Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1823-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1823-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Michelle N. Simone
CORRESPONDING AUTHOR
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Kai G. Schulz
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Joanne M. Oakes
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Bradley D. Eyre
Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
Related authors
No articles found.
Falilu Adekunbi, Michaël Grelaud, Gerald Langer, Lucian Chukwu, Marta Álvarez, Shakirudeen Odunuga, Kai George Schulz, and Patrizia Ziveri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3201, https://doi.org/10.5194/egusphere-2025-3201, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study is the first to explore seasonal changes in coccolithophores, microscopic algae important for ocean life and the carbon cycle, off the coast of Nigeria. Their abundance and diversity increased during the rainy season, driven by shifts in the Intertropical Convergence Zone. Despite regional differences, these coastal communities show patterns similar to other parts of the world, revealing possible shared environmental pressures.
Julieta Schneider, Ulf Riebesell, Charly André Moras, Laura Marín-Samper, Leila Kittu, Joaquín Ortíz-Cortes, and Kai George Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-524, https://doi.org/10.5194/egusphere-2025-524, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is an approach to sequester additional atmospheric CO2 in the ocean and may alleviate ocean acidification. A large-scale mesocosm experiment in Norway tested Ca- and Si-based OAE, increasing total alkalinity (TA) by 0–600 µmol kg-1 and measuring CO2 gas exchange. While TA remained stable, we found mineral-type and/or pCO2/pH effects on coccolithophorid calcification, net community production and zooplankton respiration, providing insights for future OAE trials.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Admiraal, W.: The ecology of estuarine sediment-inhabiting diatoms, in:
Progress in phycological Research, edited by: Round, F. E., and Chapman, D.
J., Biopress, Bristol, 269–322, 1984.
Allen, A., Gillooly, J., and Brown, J.: Linking the global carbon cycle to
individual metabolism, Funct. Ecol., 19, 202–213, https://doi.org/10.1111/j.1365-2435.2005.00952.x, 2005.
Allen, H. L.: Low molecular weight dissolved organic matter in five
soft-water ecosystems: a preliminary study and ecological implications: With
3 figures and 2 tables in the text and on 1 folder, Internationale
Vereinigung für theoretische und angewandte Limnologie: Verhandlungen,
20, 514–524, 1978.
Apple, J., Smith, E., and Boyd, T.: Temperature, Salinity, Nutrients, and
the Covariation of Bacterial Production and Chlorophyll-a in Estuarine
Ecosystems, J. Coast. Res., 2008, 59–75, https://doi.org/10.2112/SI55-005.1, 2008.
Apple, J. K., del Giorgio, P. A., and Kemp, W. M.: Temperature regulation of
bacterial production, respiration, and growth efficiency in a temperate
salt-marsh estuary, Aquat. Microb. Ecol., 43, 243–254, https://doi.org/10.3354/ame043243, 2006.
Azam, F.: Microbial control of oceanic carbon flux: the plot thickens,
Science, 280, 694–696, https://doi.org/10.1126/science.280.5364.694, 1998.
Bauer, J. and Bianchi, T.: Dissolved Organic Carbon Cycling and
Transformation, in: Treatise on estuarine and coastal science, edited by: Wolanski, E. and
McLusky, D. S., Academic Press, Waltham, 7–67, 2011.
Bauer, J. E. and Druffel, E. R. M.: Ocean margins as a significant source
of organic matter to the deep open ocean, Nature, 392, 482–485, https://doi.org/10.1038/33122, 1998.
Boto, K. G., Alongi, D. M., and Nott, A. L.: Dissolved organic
carbon-bacteria interactions at sediment-water interface in a tropical
mangrove system, Mar. Ecol.-Prog. Ser., 51, 243–251, https://doi.org/10.3354/meps051243, 1989.
Boudreau, B. P. and Jørgensen, B. B.: The benthic boundary layer:
Transport processes and biogeochemistry, Oxford University Press, New York, 2001.
