Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Frank Hagedorn
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Maarten Lupker
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Daniel Montluçon
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Negar Haghipour
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
Tessa Sophia van der Voort
Campus Fryslân, Rijksuniversiteit Groningen, Wirdumerdijk 34, 8911 CE Leeuwarden, the Netherlands
Timothy Ian Eglinton
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Related authors
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Claudia Guidi, Sia Gosheva-Oney, Markus Didion, Roman Flury, Lorenz Walthert, Stephan Zimmermann, Brian J. Oney, Pascal A. Niklaus, Esther Thürig, Toni Viskari, Jari Liski, and Frank Hagedorn
Biogeosciences, 22, 4107–4122, https://doi.org/10.5194/bg-22-4107-2025, https://doi.org/10.5194/bg-22-4107-2025, 2025
Short summary
Short summary
Predicting soil organic carbon (SOC) stocks in forests is crucial to determining the C balance, yet drivers of SOC stocks remain uncertain at large scales. Across a broad environmental gradient in Switzerland, we compared measured SOC stocks with those modeled by Yasso, which is commonly used for greenhouse gas budgets. We show that soil mineral properties and climate are the main controls of SOC stocks, indicating that better accounting of these processes will advance the accuracy of SOC stock predictions.
Frank Hagedorn, Josephine Imboden, Pavel A. Moiseev, Decai Gao, Emmanuel Frossard, Patrick Schleppi, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
Biogeosciences, 22, 2959–2977, https://doi.org/10.5194/bg-22-2959-2025, https://doi.org/10.5194/bg-22-2959-2025, 2025
Short summary
Short summary
At treeline, plant species change abruptly from low-stature plants in tundra to trees in forests. Our study documents that from tundra towards forest, the litter layer becomes strongly enriched in nutrients. We show that these litter quality changes alter nutrient processing by soil microbes and increase nutrient release during decomposition in forests compared to tundra. The associated improvement in nutrient availability in forests potentially stimulates tree growth and treeline shifts.
Luisa I. Minich, Dylan Geissbühler, Stefan Tobler, Annegret Udke, Alexander S. Brunmayr, Margaux Moreno Duborgel, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Negar Haghipour, Markus Egli, Ansgar Kahmen, Jens Leifeld, Timothy I. Eglinton, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2267, https://doi.org/10.5194/egusphere-2025-2267, 2025
Short summary
Short summary
We developed a framework using rates and 14C-derived ages of soil-respired CO2 and its sources (autotrophic, heterotrophic) to identify carbon cycling pathways in different land-use types. Rates, ages and sources of respired CO2 varied across forests, grasslands, croplands, and managed peatlands. Our results suggest that the relationship between rates and ages of respired CO2 serves as a robust indicator of carbon retention or destabilization from natural to disturbed systems.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Chun Chung Yeung, Harald Bugmann, Frank Hagedorn, Margaux Moreno Duborgel, and Olalla Díaz-Yáñez
EGUsphere, https://doi.org/10.5194/egusphere-2025-1022, https://doi.org/10.5194/egusphere-2025-1022, 2025
Short summary
Short summary
To address the uncertain interactions between soil nitrogen (N) and carbon (C), we set up a model “experiment” in silico to test several hypothesized responses of decomposers to N. We found that decomposers were stimulated by N when decomposing high C:N detritus, but inhibited when decomposing low C:N, processed organic C. The consequence is that under exogenous N addition (e.g., contemporary N deposition), forests may accumulate light fraction C predominantly, at the expense of coarse detritus.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Cited articles
Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., and Reichstein,
M.: Contribution of sorption, DOC transport and microbial interactions to the
14C age of a soil organic carbon profile: Insights from a calibrated process
model, Soil Biol. Biochem., 88, 390–402, 2015. a
Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R.: Combining
biomarker with stable isotope analyses for assessing the transformation and
