Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3103-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3103-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Matthias Pucher
CORRESPONDING AUTHOR
WasserClusterLunz – Biologische Station GmbH, Lunz am See, Austria
Institute of Hydrobiology and Aquatic Ecosystem Management,
University of Natural Resources and Life Sciences, Vienna, Austria
Peter Flödl
Institute of Hydraulic Engineering and River Research, University of
Natural Resources and Life Sciences, Vienna, Austria
Daniel Graeber
Department Aquatic Ecosystem Analysis and Management (ASAM),
Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
Klaus Felsenstein
Department of Statistics, Vienna University of Technology, Vienna,
Austria
Thomas Hein
WasserClusterLunz – Biologische Station GmbH, Lunz am See, Austria
Institute of Hydrobiology and Aquatic Ecosystem Management,
University of Natural Resources and Life Sciences, Vienna, Austria
Gabriele Weigelhofer
WasserClusterLunz – Biologische Station GmbH, Lunz am See, Austria
Institute of Hydrobiology and Aquatic Ecosystem Management,
University of Natural Resources and Life Sciences, Vienna, Austria
Related authors
Alexandra Tiefenbacher, Gabriele Weigelhofer, Andreas Klik, Matthias Pucher, Jakob Santner, Walter Wenzel, Alexander Eder, and Peter Strauss
SOIL Discuss., https://doi.org/10.5194/soil-2019-97, https://doi.org/10.5194/soil-2019-97, 2020
Manuscript not accepted for further review
Michael Paster, Peter Flödl, Anton Neureiter, Gernot Weyss, Berhnard Hynek, Ulrich Pulg, Rannveig Øvrevik Skoglund, Helmut Habersack, and Christoph Hauer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-267, https://doi.org/10.5194/hess-2023-267, 2024
Manuscript not accepted for further review
Short summary
Short summary
Triggered by global warming, glacier melt is repeatedly reaching peak values year by year. This development leads to a continuous enlargement of glacier forelands, accompanied by increasing sediment availability and a change in meltwater runoff behavior. The study describes an essential development step of proglacial channel evolution using river engineering methods. This is relevant to adequately define glacifluvial processes and downstream sediment yields in these transitioning landscapes.
Michael Paster, Peter Flödl, Anton Neureiter, Gernot Weyss, Bernhard Hynek, Ulrich Pulg, Rannveig Øvrevik Skoglund, Helmut Habersack, and Christoph Hauer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-347, https://doi.org/10.5194/hess-2022-347, 2022
Manuscript not accepted for further review
Short summary
Short summary
Glaciers experienced record-breaking melting rates in recent years. This development leads to a continuous enlargement of glacier forelands, accompanied by increasing sediment availability and altered meltwater runoff behavior. This study describes the final development step of the gradual meltwater channel evolution using river engineering techniques. This is relevant to adequately define high alpine fluvial processes and sediment yields in these transitional landscapes.
Nicolás Valiente, Franz Jirsa, Thomas Hein, Wolfgang Wanek, Patricia Bonin, and Juan José Gómez-Alday
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-20, https://doi.org/10.5194/bg-2020-20, 2020
Preprint withdrawn
Short summary
Short summary
Saline lakes are prone to the accumulation of anthropogenic contaminants, making them highly vulnerable environments to nitrate pollution. We used the revised 15N-isotope pairing technique with sediments from a eutrophic hypersaline lake to unravel the nitrate removal pathways carrying on. Our work shows for the first time the coexistence of denitrification, DNRA and anammox in a highly saline/hypersaline lake, with extraordinarily high rates of coupled DNRA-anammox.