Brailsford, F. L., Glanville, H. C., Golyshin, P. N., Johnes, P. J., Yates,
C. A., and Jones, D. L.: Microbial uptake kinetics of dissolved organic
carbon (DOC) compound groups from river water and sediments, Sci. Rep.-UK, 9,
11229, https://doi.org/10.1038/s41598-019-47749-6, 2019.
Carlson, C. A.: Production and Removal Processes, in: Biogeochemistry of
Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C.
A., Academic Press, San Diego, 2002.
Chróst, R. J.: Ectoenzymes in aquatic environments: Microbial strategy
for substrate supply, SIL Proceedings, 1922–2010, 24, 2597–2600, https://doi.org/10.1080/03680770.1989.11900030, 1991.
Chróst, R. J.: Significance of bacterial ectoenzymes in aquatic
environments, Hydrobiologia, 243, 61–70, https://doi.org/10.1007/BF00007020, 1992.
Church, M. J.: Resource control of bacterial dynamics in the sea, in:
Microbial ecology of the oceans, edited by: Kirchman, D. L., 335–382, 2008.
Cook, P. L., Veuger, B., Böer, S., and Middelburg, J. J.: Effect of
nutrient availability on carbon and nitrogen incorporation and flows through
benthic algae and bacteria in near-shore sandy sediment, Aquat. Microb.
Ecol., 49, 165–180, https://doi.org/10.3354/ame01142, 2007.
Cook, P. L. M. and Røy, H.: Advective relief of CO2 limitation in
microphytobenthos in highly productive sandy sediments, Limnol. Oceanogr.,
51, 1594–1601, https://doi.org/10.4319/lo.2006.51.4.1594, 2006.
Cook, P. L. M., Butler, E. C., and Eyre, B. D.: Carbon and nitrogen cycling
on intertidal mudflats of a temperate Australian estuary. I. Benthic
metabolism, Mar. Ecol.-Prog. Ser., 280, 25–38, https://doi.org/10.3354/meps280025,
2004.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O'Neill, R. V., and Paruelo, J.: The value of the
world's ecosystem services and natural capital, Nature, 387, 253, https://doi.org/10.1038/387253a0, 1997.
Cyronak, T. and Eyre, B. D.: The synergistic effects of ocean acidification
and organic metabolism on calcium carbonate (CaCO3) dissolution in
coral reef sediments, Mar. Chem., 183, 1–12, https://doi.org/10.1016/j.marchem.2016.05.001, 2016.
Czerny, J., Schulz, K. G., Boxhammer, T., Bellerby, R. G. J., Büdenbender, J., Engel, A., Krug, S. A., Ludwig, A., Nachtigall, K., Nondal, G., Niehoff, B., Silyakova, A., and Riebesell, U.: Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach, Biogeosciences, 10, 3109–3125, https://doi.org/10.5194/bg-10-3109-2013, 2013.
D'Avanzo, C., Kremer, J. N., and Wainright, S. C.: Ecosystem production and
respiration in response to eutrophication in shallow temperate estuaries,
Mar. Ecol.-Prog. Ser., 141, 263–274, https://doi.org/10.3354/meps141263, 1996.
Dickson, A.: Standards for Ocean Measurements, Oceanography, 23, 34–47, https://doi.org/10.5670/oceanog.2010.22, 2010.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media, Deep-Sea
Res. Pt. A, 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in
potassium chloride solutions from 273.15 to 318.15 K, J. Chem. Eng. Data.,
35, 253–257, https://doi.org/10.1021/je00061a009, 1990.
Duan, S.-W. and Kaushal, S. S.: Warming increases carbon and nutrient fluxes from sediments in streams across land use, Biogeosciences, 10, 1193–1207, https://doi.org/10.5194/bg-10-1193-2013, 2013.