turnover of soil organic matter, Adv. Agron., 100, 155–250, 2008. a
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2,
598–600, 2009. a
Blaga, C. I., Reichart, G.-J., Heiri, O., and Damsté, J. S. S.: Tetraether
membrane lipid distributions in water-column particulate matter and
sediments: a study of 47 European lakes along a north-south transect,
J. Paleolimnol., 41, 523–540, 2009. a
Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and
Crowther, T. W.: Managing uncertainty in soil carbon feedbacks to climate
change, Nat. Clim. Change, 6, 751–758, 2016. a
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.: Global
covariation of carbon turnover times with climate in terrestrial ecosystems,
Nature, 514, 213–217, 2014. a
Coffinet, S., Huguet, A., Williamson, D., Fosse, C., and Derenne, S.: Potential
of GDGTs as a temperature proxy along an altitudinal transect at Mount Rungwe
(Tanzania), Org. Geochem., 68, 82–89, 2014. a
Colcord, D. E., Pearson, A., and Brassell, S. C.: Carbon isotopic composition
of intact branched GDGT core lipids in Greenland lake sediments and soils,
Org. Geochem., 110, 25–32, 2017. a
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L.,
Wall, D. H., and Parton, W. J.: Formation of soil organic matter via
biochemical and physical pathways of litter mass loss, Nat. Geos., 8,
776–779, 2015. a
Courel, B., Schaeffer, P., Adam, P., Ertlen, D., Schwartz, D., Bernasconi, S.,
and Hajdas, I.: Analyse, isolement et datation au 14C de lipides dans les
sols: l’exemple des tétraéthers de diglycérol, Collection
EDYTEM, Cahiers de géographie, 18, 57–68, 2015. a
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
and Damsté, J. S. S.: In situ produced branched glycerol dialkyl glycerol
tetraethers in suspended particulate matter from the Yenisei River, Eastern
Siberia, Geochim. Cosmochim. Ac., 125, 476–491, 2014b. a
De Rosa, M. and Gambacorta, A.: The lipids of archaebacteria, Prog. Lipid
Res., 27, 153–175, 1988. a
Feng, X. and Simpson, M. J.: Temperature responses of individual soil organic
matter components, J. Geophys. Res.-Biogeo., 113, https://doi.org/10.1029/2008JG000743,
2008. a
Freymond, C. V., Peterse, F., Fischer, L. V., Filip, F., Giosan, L., and
Eglinton, T. I.: Branched GDGT signals in fluvial sediments of the Danube
River basin: Method comparison and longitudinal evolution, Org.
Geochem., 103, 88–96, 2017. a
Gaudinski, J., Trumbore, S., Davidson, E., Cook, A., Markewitz, D., and
Richter, D.: The age of fine-root carbon in three forests of the eastern
United States measured by radiocarbon, Oecologia, 129, 420–429, 2001. a
Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., and Zheng, S.: Soil carbon
cycling in a temperate forest: radiocarbon-based estimates of residence
times, sequestration rates and partitioning of fluxes, Biogeochemistry, 51,
33–69, 2000. a
Gies, H., Hagedorn, F., Lupker, M., Montlucon, D., Haghipour, N., van der Voort, T., and Eglinton, T.: Data Set – Millennial-age GDGTs inforested mineral soils, https://doi.org/10.3929/ethz-b-000430425, 2020. a
Gill, R. A. and Jackson, R. B.: Global patterns of root turnover for
terrestrial ecosystems, New Phytol., 147, 13–31, 2000. a
Gleixner, G.: Soil organic matter dynamics: a biological perspective derived
from the use of compound-specific isotopes studies, Ecol. Res., 28,
683–695, 2013. a
Gocke, M. I., Huguet, A., Derenne, S., Kolb, S., Dippold, M. A., and
Wiesenberg, G. L.: Disentangling interactions between microbial communities
and roots in deep subsoil, Sci. Total Environ., 575, 135–145,
2017. a
Guo, J., Glendell, M., Meersmans, J., Kirkels, F., Middelburg, J. J., and Peterse, F.: Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England), Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, 2020. a
Hammer, S. and Levin, I.: Monthly mean atmospheric Δ 14 CO2 at
Jungfraujoch and Schauinsland from 1986 to 2016, heiDATA, https://doi.org/10.11588/data/10100, 2017. a
He, N. and Yu, G.: Stoichiometrical regulation of soil organic matter
decomposition and its temperature sensitivity, Ecol. Evol., 6,
620–627, 2016. a
Heumann, G. and Litt, T.: Stratigraphy and paleoecology of the Late Pliocene
and Early Pleistocene in the open-cast mine Hambach (Lower Rhine Basin),
Neth. J. Geosci., 81, 193–199, 2002. a
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Damsté, J.
