13, 6081–6093, https://doi.org/10.5194/bg-13-6081-2016, https://doi.org/10.5194/bg-13-6081-2016, 2016
Short summary
Short summary
We performed an experiment in the Baltic Sea in order to investigate the consequences of the increasing CO2 levels on biological processes in the free water mass. There was more accumulation of organic carbon at high CO2 levels. Surprisingly, this was caused by reduced loss processes (respiration and bacterial production) in a high-CO2 environment, and not by increased photosynthetic fixation of CO2. Our carbon budget can be used to better disentangle the effects of ocean acidification.
Francesca Gallo, Kai G. Schulz, Eduardo B. Azevedo, João Madruga, and Joana Barcelos e Ramos
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-352, https://doi.org/10.5194/bg-2016-352, 2016
Revised manuscript not accepted
Short summary
Short summary
Global change driven by humans activities may affect phytoplankton, which are important primary producers. Assessing the combined effect of turbulence and ocean acidification on the species Asterionellopsis glacialis, we found that turbulence magnifies the acidification stress, with negative effects on their growth. In the natural environment, this might have consequences to phytoplankton community composition and production with feedbacks to climate.
Kristian Spilling, Allanah J. Paul, Niklas Virkkala, Tom Hastings, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Tim Boxhammer, Kai G. Schulz, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 13, 4707–4719, https://doi.org/10.5194/bg-13-4707-2016, https://doi.org/10.5194/bg-13-4707-2016, 2016
Short summary
Short summary
Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. We determined the plankton community composition and measured primary production, respiration rates and carbon export during an ocean acidification experiment. Our results suggest that increased CO2 reduced respiration and increased net carbon fixation at high CO2. This did not, however, translate into higher carbon export, and consequently did not work as a negative feedback mechanism for decreasing pH.
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Anna Jansson, Silke Lischka, Tim Boxhammer, Kai G. Schulz, and Joanna Norkko
Biogeosciences, 13, 3377–3385, https://doi.org/10.5194/bg-13-3377-2016, https://doi.org/10.5194/bg-13-3377-2016, 2016
Short summary
Short summary
We studied the responses of larvae of Macoma balthica to a range of future CO2 scenarios using large mesocosms encompassing the entire pelagic community. We focused on the growth and settlement process of M. balthica when exposed to future CO2 levels, and found the size and time to settlement to increase along the CO2 gradient, suggesting a developmental delay. The strong impact of increasing CO2 on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations.
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
M. N. Müller, J. Barcelos e Ramos, K. G. Schulz, U. Riebesell, J. Kaźmierczak, F. Gallo, L. Mackinder, Y. Li, P. N. Nesterenko, T. W. Trull, and G. M. Hallegraeff
Biogeosciences, 12, 6493–6501, https://doi.org/10.5194/bg-12-6493-2015, https://doi.org/10.5194/bg-12-6493-2015, 2015
Short summary
Short summary
The White Cliffs of Dover date back to the Cretaceous and are made up of microscopic chalky shells which were produced mainly by marine phytoplankton (coccolithophores). This is iconic proof for their success at times of relatively high seawater calcium concentrations and, as shown here, to be linked to their ability to precipitate calcium as chalk. The invention of calcification can thus be considered an evolutionary milestone allowing coccolithophores to thrive at times when others struggled.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
J. M. Oakes and B. D. Eyre
Biogeosciences, 11, 1927–1940, https://doi.org/10.5194/bg-11-1927-2014, https://doi.org/10.5194/bg-11-1927-2014, 2014
M. N. Müller, M. Lebrato, U. Riebesell, J. Barcelos e Ramos, K. G. Schulz, S. Blanco-Ameijeiras, S. Sett, A. Eisenhauer, and H. M. Stoll
Biogeosciences, 11, 1065–1075, https://doi.org/10.5194/bg-11-1065-2014, https://doi.org/10.5194/bg-11-1065-2014, 2014
B. D. Eyre, I. R. Santos, and D. T. Maher
Biogeosciences, 10, 2601–2615, https://doi.org/10.5194/bg-10-2601-2013, https://doi.org/10.5194/bg-10-2601-2013, 2013
T. Cyronak, I. R. Santos, D. V. Erler, and B. D. Eyre
Biogeosciences, 10, 2467–2480, https://doi.org/10.5194/bg-10-2467-2013, https://doi.org/10.5194/bg-10-2467-2013, 2013
U. Riebesell, J. Czerny, K. von Bröckel, T. Boxhammer, J. Büdenbender, M. Deckelnick, M. Fischer, D. Hoffmann, S. A. Krug, U. Lentz, A. Ludwig, R. Muche, and K. G. Schulz
Biogeosciences, 10, 1835–1847, https://doi.org/10.5194/bg-10-1835-2013, https://doi.org/10.5194/bg-10-1835-2013, 2013
Related subject area
Biogeochemistry: Coastal Ocean
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
High metabolic zinc demand within native Amundsen and Ross Sea phytoplankton communities determined by stable isotope uptake rate measurements
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Responses of microbial metabolic rates to non-equilibrated silicate vs calcium-based ocean alkalinity enhancement
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
Picoplanktonic methane production in eutrophic surface waters
Vertical mixing alleviates autumnal oxygen deficiency in the central North Sea
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Assessing the impacts of simulated Ocean Alkalinity Enhancement on viability and growth of near-shore species of phytoplankton
Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Oceanographic processes driving low-oxygen conditions inside Patagonian fjords
Above- and belowground plant mercury dynamics in a salt marsh estuary in Massachusetts, USA
Reviews and syntheses: Biological Indicators of Oxygen Stress in Water Breathing Animals
Variability and drivers of carbonate chemistry at shellfish aquaculture sites in the Salish Sea, British Columbia
Unusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters
Insights into carbonate environmental conditions in the Chukchi Sea
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