Duarte, C. M.: Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget, Biogeosciences, 14, 301–310, https://doi.org/10.5194/bg-14-301-2017, 2017.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M. and Cebrián, J.: The fate of marine autotrophic
production, Limnol. Oceanogr., 41, 1758–1766, https://doi.org/10.4319/lo.1996.41.8.1758, 1996.
Engel, A., Händel, N., Wohlers, J., Lunau, M., Grossart, H.-P., Sommer,
U., and Riebesell, U.: Effects of sea surface warming on the production and
composition of dissolved organic matter during phytoplankton blooms: results
from a mesocosm study, J. Plankton Res., 33, 357–372, https://doi.org/10.1093/plankt/fbq122, 2011.
Engel, A., Borchard, C., Piontek, J., Schulz, K. G., Riebesell, U., and Bellerby, R.: CO2 increases 14C primary production in an Arctic plankton community, Biogeosciences, 10, 1291–1308, https://doi.org/10.5194/bg-10-1291-2013, 2013.
Eyre, B. D.: Regional evaluation of nutrient transformation and
phytoplankton growth in nine river-dominated sub-tropical east Australian
estuaries, Mar. Ecol.-Prog. Ser., 205, 61–83, https://doi.org/10.3354/meps205061,
2000.
Eyre, B. D. and Ferguson, A. J.: Comparison of carbon production and
decomposition, benthic nutrient fluxes and denitrification in seagrass,
phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate
Australian lagoons, Mar. Ecol.-Prog. Ser., 229, 43–59, https://doi.org/10.3354/meps229043, 2002.
Eyre, B. D. and Pont, D.: Intra-and inter-annual variability in the
different forms of diffuse nitrogen and phosphorus delivered to seven
sub-tropical east Australian estuaries, Estuar. Coast. Shelf S., 57,
137–148, https://doi.org/10.1016/S0272-7714(02)00337-2, 2003.
Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., and
Andersson, A. J.: Coral reefs will transition to net dissolving before end
of century, Science, 359, 908–911, https://doi.org/10.1126/science.aao1118, 2018.
Ferguson, A. J. and Eyre, B. D.: Interaction of benthic microalgae and
macrofauna in the control of benthic metabolism, nutrient fluxes and
denitrification in a shallow sub-tropical coastal embayment (western Moreton
Bay, Australia), Biogeochemistry, 112, 423–440, https://doi.org/10.1007/s10533-012-9736-x, 2013.
Ferguson, A. J., Eyre, B. D., and Gay, J. M.: Organic matter and benthic metabolism in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 33, 137–154, https://doi.org/10.3354/ame033137, 2003.
Ferguson, A. J., Eyre, B. D., and Gay, J. M.: Benthic nutrient fluxes in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 37, 219–235, https://doi.org/10.3354/ame037219, 2004.
Fichot, C. G. and Benner, R.: The fate of terrigenous dissolved organic
carbon in a river-influenced ocean margin, Global Biogeochem. Cy., 28,
300–318, https://doi.org/10.1002/2013gb004670, 2014.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global
occurrence of heavy-precipitation and high-temperature extremes, Nat.
Clim. Change, 5, 560–564, https://doi.org/10.1038/nclimate2617, 2015.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille,
B., Libert, E., and Théate, J.-M.: Carbon dioxide emission from European
estuaries, Science, 282, 434–436, https://doi.org/10.1126/science.282.5388.434, 1998.
Gattuso, J.-P., Gentili, B., Antoine, D., and Doxaran, D.: Global distribution of photosynthetically available radiation on the seafloor, Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, 2020.
Geider, R. J.: Light and temperature dependence of the carbon to chlorophyll
a ratio in microalgae and cyanobacteria: implications for physiology and
growth of phytoplankton, New Phytol., 106, 1–34, https://doi.org/10.1111/j.1469-8137.1987.tb04788.x, 1987.