S. S., and Schouten, S.: A novel proxy for terrestrial organic matter in
sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107–116, 2004. a
Hua, Q., Barbetti, M., and Rakowski, A. Z.: Atmospheric radiocarbon for the
period 1950–2010, Radiocarbon, 55, 2059–2072, 2013. a
Huang, Y., Li, B., Bryant, C., Bol, R., and Eglinton, G.: Radiocarbon dating of
aliphatic hydrocarbons a new approach for dating passive-fraction carbon in
soil horizons, Soil Sci. Soc. Am. J., 63, 1181–1187, 1999. a
Huguet, A., Gocke, M., Derenne, S., Fosse, C., and Wiesenberg, G. L.:
Root-associated branched tetraether source microorganisms may reduce
estimated paleotemperatures in subsoil, Chem. Geol., 356, 1–10, 2013. a
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Damsté, J.
S. S., and Schouten, S.: An improved method to determine the absolute
abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, 2006. a
Ingalls, A. E. and Pearson, A.: Compound-Specific Radiocarbon Analysis,
Oceanography, 18, 18–31, 2005. a
Innes, J. L.: Theoretical and practical criteria for the selection of ecosystem
monitoring plots in Swiss forests, Environ. Monit. Assess.,
36, 271–294, 1995. a
Jandl, G., Leinweber, P., Schulten, H.-R., and Eusterhues, K.: The
concentrations of fatty acids in organo-mineral particle-size fractions of a
Chernozem, Eur. J. Soil Sci., 55, 459–470, 2004. a
Kaiser, K. and Guggenberger, G.: Mineral surfaces and soil organic matter,
Eur. J. Soil Sci., 54, 219–236, 2003. a
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for
microbial-derived soil organic matter formation and its ecophysiological
controls, Nat. Commun., 7, 13630, https://doi.org/10.1038/nature13731, 2016. a, b
Kästner, M. and Miltner, A.: SOM and microbes – What is left from microbial
life, in: The future of soil carbon, edited by: Garcia, C., Nannipieri, P., and Hernandez, T., Academic Press, Cambridge, Massachusetts, USA, 125–163, https://doi.org/10.1016/B978-0-12-811687-6.00005-5, 2018. a
Kramer, C. and Gleixner, G.: Variable use of plant-and soil-derived carbon by
microorganisms in agricultural soils, Soil Biol. Biochem., 38,
3267–3278, 2006. a
Kramer, C. and Gleixner, G.: Soil organic matter in soil depth profiles:
distinct carbon preferences of microbial groups during carbon transformation,
Soil Biol. Biochem., 40, 425–433, 2008. a
Kramer, C., Trumbore, S., Fröberg, M., Dozal, L. M. C., Zhang, D., Xu, X.,
Santos, G. M., and Hanson, P. J.: Recent (<4 year old) leaf litter is not a
major source of microbial carbon in a temperate forest mineral soil, Soil
Biol. Biochem., 42, 1028–1037, 2010. a
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W.,
Prosser, J. I., Schuster, S., and Schleper, C.: Archaea predominate among
ammonia-oxidizing prokaryotes in soils, Nature, 442, 806–809, 2006. a
Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in
microbial control over soil carbon storage, Nat. Microbiol., 2, 1–6,
2017. a
Liang, C., Amelung, W., Lehmann, J., and Kästner, M.: Quantitative
assessment of microbial necromass contribution to soil organic matter, Glob.
Change Biol., 25, 3578–3590, 2019. a
Liu, W., Moriizumi, J., Yamazawa, H., and Iida, T.: Depth profiles of
radiocarbon and carbon isotopic compositions of organic matter and CO2 in a
forest soil, J. Environ. Radioactiv., 90, 210–223, 2006. a
Liu, W., Wang, H., Zhang, C. L., Liu, Z., and He, Y.: Distribution of glycerol
dialkyl glycerol tetraether lipids along an altitudinal transect on Mt.