The additionality problem of ocean alkalinity enhancement
Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings
Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords
Influence of a small submarine canyon on biogenic matter export flux in the lower St. Lawrence Estuary, eastern Canada
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: a case study in the Hinase area, Okayama Prefecture, and Shizugawa Bay, Miyagi Prefecture, Japan
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
Influence of manganese cycling on alkalinity in the redox stratified water column of Chesapeake Bay
Estuarine flocculation dynamics of organic carbon and metals from boreal acid sulfate soils
Drivers of particle sinking velocities in the Peruvian upwelling system
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Considerations for hypothetical carbon dioxide removal via alkalinity addition in the Amazon River watershed
High metabolism and periodic hypoxia associated with drifting macrophyte detritus in the shallow subtidal Baltic Sea
Production and accumulation of reef framework by calcifying corals and macroalgae on a remote Indian Ocean cay
Zooplankton community succession and trophic links during a mesocosm experiment in the coastal upwelling off Callao Bay (Peru)
Temporal and spatial evolution of bottom-water hypoxia in the St Lawrence estuarine system
Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan
Contrasts in dissolved, particulate, and sedimentary organic carbon from the Kolyma River to the East Siberian Shelf
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-2085, https://doi.org/10.5194/egusphere-2024-2085, 2024
Short summary
Short summary
Southern Ocean phytoplankton play a pivotal role in regulating the uptake and sequestration of carbon dioxide from the atmosphere. This study describes a new stable zinc isotope uptake rate measurement method used to quantify zinc and cadmium uptake rates within native Southern Ocean phytoplankton communities. This data can better inform biogeochemical model predictions of primary production, carbon export, and atmospheric carbon dioxide flux.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Laura Marin-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1776, https://doi.org/10.5194/egusphere-2024-1776, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2 equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and its ecological implications
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024, https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Short summary
We measured nutrients and dissolved organic matter for 1 year in a eutrophic tropical estuary to understand their sources and cycling. Our data show that the dissolved organic matter originates partly from land and partly from microbial processes in the water. Internal recycling is likely important for maintaining high nutrient concentrations, and we found that there is often excess nitrogen compared to silicon and phosphorus. Our data help to explain how eutrophication persists in this system.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Sandy E. Tenorio and Laura Farías
Biogeosciences, 21, 2029–2050, https://doi.org/10.5194/bg-21-2029-2024, https://doi.org/10.5194/bg-21-2029-2024, 2024
Short summary
Short summary
Time series studies show that CH4 is highly dynamic on the coastal ocean surface and planktonic communities are linked to CH4 accumulation, as found in coastal upwelling off Chile. We have identified the crucial role of picoplankton (> 3 µm) in CH4 recycling, especially with the addition of methylated substrates (trimethylamine and methylphosphonic acid) during upwelling and non-upwelling periods. These insights improve understanding of surface ocean CH4 recycling, aiding CH4 emission estimates.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
EGUsphere, https://doi.org/10.5194/egusphere-2024-971, https://doi.org/10.5194/egusphere-2024-971, 2024
Short summary
Short summary
OAE is a promising negative emission technology that could restore the oceanic pH and carbonate system to a pre-industrial state. To our knowledge, this paper is the first to assess the potential impact of OAE on phytoplankton through an analysis of prior studies and the effects of simulated OAE on photosynthetic competence. Our findings suggest that there may be little if any significant impact on most phytoplankton studied to date if OAE is conducted in well-flushed, near-shore environments.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Luisa Chiara Meiritz, Tim Rixen, Anja K. van der Plas, Tarron Lamont, and Niko Lahajnar
EGUsphere, https://doi.org/10.5194/egusphere-2024-700, https://doi.org/10.5194/egusphere-2024-700, 2024
Short summary
Short summary
The transport of particles through the water column and their subsequent burial on the seafloor is an important process for carbon storage and the mediation of carbon dioxide in the oceans. Our results from the Benguela Upwelling System distinguish between the northern and southern parts of the study area and between passive (gravitational) and active (zooplankton) transport processes. The decomposition of organic matter is doubtlessly an important factor for the size of oxygen minimum zones.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
EGUsphere, https://doi.org/10.5194/egusphere-2024-616, https://doi.org/10.5194/egusphere-2024-616, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of oxygen stress for marine animals including their use, research needs and application to confront the challenges of ocean oxygen loss.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024, https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, https://doi.org/10.5194/bg-21-177-2024, 2024
Short summary
Short summary
We carried out parallel year-round observations of pH and related parameters in five stations around the Japan coast. It was found that short-term acidified situations with Omega_ar less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of the main rivers that flow into the coastal area.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
Biogeosciences, 20, 4875–4891, https://doi.org/10.5194/bg-20-4875-2023, https://doi.org/10.5194/bg-20-4875-2023, 2023