Greene, R. M., Geider, R. J., Kolber, Z., and Falkowski, P. G.: Iron-induced
changes in light harvesting and photochemical energy conversion processes in
eukaryotic marine algae, Plant Physiol, 100, 565–575, https://doi.org/10.1104/pp.100.2.565, 1992.
Hallett, C. S., Hobday, A. J., Tweedley, J. R., Thompson, P. A., McMahon,
K., and Valesini, F. J.: Observed and predicted impacts of climate change on
the estuaries of south-western Australia, a Mediterranean climate region,
Reg. Environ. Change, 18, 1357–1373, 2018.
Hansell, D. A., Carlson, C. A., Repeta, D. J., and Schlitzer, R.: Dissolved
organic matter in the ocean: A controversy stimulates new insights,
Oceanography, 22, 202–211, https://doi.org/10.5670/oceanog.2009.109, 2009.
Hardison, A. K., Canuel, E. A., Anderson, I. C., Tobias, C. R., Veuger, B., and Waters, M. N.: Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments, Biogeosciences, 10, 5571–5588, https://doi.org/10.5194/bg-10-5571-2013, 2013.
Hedges, J. I.: Organic matter in sea water, Nature, 330, 205–206, https://doi.org/10.1038/330205a0, 1987.
Heip, C. H. R., Goosen, N. K., Herman, P. M. J., Kromkamp, J., Middelburg, J. J., and Soetaert, K.: Production and consumption of biological particles in temperate tidal estuaries, Oceanogr. Mar. Biol. Ann. Rev., 33, 1–149, in: Oceanography and Marine Biology: An Annual Review, Aberdeen University Press/Allen & Unwin, London, 1995.
Herrig, R. and Falkowski, P. G.: Nitrogen limitation in Isochrysis Galbana
(Haptophyceae). I. Photosynthetic energy convesion and growth efficiencies
J. Phycol., 25, 462–471, https://doi.org/10.1111/j.1529-8817.1989.tb00251.x,
1989.
Hopkinson, C. S.: Shallow-water benthic and pelagic metabolism, Mar. Biol.,
87, 19–32, https://doi.org/10.1007/BF00397002, 1985.
IPCC: Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, D. C. R. H.-O., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., 2019.
Jørgensen, B. B.: Material flux in the sediment, in: Eutrophication in
Coastal Marine Ecosystems, edited by: Jørgensen, B. B. and Richardson,
K., Coastal and Estuarine Studies, 115–135, 1996.
Kana, T. M., Geider, R. J., and Critchley, C.: Regulation of photosynthetic
pigments in micro-algae by multiple environmental factors: a dynamic balance
hypothesis, New Phytol., 137, 629–638, https://doi.org/10.1046/j.1469-8137.1997.00857.x, 1997.
Kirchman, D. and Rich, J.: Regulation of bacterial growth rates by
dissolved organic carbon and temperature in the equatorial Pacific Ocean,
Microb. Ecol., 33, 11–20, https://doi.org/10.1007/s002489900003, 1997.
Krause-Jensen, D. and Duarte, C. M.: Substantial role of macroalgae in
marine carbon sequestration, Nat. Geosci., 9, 737–742, https://doi.org/10.1038/ngeo2790, 2016.
Lantz, C. A., Schulz, K. G., Stoltenberg, L., and Eyre, B. D.: The short-term combined effects of temperature and organic matter enrichment on permeable coral reef carbonate sediment metabolism and dissolution, Biogeosciences, 14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, 2017.
Lewis, D. and McConchie, D.: Practical Sedimentology, Chapman and Hall, New York, NY, USA, https://doi.org/10.1007/978-1-4615-2634-6, 1994.
Li, G., Cheng, L., Zhu, J., Trenberth, K. E., Mann, M. E., and Abraham, J.
P.: Increasing ocean stratification over the past half-century, Nat.
Clim. Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2, 2020.