Xiangpi, NE Qinghai-Tibetan Plateau, China, Org. Geochem., 57, 76–83,
2013. a
Ma, T., Zhu, S., Wang, Z., Chen, D., Dai, G., Feng, B., Su, X., Hu, H., Li, K.,
Han, W., Liang, C., Bai, Y., and Feng, X.: Divergent accumulation of microbial necromass and plant
lignin components in grassland soils, Nature Commun., 9, 1–9, 2018. a
Matsumoto, K., Kawamura, K., Uchida, M., and Shibata, Y.: Radiocarbon content
and stable carbon isotopic ratios of individual fatty acids in subsurface
soil: Implication for selective microbial degradation and modification of
soil organic matter, Geochem. J., 41, 483–492, 2007. a
Mendez-Millan, M., Tu, T. N., Balesdent, J., Derenne, S., Derrien, D., Egasse,
C., M’Bou, A. T., Zeller, B., and Hatté, C.: Compound-specific 13 C and
14 C measurements improve the understanding of soil organic matter dynamics,
Biogeochemistry, 118, 205–223, 2014. a
Mikutta, R., Kleber, M., Torn, M. S., and Jahn, R.: Stabilization of soil
organic matter: association with minerals or chemical recalcitrance?,
Biogeochemistry, 77, 25–56, 2006. a
Miller, D. R., Habicht, M. H., Keisling, B. A., Castañeda, I. S., and Bradley, R. S.: A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs), Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, 2018. a
Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M.: SOM
genesis: microbial biomass as a significant source, Biogeochemistry, 111,
41–55, 2012. a
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J. S.,
and Eglinton, T. I.: Aging of marine organic matter during cross-shelf
lateral transport in the Benguela upwelling system revealed by
compound-specific radiocarbon dating, Geochem. Geophy. Geosy.,
8, 1–9, https://doi.org/10.1038/s41467-018-05891-1, 2007. a
Mollenhauer, G., Eglinton, T. I., Hopmans, E. C., and Damsté, J. S. S.: A
radiocarbon-based assessment of the preservation characteristics of
crenarchaeol and alkenones from continental margin sediments, Org.
Geochem., 39, 1039–1045, 2008. a
Naafs, B., Gallego-Sala, A., Inglis, G., and Pancost, R.: Refining the global
branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature
calibration, Org. Geochem., 106, 48–56, 2017. a
Naeher, S., Peterse, F., Smittenberg, R. H., Niemann, H., Zigah, P. K., and
Schubert, C. J.: Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in
catchment soils, water column and sediments of Lake Rotsee
(Switzerland) – Implications for the application of GDGT-based proxies for
lakes, Org. Geochem., 66, 164–173, 2014. a
Oppermann, B., Michaelis, W., Blumenberg, M., Frerichs, J., Schulz, H.-M.,
Schippers, A., Beaubien, S., and Krüger, M.: Soil microbial community
changes as a result of long-term exposure to a natural CO2 vent, Geochim.
Cosmochim. Ac., 74, 2697–2716, 2010. a
Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P.,
and Hanson, C.: Climate change 2007 – impacts, adaptation and
vulnerability: Working group II contribution to the fourth assessment report
of the IPCC, vol. 4, Cambridge University Press, Cambridge, UK, 2007. a
Pearson, A., McNichol, A. P., Benitez-Nelson, B. C., Hayes, J. M., and
Eglinton, T. I.: Origins of lipid biomarkers in Santa Monica Basin surface
sediment: a case study using compound-specific Δ 14 C analysis,
Geochim. Cosmochim. Ac., 65, 3123–3137, 2001. a
Peterse, F., van der Meer, J., Schouten, S., Weijers, J. W., Fierer, N.,
Jackson, R. B., Kim, J.-H., and Damsté, J. S. S.: Revised calibration of
the MBT-CBT paleotemperature proxy based on branched tetraether membrane
lipids in surface soils, Geochim. Cosmochim. Ac., 96, 215–229, 2012. a
Powers, L., Werne, J. P., Vanderwoude, A. J., Damsté, J. S. S., Hopmans,
E. C., and Schouten, S.: Applicability and calibration of the TEX86
paleothermometer in lakes, Org. Geochem., 41, 404–413, 2010. a
Powers, L. A., Werne, J. P., Johnson, T. C., Hopmans, E. C., Damsté, J.