Short summary
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Masahiko Fujii, Ryuji Hamanoue, Lawrence Patrick Cases Bernardo, Tsuneo Ono, Akihiro Dazai, Shigeyuki Oomoto, Masahide Wakita, and Takehiro Tanaka
Biogeosciences, 20, 4527–4549, https://doi.org/10.5194/bg-20-4527-2023, https://doi.org/10.5194/bg-20-4527-2023, 2023
Short summary
Short summary
This is the first study of the current and future impacts of climate change on Pacific oyster farming in Japan. Future coastal warming and acidification may affect oyster larvae as a result of longer exposure to lower-pH waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. To minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures may be required.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Aubin Thibault de Chanvalon, George W. Luther, Emily R. Estes, Jennifer Necker, Bradley M. Tebo, Jianzhong Su, and Wei-Jun Cai
Biogeosciences, 20, 3053–3071, https://doi.org/10.5194/bg-20-3053-2023, https://doi.org/10.5194/bg-20-3053-2023, 2023
Short summary
Short summary
The intensity of the oceanic trap of CO2 released by anthropogenic activities depends on the alkalinity brought by continental weathering. Between ocean and continent, coastal water and estuaries can limit or favour the alkalinity transfer. This study investigate new interactions between dissolved metals and alkalinity in the oxygen-depleted zone of estuaries.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023, https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Short summary
The sinking velocity of marine particles affects how much atmospheric CO2 is stored inside our oceans. We measured particle sinking velocities in the Peruvian upwelling system and assessed their physical and biochemical drivers. We found that sinking velocity was mainly influenced by particle size and porosity, while ballasting minerals played only a minor role. Our findings help us to better understand the particle sinking dynamics in this highly productive marine system.
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023, https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Short summary
Climate impacts are essential for environmental managers to consider when implementing nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and consequent declines in bay oxygen levels. The results demonstrate that planned water quality improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven impacts on terrestrial runoff.
Linquan Mu, Jaime B. Palter, and Hongjie Wang
Biogeosciences, 20, 1963–1977, https://doi.org/10.5194/bg-20-1963-2023, https://doi.org/10.5194/bg-20-1963-2023, 2023
Short summary
Short summary
Enhancing ocean alkalinity accelerates carbon dioxide removal from the atmosphere. We hypothetically added alkalinity to the Amazon River and examined the increment of the carbon uptake by the Amazon plume. We also investigated the minimum alkalinity addition in which this perturbation at the river mouth could be detected above the natural variability.
Karl M. Attard, Anna Lyssenko, and Iván F. Rodil
Biogeosciences, 20, 1713–1724, https://doi.org/10.5194/bg-20-1713-2023, https://doi.org/10.5194/bg-20-1713-2023, 2023
Short summary
Short summary
Aquatic plants produce a large amount of organic matter through photosynthesis that, following erosion, is deposited on the seafloor. In this study, we show that plant detritus can trigger low-oxygen conditions (hypoxia) in shallow coastal waters, making conditions challenging for most marine animals. We propose that the occurrence of hypoxia may be underestimated because measurements typically do not consider the region closest to the seafloor, where detritus accumulates.
M. James McLaughlin, Cindy Bessey, Gary A. Kendrick, John Keesing, and Ylva S. Olsen
Biogeosciences, 20, 1011–1026, https://doi.org/10.5194/bg-20-1011-2023, https://doi.org/10.5194/bg-20-1011-2023, 2023
Short summary
Short summary
Coral reefs face increasing pressures from environmental change at present. The coral reef framework is produced by corals and calcifying algae. The Kimberley region of Western Australia has escaped land-based anthropogenic impacts. Specimens of the dominant coral and algae were collected from Browse Island's reef platform and incubated in mesocosms to measure calcification and production patterns of oxygen. This study provides important data on reef building and climate-driven effects.
Patricia Ayón Dejo, Elda Luz Pinedo Arteaga, Anna Schukat, Jan Taucher, Rainer Kiko, Helena Hauss, Sabrina Dorschner, Wilhelm Hagen, Mariona Segura-Noguera, and Silke Lischka
Biogeosciences, 20, 945–969, https://doi.org/10.5194/bg-20-945-2023, https://doi.org/10.5194/bg-20-945-2023, 2023
Short summary
Short summary
Ocean upwelling regions are highly productive. With ocean warming, severe changes in upwelling frequency and/or intensity and expansion of accompanying oxygen minimum zones are projected. In a field experiment off Peru, we investigated how different upwelling intensities affect the pelagic food web and found failed reproduction of dominant zooplankton. The changes projected could severely impact the reproductive success of zooplankton communities and the pelagic food web in upwelling regions.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Sachi Umezawa, Manami Tozawa, Yuichi Nosaka, Daiki Nomura, Hiroji Onishi, Hiroto Abe, Tetsuya Takatsu, and Atsushi Ooki
Biogeosciences, 20, 421–438, https://doi.org/10.5194/bg-20-421-2023, https://doi.org/10.5194/bg-20-421-2023, 2023
Short summary
Short summary
We conducted repetitive observations in Funka Bay, Japan, during the spring bloom 2019. We found nutrient concentration decreases in the dark subsurface layer during the bloom. Incubation experiments confirmed that diatoms could consume nutrients at a substantial rate, even in darkness. We concluded that the nutrient reduction was mainly caused by nutrient consumption by diatoms in the dark.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Cited articles
Admiraal, W.: The ecology of estuarine sediment-inhabiting diatoms, in:
Progress in phycological Research, edited by: Round, F. E., and Chapman, D.