Liu, X., Li, Y., Wu, Y., Huang, B., Dai, M., Fu, F., Hutchins, D. A., and
Gao, K.: Effects of elevated CO2 on phytoplankton during a mesocosm
experiment in the southern eutrophicated coastal water of China, Sci. Rep.-UK,
7, 6868, https://doi.org/10.1038/s41598-017-07195-8, 2017.
Lønborg, C., Álvarez-Salgado, X. A., Letscher, R. T., and Hansell,
D. A.: Large Stimulation of Recalcitrant Dissolved Organic Carbon
Degradation by Increasing Ocean Temperatures, Front. Mar. Sci., 4, 436, https://doi.org/10.3389/fmars.2017.00436, 2018.
López-Urrutia, A. and Morán, X. A. G.: Resource limitation of
bacterial production distorts the temperature dependence of oceanic carbon
cycling, Ecology, 88, 817–822, https://doi.org/10.1890/06-1641, 2007.
Luczak, C., Janquin, M.-A., and Kupka, A.: Simple standard procedure for the
routine determination of organic matter in marine sediment, Hydrobiologia,
345, 87–94, https://doi.org/10.1023/A:1002902626798, 1997.
MacIntyre, H. L., Geider, R. J., and Miller, D. C.: Microphytobenthos: the
ecological role of the “secret garden” of unvegetated, shallow-water
marine habitats. I. Distribution, abundance and primary production,
Estuaries, 19, 186–201, https://doi.org/10.2307/1352224, 1996.
Maher, D. T. and Eyre, B. D.: Benthic fluxes of dissolved organic carbon in
three temperate Australian estuaries: Implications for global estimates of
benthic DOC fluxes, J. Geophys. Res.-Biogeo., 115, G04039,
https://doi.org/10.1029/2010jg001433, 2010.
Malone, T. C. and Conley, D. J.: Trends in Nutrient Loading and
Eutrophication: A Comparison of the Chesapeake Bay and the
Hudson River Estuarine Systems, in: Northeast Shelf Ecosystem:
Assessment, Sustainability, and Management, edited by: Sherman,
K., Jaworski, N. A., and Smayda, T. J., Blackwell Science Ltd, 327–349,
1996.
Mathworks: MATLAB The Mathworks, Inc., Natick, Massachusetts, United States,
2011.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the Apparent Dissociation Constants of Carbonic Acid in
Seawater at Atmospheric Pressure, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Morak, S., Hegerl, G. C., and Christidis, N.: Detectable Changes in the
Frequency of Temperature Extremes, J. Climate, 26, 1561–1574, https://doi.org/10.1175/jcli-d-11-00678.1, 2013.
Moran, M. A. and Hodson, R. E.: Bacterial production on humic and nonhumic
components of dissolved organic carbon, Limnol. Oceanogr., 35, 1744–1756,
https://doi.org/10.4319/lo.1990.35.8.1744, 1990.
Morán, X. A. G., Ducklow, H. W., and Erickson, M.: Single-cell
physiological structure and growth rates of heterotrophic bacteria in a
temperate estuary (Waquoit Bay, Massachusetts), Limnol. Oceanogr., 56,
37–48, https://doi.org/10.4319/lo.2011.56.1.0037, 2011.
Mori, T., Binder, B., and Johnson, C. H.: Circadian gating of cell division
in cyanobacteria growing with average doubling times of less than 24 hours,
P. Natl. Acad. Sci. USA, 93, 10183, https://doi.org/10.1073/pnas.93.19.10183,
1996.
Novak, T., Godrijan, J., Pfannkuchen, D. M., Djakovac, T., Mlakar, M.,
Baricevic, A., Tanković, M. S., and Gašparović, B.: Enhanced
dissolved lipid production as a response to the sea surface warming, J. Mar.
Syst., 180, 289–298, https://doi.org/10.1016/j.jmarsys.2018.01.006, 2018.