S. S., and Schouten, S.: Crenarchaeotal membrane lipids in lake sediments: a
new paleotemperature proxy for continental paleoclimate reconstruction?,
Geology, 32, 613–616, 2004. a
Riley, W. J., Maggi, F., Kleber, M., Torn, M. S., Tang, J. Y., Dwivedi, D., and Guerry, N.: Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geosci. Model Dev., 7, 1335–1355, https://doi.org/10.5194/gmd-7-1335-2014, 2014. a
Ruff, M., Wacker, L., Gäggeler, H., Suter, M., Synal, H.-A., and Szidat,
S.: A gas ion source for radiocarbon measurements at 200 kV, Radiocarbon, 49,
307–314, 2007. a
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but
poorly understood component of terrestrial C cycle, Plant soil, 338,
143–158, 2011. a
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning,
D. A., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property,
Nature, 478, 49–56, 2011. a, b, c
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damste, J. S.:
Distributional variations in marine crenarchaeotal membrane lipids: a new
tool for reconstructing ancient sea water temperatures?, Earth Planet. Sci. Lett., 204, 265–274, 2002. a
Shah, S. R. and Pearson, A.: Ultra-microscale (5–25 µg C) analysis of
individual lipids by 14 C AMS: Assessment and correction for sample
processing blanks, Radiocarbon, 49, 69–82, 2007. a
Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched
tetraethers in shelf systems: The geochemistry of tetraethers in the Berau
River delta (Kalimantan, Indonesia), Geochim. Cosmochim. Ac., 186,
13–31, 2016. a
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers,
J. W., Foesel, B. U., Overmann, J., and Dedysh, S. N.: 13, 16-Dimethyl
octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of
Acidobacteria subdivisions 1 and 3, Appl. Environ. Microb.,
77, 4147–4154, 2011. a
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Jung, M.-Y.,
Kim, J.-G., Rhee, S.-K., Stieglmeier, M., and Schleper, C.: Intact polar and
core glycerol dibiphytanyl glycerol tetraether lipids of group I. 1a and I.
1b Thaumarchaeota in soil, Appl. Environ. Microb., 78, 6866–6874, 2012. a
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Foesel, B. U., Huber, K. J.,
Overmann, J., Nakagawa, S., Kim, J. J., Dunfield, P. F., Dedysh, S. N., and
Villanueva, L.: An overview of the occurrence of ether-and ester-linked
iso-diabolic acid membrane lipids in microbial cultures of the Acidobacteria:
Implications for brGDGT paleoproxies for temperature and pH, Org.
Geochem., 124, 63–76, 2018. a, b
Smittenberg, R. H., Hopmans, E. C., Schouten, S., and Damsté, J. S. S.:
Rapid isolation of biomarkers for compound specific radiocarbon dating using
high-performance liquid chromatography and flow injection
analysis – atmospheric pressure chemical ionisation mass spectrometry, J. Chromatogr. A, 978, 129–140, 2002. a
Smittenberg, R. H., Hopmans, E. C., Schouten, S., Hayes, J. M., Eglinton,
T. I., and Sinninghe Damste, J. S.: Compound-specific radiocarbon dating of
the varved Holocene sedimentary record of Saanich Inlet, Canada,
Paleoceanography, 19, https://doi.org/10.1029/2003PA000927, 2004. a
Smittenberg, R. H., Baas, M., Green, M. J., Hopmans, E. C., Schouten, S., and
Damsté, J. S.: Pre-and post-industrial environmental changes as revealed
by the biogeochemical sedimentary record of Drammensfjord, Norway, Mar.