J., Biopress, Bristol, 269–322, 1984.
Allen, A., Gillooly, J., and Brown, J.: Linking the global carbon cycle to
individual metabolism, Funct. Ecol., 19, 202–213, https://doi.org/10.1111/j.1365-2435.2005.00952.x, 2005.
Allen, H. L.: Low molecular weight dissolved organic matter in five
soft-water ecosystems: a preliminary study and ecological implications: With
3 figures and 2 tables in the text and on 1 folder, Internationale
Vereinigung für theoretische und angewandte Limnologie: Verhandlungen,
20, 514–524, 1978.
Apple, J., Smith, E., and Boyd, T.: Temperature, Salinity, Nutrients, and
the Covariation of Bacterial Production and Chlorophyll-a in Estuarine
Ecosystems, J. Coast. Res., 2008, 59–75, https://doi.org/10.2112/SI55-005.1, 2008.
Apple, J. K., del Giorgio, P. A., and Kemp, W. M.: Temperature regulation of
bacterial production, respiration, and growth efficiency in a temperate
salt-marsh estuary, Aquat. Microb. Ecol., 43, 243–254, https://doi.org/10.3354/ame043243, 2006.
Azam, F.: Microbial control of oceanic carbon flux: the plot thickens,
Science, 280, 694–696, https://doi.org/10.1126/science.280.5364.694, 1998.
Bauer, J. and Bianchi, T.: Dissolved Organic Carbon Cycling and
Transformation, in: Treatise on estuarine and coastal science, edited by: Wolanski, E. and
McLusky, D. S., Academic Press, Waltham, 7–67, 2011.
Bauer, J. E. and Druffel, E. R. M.: Ocean margins as a significant source
of organic matter to the deep open ocean, Nature, 392, 482–485, https://doi.org/10.1038/33122, 1998.
Boto, K. G., Alongi, D. M., and Nott, A. L.: Dissolved organic
carbon-bacteria interactions at sediment-water interface in a tropical
mangrove system, Mar. Ecol.-Prog. Ser., 51, 243–251, https://doi.org/10.3354/meps051243, 1989.
Boudreau, B. P. and Jørgensen, B. B.: The benthic boundary layer:
Transport processes and biogeochemistry, Oxford University Press, New York, 2001.
Brailsford, F. L., Glanville, H. C., Golyshin, P. N., Johnes, P. J., Yates,
C. A., and Jones, D. L.: Microbial uptake kinetics of dissolved organic
carbon (DOC) compound groups from river water and sediments, Sci. Rep.-UK, 9,
11229, https://doi.org/10.1038/s41598-019-47749-6, 2019.
Carlson, C. A.: Production and Removal Processes, in: Biogeochemistry of
Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C.
A., Academic Press, San Diego, 2002.
Chróst, R. J.: Ectoenzymes in aquatic environments: Microbial strategy
for substrate supply, SIL Proceedings, 1922–2010, 24, 2597–2600, https://doi.org/10.1080/03680770.1989.11900030, 1991.
Chróst, R. J.: Significance of bacterial ectoenzymes in aquatic
environments, Hydrobiologia, 243, 61–70, https://doi.org/10.1007/BF00007020, 1992.
Church, M. J.: Resource control of bacterial dynamics in the sea, in:
Microbial ecology of the oceans, edited by: Kirchman, D. L., 335–382, 2008.
Cook, P. L., Veuger, B., Böer, S., and Middelburg, J. J.: Effect of
nutrient availability on carbon and nitrogen incorporation and flows through
benthic algae and bacteria in near-shore sandy sediment, Aquat. Microb.
Ecol., 49, 165–180, https://doi.org/10.3354/ame01142, 2007.
Cook, P. L. M. and Røy, H.: Advective relief of CO2 limitation in
microphytobenthos in highly productive sandy sediments, Limnol. Oceanogr.,
51, 1594–1601, https://doi.org/10.4319/lo.2006.51.4.1594, 2006.
Cook, P. L. M., Butler, E. C., and Eyre, B. D.: Carbon and nitrogen cycling
on intertidal mudflats of a temperate Australian estuary. I. Benthic
metabolism, Mar. Ecol.-Prog. Ser., 280, 25–38, https://doi.org/10.3354/meps280025,
2004.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O'Neill, R. V., and Paruelo, J.: The value of the
world's ecosystem services and natural capital, Nature, 387, 253, https://doi.org/10.1038/387253a0, 1997.
Cyronak, T. and Eyre, B. D.: The synergistic effects of ocean acidification
and organic metabolism on calcium carbonate (CaCO3) dissolution in
coral reef sediments, Mar. Chem., 183, 1–12, https://doi.org/10.1016/j.marchem.2016.05.001, 2016.