Oakes, J. M., Bautista, M. D., Maher, D., Jones, W. B., and Eyre, B. D.:
Carbon self-utilization may assist Caulerpa taxifolia invasion, Limnol.
Oceanogr., 56, 1824–1831, https://doi.org/10.4319/lo.2011.56.5.1824, 2011.
Oakes, J. M., Eyre, B. D., Middelburg, J. J., and Boschker, H. T. S.: Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: Rapid processing and long-term retention revealed by 13C-labeling, Limnol. Oceanogr., 55, 2126–2138, https://doi.org/10.4319/lo.2010.55.5.2126, 2010.
Oakes, J. M., Eyre, B. D., and Middelburg, J. J.: Transformation and fate of
microphytobenthos carbon in subtropical shallow subtidal sands: A
13C-labeling study, Limnol. Oceanogr., 57, 1846–1856, https://doi.org/10.4319/lo.2012.57.6.1846, 2012.
Oakes, J. M. and Eyre, B. D.: Transformation and fate of microphytobenthos carbon in subtropical, intertidal sediments: potential for long-term carbon retention revealed by 13C-labeling, Biogeosciences, 11, 1927–1940, https://doi.org/10.5194/bg-11-1927-2014, 2014.
Opsahl, S. and Benner, R.: Distribution and cycling of terrigenous
dissolved organic matter in the ocean, Nature, 386, 480–482, https://doi.org/10.1038/386480a0, 1997.
Patching, J. and Rose, A.: Chapter II The Effects and Control of
Temperature, in: Methods in microbiology, Elsevier, London, New York, 23–38, 1970.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel
program developed for CO2 system calculations: ORNL/CDIAC-105a, Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, U.S. Department of
Energy, Oak Ridge, Tennessee, 2006.
Raymond, P. A. and Bauer, J. E.: Bacterial consumption of DOC during
transport through a temperate estuary, Aquat. Microb. Ecol., 22, 1–12, https://doi.org/10.3354/ame022001, 2000.
Riekenberg, P. M., Oakes, J. M., and Eyre, B. D.: Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a 13C pulse-chase experiment, Biogeosciences, 15, 2873–2889, https://doi.org/10.5194/bg-15-2873-2018, 2018.
Rost, B., Zondervan, I., and Wolf-Gladrow, D.: Sensitivity of phytoplankton
to future changes in ocean carbonate chemistry: Current knowledge,
contradictions and research directions, Mar. Ecol.-Prog. Ser., 373, 227–237, https://doi.org/10.3354/meps07776, 2008.
Sandberg, J., Andersson, A., Johansson, S., and Wikner, J.: Pelagic food web
structure and carbon budget in the northern Baltic Sea: potential importance
of terrigenous carbon, Mar. Ecol.-Prog. Ser., 268, 13–29, 2004.
Schulz, K. G., Bach, L. T., Bellerby, R. G. J., Bermúdez, R.,
Büdenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A.,
Meyerhöfer, M., Larsen, A., Paul, A. J., Sswat, M., and Riebesell, U.:
Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide:
Experimental Evidence for Negative Effects on Prymnesiophytes and Positive
on Small Picoeukaryotes, Front. Mar. Sci., 4, 64, https://doi.org/10.3389/fmars.2017.00064,
2017.
Simone, M., Schulz, K., Oakes, J.,
and Eyre, B.: Oxygen and carbon fluxes from shallow unvegetated sediments in the Clarence Estuary, NSW, Australia under warming and ocean acidification conditions, PANGAEA, https://doi.org/10.1594/PANGAEA.924460, 2020.
Sett, S., Schulz, K. G., Bach, L. T., and Riebesell, U.: Shift towards
larger diatoms in a natural phytoplankton assemblage under combined
high-CO2 and warming conditions, J. Plankton Res., 40, 391–406, https://doi.org/10.1093/plankt/fby018, 2018.
Siegenthaler, U. and Sarmiento, J. L.: Atmospheric carbon dioxide and the
ocean, Nature, 365, 119–125, https://doi.org/10.1038/365119a0, 1993.