Geol., 214, 177–200, 2005. a
Sollins, P., Homann, P., and Caldwell, B. A.: Stabilization and destabilization
of soil organic matter: mechanisms and controls, Geoderma, 74, 65–105, 1996. a
Synal, H., Stocker, M., and Suter, M.: Nuclear Instruments and Methods in
Physics Research Section B-Beam 389, Interactions with Materials and Atoms,
259, 7–13, 2007. a
Torn, M., Swanston, C., Castanha, C., and Trumbore, S.: Storage and turnover of
organic matter in soil, in: Biophysico-chemical processes involving natural
nonliving organic matter in environmental systems, edited by: Senesi, N., Xing, B., and Huang, P. M., chap. 6, 219–272, Wiley, Hoboken, NJ, USA, https://doi.org/10.1002/9780470494950.ch6, 2009. a
Trumbore, S.: Age of soil organic matter and soil respiration: radiocarbon
constraints on belowground C dynamics, Ecol. Appl., 10, 399–411,
2000. a
Tunlid, A. and White, D. C.: Biochemical Analysis Of Biomass, Community Structure, Nutritional Status, and Metabolic Activity, in: SoilBiochemistry, edited by: Stotzky, G. and Bollag, J. M., vol. 7, 229–262, Marcel Dekker, New York, NY, USA, 1991. a
Urich, T., Lanzén, A., Qi, J., Huson, D. H., Schleper, C., and Schuster,
S. C.: Simultaneous assessment of soil microbial community structure and
function through analysis of the meta-transcriptome, PloS one, 3, https://doi.org/10.1371/journal.pone.0002527, 2008. a
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016. a, b
van der Voort, T. S., Mannu, U., Hagedorn, F., McIntyre, C., Walthert, L., Schleppi, P., Haghipour, N., and Eglinton, T. I.: Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient, Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, 2019. a
von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H.,
Ekschmitt, K., Guggenberger, G., Marschner, B., and Kalbitz, K.:
Stabilization mechanisms of organic matter in four temperate soils:
Development and application of a conceptual model, J. Plant Nutr.
Soil Sc., 171, 111–124, 2008. a
Weber, Y., De Jonge, C., Rijpstra, W. I. C., Hopmans, E. C., Stadnitskaia, A.,
Schubert, C. J., Lehmann, M. F., Sinninghe Damste, J. S., and Niemann, H.:
Identification and carbon isotope composition of a novel branched GDGT isomer
in lake sediments: Evidence for lacustrine branched GDGT production,
Geochim. Cosmochim. Ac., 154, 118–129, 2015. a
Weijers, J. W., Schouten, S., Hopmans, E. C., Geenevasen, J. A., David, O. R.,
Coleman, J. M., Pancost, R. D., and Sinninghe Damsté, J. S.: Membrane
lipids of mesophilic anaerobic bacteria thriving in peats have typical
archaeal traits, Environ. Microbiol., 8, 648–657, 2006a. a
Weijers, J. W., Schouten, S., van den Donker, J. C., Hopmans, E. C., and
Damsté, J. S. S.: Environmental controls on bacterial tetraether membrane
lipid distribution in soils, Geochim. Cosmochim. Ac., 71, 703–713,
2007. a
Weijers, J. W., Panoto, E., van Bleijswijk, J., Schouten, S., Rijpstra, W.
I. C., Balk, M., Stams, A. J., and Sinninghe Damste, J. S.: Constraints on
the biological source (s) of the orphan branched tetraether membrane lipids,
Geomicrobiol. J., 26, 402–414, 2009. a
Weijers, J. W. H., Wiesenberg, G. L. B., Bol, R., Hopmans, E. C., and Pancost, R. D.: Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s), Biogeosciences, 7, 2959–2973, https://doi.org/10.5194/bg-7-2959-2010, 2010. a, b, c, d, e, f, g, h, i
Yang, H., Pancost, R. D., Jia, C., and Xie, S.: The response of archaeal
tetraether membrane lipids in surface soils to temperature: a potential
paleothermometer in paleosols, Geomicrobiol. J., 33, 98–109, 2016. a
Zimmermann, S., Luster, J., Blaser, P., Walthert, L., and Lüscher, P.:
Waldböden der Schweiz, Band 3, Regionen Mittelland und Voralpen, Swiss
Federal Research Institute WSL, Hep Verlag Bern, Switzerland, 2006. a
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Understanding controls on the persistence of organic matter in soils is essential to constrain...
Altmetrics
Final-revised paper
Preprint