Czerny, J., Schulz, K. G., Boxhammer, T., Bellerby, R. G. J., Büdenbender, J., Engel, A., Krug, S. A., Ludwig, A., Nachtigall, K., Nondal, G., Niehoff, B., Silyakova, A., and Riebesell, U.: Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach, Biogeosciences, 10, 3109–3125, https://doi.org/10.5194/bg-10-3109-2013, 2013.
D'Avanzo, C., Kremer, J. N., and Wainright, S. C.: Ecosystem production and
respiration in response to eutrophication in shallow temperate estuaries,
Mar. Ecol.-Prog. Ser., 141, 263–274, https://doi.org/10.3354/meps141263, 1996.
Dickson, A.: Standards for Ocean Measurements, Oceanography, 23, 34–47, https://doi.org/10.5670/oceanog.2010.22, 2010.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media, Deep-Sea
Res. Pt. A, 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in
potassium chloride solutions from 273.15 to 318.15 K, J. Chem. Eng. Data.,
35, 253–257, https://doi.org/10.1021/je00061a009, 1990.
Duan, S.-W. and Kaushal, S. S.: Warming increases carbon and nutrient fluxes from sediments in streams across land use, Biogeosciences, 10, 1193–1207, https://doi.org/10.5194/bg-10-1193-2013, 2013.
Duarte, C. M.: Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget, Biogeosciences, 14, 301–310, https://doi.org/10.5194/bg-14-301-2017, 2017.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M. and Cebrián, J.: The fate of marine autotrophic
production, Limnol. Oceanogr., 41, 1758–1766, https://doi.org/10.4319/lo.1996.41.8.1758, 1996.
Engel, A., Händel, N., Wohlers, J., Lunau, M., Grossart, H.-P., Sommer,
U., and Riebesell, U.: Effects of sea surface warming on the production and
composition of dissolved organic matter during phytoplankton blooms: results
from a mesocosm study, J. Plankton Res., 33, 357–372, https://doi.org/10.1093/plankt/fbq122, 2011.
Engel, A., Borchard, C., Piontek, J., Schulz, K. G., Riebesell, U., and Bellerby, R.: CO2 increases 14C primary production in an Arctic plankton community, Biogeosciences, 10, 1291–1308, https://doi.org/10.5194/bg-10-1291-2013, 2013.
Eyre, B. D.: Regional evaluation of nutrient transformation and
phytoplankton growth in nine river-dominated sub-tropical east Australian
estuaries, Mar. Ecol.-Prog. Ser., 205, 61–83, https://doi.org/10.3354/meps205061,
2000.
Eyre, B. D. and Ferguson, A. J.: Comparison of carbon production and
decomposition, benthic nutrient fluxes and denitrification in seagrass,
phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate
Australian lagoons, Mar. Ecol.-Prog. Ser., 229, 43–59, https://doi.org/10.3354/meps229043, 2002.
Eyre, B. D. and Pont, D.: Intra-and inter-annual variability in the
different forms of diffuse nitrogen and phosphorus delivered to seven
sub-tropical east Australian estuaries, Estuar. Coast. Shelf S., 57,
137–148, https://doi.org/10.1016/S0272-7714(02)00337-2, 2003.
Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., and
Andersson, A. J.: Coral reefs will transition to net dissolving before end
of century, Science, 359, 908–911, https://doi.org/10.1126/science.aao1118, 2018.
Ferguson, A. J. and Eyre, B. D.: Interaction of benthic microalgae and
macrofauna in the control of benthic metabolism, nutrient fluxes and
denitrification in a shallow sub-tropical coastal embayment (western Moreton
Bay, Australia), Biogeochemistry, 112, 423–440, https://doi.org/10.1007/s10533-012-9736-x, 2013.
Ferguson, A. J., Eyre, B. D., and Gay, J. M.: Organic matter and benthic metabolism in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 33, 137–154, https://doi.org/10.3354/ame033137, 2003.
Ferguson, A. J., Eyre, B. D., and Gay, J. M.: Benthic nutrient fluxes in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 37, 219–235, https://doi.org/10.3354/ame037219, 2004.
Fichot, C. G. and Benner, R.: The fate of terrigenous dissolved organic
carbon in a river-influenced ocean margin, Global Biogeochem. Cy., 28,
300–318, https://doi.org/10.1002/2013gb004670, 2014.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global
occurrence of heavy-precipitation and high-temperature extremes, Nat.
Clim. Change, 5, 560–564, https://doi.org/10.1038/nclimate2617, 2015.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille,
B., Libert, E., and Théate, J.-M.: Carbon dioxide emission from European
estuaries, Science, 282, 434–436, https://doi.org/10.1126/science.282.5388.434, 1998.
Gattuso, J.-P., Gentili, B., Antoine, D., and Doxaran, D.: Global distribution of photosynthetically available radiation on the seafloor, Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, 2020.
Geider, R. J.: Light and temperature dependence of the carbon to chlorophyll
a ratio in microalgae and cyanobacteria: implications for physiology and
growth of phytoplankton, New Phytol., 106, 1–34, https://doi.org/10.1111/j.1469-8137.1987.tb04788.x, 1987.