Smith, S. and Hollibaugh, J.: Coastal metabolism and the oceanic organic
carbon balance, Rev. Geophys., 31, 75–89, https://doi.org/10.1029/92RG02584, 1993.
Taucher, J., Schulz, K. G., Dittmar, T., Sommer, U., Oschlies, A., and Riebesell, U.: Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment, Biogeosciences, 9, 3531–3545, https://doi.org/10.5194/bg-9-3531-2012, 2012.
Thomas, M. K., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: A global
pattern of thermal adaptation in marine phytoplankton, Science, 338,
1085–1088, https://doi.org/10.1126/science.1224836, 2012.
Trnovsky, D., Stoltenberg, L., Cyronak, T., and Eyre, B. D.: Antagonistic
Effects of Ocean Acidification and Rising Sea Surface Temperature on the
Dissolution of Coral Reef Carbonate Sediments, Front. Mar. Sci., 3, 211, https://doi.org/10.3389/fmars.2016.00211, 2016.
Underwood, G. and Kromkamp, J.: Primary Production by Phytoplankton and
Microphytobenthos in Estuaries in: Advances in Ecological Research –
estuaries, edited by: Nedwell, D. B. and
Raffaelli, D. G., Academic Press, San Diego, CA,
93–153, 1999.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep Sea Research and Oceanographic Abstracts, 161–162, 1974.
Valiela, I.: Marine ecological processes, 2nd ed., Springer Verlag, New York,
NY, 1995.
Vázquez-Domínguez, E., Vaqué, D., and Gasol, J. M.: Temperature
effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and
microbial top predators of the NW Mediterranean, Aquat. Microb. Ecol., 67,
107–121, https://doi.org/10.3354/ame01583, 2012.
Vopel, K., Del-Rio, C., and Pilditch, C. A.: Effects of CO2 enrichment
on benthic primary production and inorganic nitrogen fluxes in two coastal
sediments, Sci. Rep.-UK, 8, 1035, https://doi.org/10.1038/s41598-017-19051-w, 2018.
Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P.
E., Hansman, R., Elvert, M., Middelburg, J. J., Engel, A., Blattmann, T. M.,
Catalá, T. S., Lennartz, S. T., Gomez-Saez, G. V.,
Pantoja-Gutiérrez, S., Bao, R., and Galy, V.: Soothsaying DOM: A Current
Perspective on the Future of Oceanic Dissolved Organic Carbon, Front. Mar.
Sci., 7, 341, https://doi.org/10.3389/fmars.2020.00341, 2020.
Webb, A. P. and Eyre, B. D.: The effects of two benthic chamber stirring
systems on the diffusive boundary layer, oxygen flux, and passive flow
through model macrofauna burrows, Estuar. Coasts, 27, 352–361, https://doi.org/10.1007/BF02803391, 2004.
Wohlers, J., Engel, A., Zöllner, E., Breithaupt, P., Jürgens, K.,
Hoppe, H.-G., Sommer, U., and Riebesell, U.: Changes in biogenic carbon flow
in response to sea surface warming, P. Natl. Acad. Sci.-USA, 106, 7067, https://doi.org/10.1073/pnas.0812743106, 2009.
Yang, Z., Zhang, L., Zhu, X., Wang, J., and Montagnes, D. J.: An
evidence-based framework for predicting the impact of differing
autotroph-heterotroph thermal sensitivities on consumer–prey dynamics, ISME
J., 10, 1767, https://doi.org/10.1038/ismej.2015.225, 2016.
Yap, H. T., Montebon, A. R. F., and Dizon, R. M.: Energy flow and
seasonality in a tropical coral reef flat, Mar. Ecol.-Prog. Ser., 103,
35-43, https://doi.org/10.3354/meps103035, 1994.
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the...
Altmetrics
Final-revised paper
Preprint