Greene, R. M., Geider, R. J., Kolber, Z., and Falkowski, P. G.: Iron-induced
changes in light harvesting and photochemical energy conversion processes in
eukaryotic marine algae, Plant Physiol, 100, 565–575, https://doi.org/10.1104/pp.100.2.565, 1992.
Hallett, C. S., Hobday, A. J., Tweedley, J. R., Thompson, P. A., McMahon,
K., and Valesini, F. J.: Observed and predicted impacts of climate change on
the estuaries of south-western Australia, a Mediterranean climate region,
Reg. Environ. Change, 18, 1357–1373, 2018.
Hansell, D. A., Carlson, C. A., Repeta, D. J., and Schlitzer, R.: Dissolved
organic matter in the ocean: A controversy stimulates new insights,
Oceanography, 22, 202–211, https://doi.org/10.5670/oceanog.2009.109, 2009.
Hardison, A. K., Canuel, E. A., Anderson, I. C., Tobias, C. R., Veuger, B., and Waters, M. N.: Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments, Biogeosciences, 10, 5571–5588, https://doi.org/10.5194/bg-10-5571-2013, 2013.
Hedges, J. I.: Organic matter in sea water, Nature, 330, 205–206, https://doi.org/10.1038/330205a0, 1987.
Heip, C. H. R., Goosen, N. K., Herman, P. M. J., Kromkamp, J., Middelburg, J. J., and Soetaert, K.: Production and consumption of biological particles in temperate tidal estuaries, Oceanogr. Mar. Biol. Ann. Rev., 33, 1–149, in: Oceanography and Marine Biology: An Annual Review, Aberdeen University Press/Allen & Unwin, London, 1995.
Herrig, R. and Falkowski, P. G.: Nitrogen limitation in Isochrysis Galbana
(Haptophyceae). I. Photosynthetic energy convesion and growth efficiencies
J. Phycol., 25, 462–471, https://doi.org/10.1111/j.1529-8817.1989.tb00251.x,
1989.
Hopkinson, C. S.: Shallow-water benthic and pelagic metabolism, Mar. Biol.,
87, 19–32, https://doi.org/10.1007/BF00397002, 1985.
IPCC: Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, D. C. R. H.-O., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., 2019.
Jørgensen, B. B.: Material flux in the sediment, in: Eutrophication in
Coastal Marine Ecosystems, edited by: Jørgensen, B. B. and Richardson,
K., Coastal and Estuarine Studies, 115–135, 1996.
Kana, T. M., Geider, R. J., and Critchley, C.: Regulation of photosynthetic
pigments in micro-algae by multiple environmental factors: a dynamic balance
hypothesis, New Phytol., 137, 629–638, https://doi.org/10.1046/j.1469-8137.1997.00857.x, 1997.
Kirchman, D. and Rich, J.: Regulation of bacterial growth rates by
dissolved organic carbon and temperature in the equatorial Pacific Ocean,
Microb. Ecol., 33, 11–20, https://doi.org/10.1007/s002489900003, 1997.
Krause-Jensen, D. and Duarte, C. M.: Substantial role of macroalgae in
marine carbon sequestration, Nat. Geosci., 9, 737–742, https://doi.org/10.1038/ngeo2790, 2016.
Lantz, C. A., Schulz, K. G., Stoltenberg, L., and Eyre, B. D.: The short-term combined effects of temperature and organic matter enrichment on permeable coral reef carbonate sediment metabolism and dissolution, Biogeosciences, 14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, 2017.
Lewis, D. and McConchie, D.: Practical Sedimentology, Chapman and Hall, New York, NY, USA, https://doi.org/10.1007/978-1-4615-2634-6, 1994.
Li, G., Cheng, L., Zhu, J., Trenberth, K. E., Mann, M. E., and Abraham, J.
P.: Increasing ocean stratification over the past half-century, Nat.
Clim. Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2, 2020.
Liu, X., Li, Y., Wu, Y., Huang, B., Dai, M., Fu, F., Hutchins, D. A., and
Gao, K.: Effects of elevated CO2 on phytoplankton during a mesocosm
experiment in the southern eutrophicated coastal water of China, Sci. Rep.-UK,
7, 6868, https://doi.org/10.1038/s41598-017-07195-8, 2017.
Lønborg, C., Álvarez-Salgado, X. A., Letscher, R. T., and Hansell,
D. A.: Large Stimulation of Recalcitrant Dissolved Organic Carbon
Degradation by Increasing Ocean Temperatures, Front. Mar. Sci., 4, 436, https://doi.org/10.3389/fmars.2017.00436, 2018.
López-Urrutia, A. and Morán, X. A. G.: Resource limitation of
bacterial production distorts the temperature dependence of oceanic carbon
cycling, Ecology, 88, 817–822, https://doi.org/10.1890/06-1641, 2007.
Luczak, C., Janquin, M.-A., and Kupka, A.: Simple standard procedure for the
routine determination of organic matter in marine sediment, Hydrobiologia,
345, 87–94, https://doi.org/10.1023/A:1002902626798, 1997.
MacIntyre, H. L., Geider, R. J., and Miller, D. C.: Microphytobenthos: the
ecological role of the “secret garden” of unvegetated, shallow-water
marine habitats. I. Distribution, abundance and primary production,
Estuaries, 19, 186–201, https://doi.org/10.2307/1352224, 1996.
Maher, D. T. and Eyre, B. D.: Benthic fluxes of dissolved organic carbon in
three temperate Australian estuaries: Implications for global estimates of
benthic DOC fluxes, J. Geophys. Res.-Biogeo., 115, G04039,
https://doi.org/10.1029/2010jg001433, 2010.
Malone, T. C. and Conley, D. J.: Trends in Nutrient Loading and
Eutrophication: A Comparison of the Chesapeake Bay and the
Hudson River Estuarine Systems, in: Northeast Shelf Ecosystem:
Assessment, Sustainability, and Management, edited by: Sherman,
K., Jaworski, N. A., and Smayda, T. J., Blackwell Science Ltd, 327–349,
1996.
Mathworks: MATLAB The Mathworks, Inc., Natick, Massachusetts, United States,
2011.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the Apparent Dissociation Constants of Carbonic Acid in
Seawater at Atmospheric Pressure, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Morak, S., Hegerl, G. C., and Christidis, N.: Detectable Changes in the
Frequency of Temperature Extremes, J. Climate, 26, 1561–1574, https://doi.org/10.1175/jcli-d-11-00678.1, 2013.
Moran, M. A. and Hodson, R. E.: Bacterial production on humic and nonhumic
components of dissolved organic carbon, Limnol. Oceanogr., 35, 1744–1756,
https://doi.org/10.4319/lo.1990.35.8.1744, 1990.
Morán, X. A. G., Ducklow, H. W., and Erickson, M.: Single-cell
physiological structure and growth rates of heterotrophic bacteria in a
temperate estuary (Waquoit Bay, Massachusetts), Limnol. Oceanogr., 56,
37–48, https://doi.org/10.4319/lo.2011.56.1.0037, 2011.
Mori, T., Binder, B., and Johnson, C. H.: Circadian gating of cell division
in cyanobacteria growing with average doubling times of less than 24 hours,
P. Natl. Acad. Sci. USA, 93, 10183, https://doi.org/10.1073/pnas.93.19.10183,
1996.
Novak, T., Godrijan, J., Pfannkuchen, D. M., Djakovac, T., Mlakar, M.,
Baricevic, A., Tanković, M. S., and Gašparović, B.: Enhanced
dissolved lipid production as a response to the sea surface warming, J. Mar.
Syst., 180, 289–298, https://doi.org/10.1016/j.jmarsys.2018.01.006, 2018.
Oakes, J. M., Bautista, M. D., Maher, D., Jones, W. B., and Eyre, B. D.:
Carbon self-utilization may assist Caulerpa taxifolia invasion, Limnol.
Oceanogr., 56, 1824–1831, https://doi.org/10.4319/lo.2011.56.5.1824, 2011.
Oakes, J. M., Eyre, B. D., Middelburg, J. J., and Boschker, H. T. S.: Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: Rapid processing and long-term retention revealed by 13C-labeling, Limnol. Oceanogr., 55, 2126–2138, https://doi.org/10.4319/lo.2010.55.5.2126, 2010.
Oakes, J. M., Eyre, B. D., and Middelburg, J. J.: Transformation and fate of
microphytobenthos carbon in subtropical shallow subtidal sands: A
13C-labeling study, Limnol. Oceanogr., 57, 1846–1856, https://doi.org/10.4319/lo.2012.57.6.1846, 2012.
Oakes, J. M. and Eyre, B. D.: Transformation and fate of microphytobenthos carbon in subtropical, intertidal sediments: potential for long-term carbon retention revealed by 13C-labeling, Biogeosciences, 11, 1927–1940, https://doi.org/10.5194/bg-11-1927-2014, 2014.
Opsahl, S. and Benner, R.: Distribution and cycling of terrigenous
dissolved organic matter in the ocean, Nature, 386, 480–482, https://doi.org/10.1038/386480a0, 1997.
Patching, J. and Rose, A.: Chapter II The Effects and Control of
Temperature, in: Methods in microbiology, Elsevier, London, New York, 23–38, 1970.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel
program developed for CO2 system calculations: ORNL/CDIAC-105a, Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, U.S. Department of
Energy, Oak Ridge, Tennessee, 2006.
Raymond, P. A. and Bauer, J. E.: Bacterial consumption of DOC during
transport through a temperate estuary, Aquat. Microb. Ecol., 22, 1–12, https://doi.org/10.3354/ame022001, 2000.
Riekenberg, P. M., Oakes, J. M., and Eyre, B. D.: Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a 13C pulse-chase experiment, Biogeosciences, 15, 2873–2889, https://doi.org/10.5194/bg-15-2873-2018, 2018.
Rost, B., Zondervan, I., and Wolf-Gladrow, D.: Sensitivity of phytoplankton
to future changes in ocean carbonate chemistry: Current knowledge,
contradictions and research directions, Mar. Ecol.-Prog. Ser., 373, 227–237, https://doi.org/10.3354/meps07776, 2008.
Sandberg, J., Andersson, A., Johansson, S., and Wikner, J.: Pelagic food web
structure and carbon budget in the northern Baltic Sea: potential importance
of terrigenous carbon, Mar. Ecol.-Prog. Ser., 268, 13–29, 2004.
Schulz, K. G., Bach, L. T., Bellerby, R. G. J., Bermúdez, R.,
Büdenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A.,
Meyerhöfer, M., Larsen, A., Paul, A. J., Sswat, M., and Riebesell, U.:
Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide:
Experimental Evidence for Negative Effects on Prymnesiophytes and Positive
on Small Picoeukaryotes, Front. Mar. Sci., 4, 64, https://doi.org/10.3389/fmars.2017.00064,
2017.
Simone, M., Schulz, K., Oakes, J.,
and Eyre, B.: Oxygen and carbon fluxes from shallow unvegetated sediments in the Clarence Estuary, NSW, Australia under warming and ocean acidification conditions, PANGAEA, https://doi.org/10.1594/PANGAEA.924460, 2020.
Sett, S., Schulz, K. G., Bach, L. T., and Riebesell, U.: Shift towards
larger diatoms in a natural phytoplankton assemblage under combined
high-CO2 and warming conditions, J. Plankton Res., 40, 391–406, https://doi.org/10.1093/plankt/fby018, 2018.
Siegenthaler, U. and Sarmiento, J. L.: Atmospheric carbon dioxide and the
ocean, Nature, 365, 119–125, https://doi.org/10.1038/365119a0, 1993.
Smith, S. and Hollibaugh, J.: Coastal metabolism and the oceanic organic
carbon balance, Rev. Geophys., 31, 75–89, https://doi.org/10.1029/92RG02584, 1993.
Taucher, J., Schulz, K. G., Dittmar, T., Sommer, U., Oschlies, A., and Riebesell, U.: Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment, Biogeosciences, 9, 3531–3545, https://doi.org/10.5194/bg-9-3531-2012, 2012.
Thomas, M. K., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: A global
pattern of thermal adaptation in marine phytoplankton, Science, 338,
1085–1088, https://doi.org/10.1126/science.1224836, 2012.
Trnovsky, D., Stoltenberg, L., Cyronak, T., and Eyre, B. D.: Antagonistic
Effects of Ocean Acidification and Rising Sea Surface Temperature on the
Dissolution of Coral Reef Carbonate Sediments, Front. Mar. Sci., 3, 211, https://doi.org/10.3389/fmars.2016.00211, 2016.
Underwood, G. and Kromkamp, J.: Primary Production by Phytoplankton and
Microphytobenthos in Estuaries in: Advances in Ecological Research –
estuaries, edited by: Nedwell, D. B. and
Raffaelli, D. G., Academic Press, San Diego, CA,
93–153, 1999.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep Sea Research and Oceanographic Abstracts, 161–162, 1974.
Valiela, I.: Marine ecological processes, 2nd ed., Springer Verlag, New York,
NY, 1995.
Vázquez-Domínguez, E., Vaqué, D., and Gasol, J. M.: Temperature
effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and
microbial top predators of the NW Mediterranean, Aquat. Microb. Ecol., 67,
107–121, https://doi.org/10.3354/ame01583, 2012.
Vopel, K., Del-Rio, C., and Pilditch, C. A.: Effects of CO2 enrichment
on benthic primary production and inorganic nitrogen fluxes in two coastal
sediments, Sci. Rep.-UK, 8, 1035, https://doi.org/10.1038/s41598-017-19051-w, 2018.
Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P.
E., Hansman, R., Elvert, M., Middelburg, J. J., Engel, A., Blattmann, T. M.,
Catalá, T. S., Lennartz, S. T., Gomez-Saez, G. V.,
Pantoja-Gutiérrez, S., Bao, R., and Galy, V.: Soothsaying DOM: A Current
Perspective on the Future of Oceanic Dissolved Organic Carbon, Front. Mar.
Sci., 7, 341, https://doi.org/10.3389/fmars.2020.00341, 2020.
Webb, A. P. and Eyre, B. D.: The effects of two benthic chamber stirring
systems on the diffusive boundary layer, oxygen flux, and passive flow
through model macrofauna burrows, Estuar. Coasts, 27, 352–361, https://doi.org/10.1007/BF02803391, 2004.
Wohlers, J., Engel, A., Zöllner, E., Breithaupt, P., Jürgens, K.,
Hoppe, H.-G., Sommer, U., and Riebesell, U.: Changes in biogenic carbon flow
in response to sea surface warming, P. Natl. Acad. Sci.-USA, 106, 7067, https://doi.org/10.1073/pnas.0812743106, 2009.
Yang, Z., Zhang, L., Zhu, X., Wang, J., and Montagnes, D. J.: An
evidence-based framework for predicting the impact of differing
autotroph-heterotroph thermal sensitivities on consumer–prey dynamics, ISME
J., 10, 1767, https://doi.org/10.1038/ismej.2015.225, 2016.
Yap, H. T., Montebon, A. R. F., and Dizon, R. M.: Energy flow and
seasonality in a tropical coral reef flat, Mar. Ecol.-Prog. Ser., 103,
35-43, https://doi.org/10.3354/meps103035, 1994.
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the...
Altmetrics
Final-revised paper
Preprint