Alexandra Tiefenbacher, Gabriele Weigelhofer, Andreas Klik, Matthias Pucher, Jakob Santner, Walter Wenzel, Alexander Eder, and Peter Strauss
SOIL Discuss., https://doi.org/10.5194/soil-2019-97, https://doi.org/10.5194/soil-2019-97, 2020
Manuscript not accepted for further review
Lisa Thieme, Daniel Graeber, Diana Hofmann, Sebastian Bischoff, Martin T. Schwarz, Bernhard Steffen, Ulf-Niklas Meyer, Martin Kaupenjohann, Wolfgang Wilcke, Beate Michalzik, and Jan Siemens
Biogeosciences, 16, 1411–1432, https://doi.org/10.5194/bg-16-1411-2019, https://doi.org/10.5194/bg-16-1411-2019, 2019
Short summary
Short summary
To improve our understanding of the effects of tree species selection and management intensity on dissolved organic matter (DOM), we studied solution samples along the water flow path through forests with spectroscopic methods and biodegradation tests. There are distinct changes in DOM composition and biodegradability following the water path. Aboveground DOM was influenced by tree species selection but not by management intensity. Differences became aligned in mineral soil.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Tsung-Yu Lee, Li-Chin Lee, Jr-Chuan Huang, Shih-Hao Jien, Thomas Hein, Franz Zehetner, Shuh-Ji Kao, and Fuh-Kwo Shiah
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-105, https://doi.org/10.5194/bg-2017-105, 2017
Revised manuscript not accepted
Lisa Thieme, Daniel Graeber, Martin Kaupenjohann, and Jan Siemens
Biogeosciences, 13, 4697–4705, https://doi.org/10.5194/bg-13-4697-2016, https://doi.org/10.5194/bg-13-4697-2016, 2016
Short summary
Short summary
Freezing can affect dissolved organic matter properties and concentrations. Nevertheless, water samples are regularly frozen for sample preservation. To test, if fast-freezing with liquid nitrogen instead of normal freezing at −18 °C can prevent changes in DOM characteristics, we compared fresh and differently frozen terrestrial water samples. We found that fast-freezing with liquid nitrogen can prevent bulk organic matter concentrations but not its spectroscopic properties.
Jr-Chuan Huang, Tsung-Yu Lee, Teng-Chiu Lin, Thomas Hein, Li-Chin Lee, Yu-Ting Shih, Shuh-Ji Kao, Fuh-Kwo Shiah, and Neng-Huei Lin
Biogeosciences, 13, 1787–1800, https://doi.org/10.5194/bg-13-1787-2016, https://doi.org/10.5194/bg-13-1787-2016, 2016
Short summary
Short summary
The mean riverine DIN export of 49 watersheds in Taiwan is ∼ 3800 kg N km−2 yr−1, 18 times the global average. The mean riverine DIN export ratio is 0.30–0.51, which is much higher than the average of 0.20–0.25 of large rivers around the world, indicating excessive N input relative to ecosystem retention capacity. The DIN export ratio is positively related to agriculture input, and levels of human disturbance and watersheds with high DIN export ratios are likely at advanced stages of N excess.
G. Goyenola, M. Meerhoff, F. Teixeira-de Mello, I. González-Bergonzoni, D. Graeber, C. Fosalba, N. Vidal, N. Mazzeo, N. B. Ovesen, E. Jeppesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 19, 4099–4111, https://doi.org/10.5194/hess-19-4099-2015, https://doi.org/10.5194/hess-19-4099-2015, 2015
Short summary
Short summary
Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes: temperate and stable discharge conditions (Denmark) and sub-tropical and flashy conditions (Uruguay).
D. Graeber, G. Goyenola, M. Meerhoff, E. Zwirnmann, N. B. Ovesen, M. Glendell, J. Gelbrecht, F. Teixeira de Mello, I. González-Bergonzoni, E. Jeppesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 19, 2377–2394, https://doi.org/10.5194/hess-19-2377-2015, https://doi.org/10.5194/hess-19-2377-2015, 2015
Related subject area
Biogeochemistry: Rivers & Streams
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest
Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments
Carbon and nutrient export regimes from headwater catchments to downstream reaches
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Loris Deirmendjian, Denis Loustau, Laurent Augusto, Sébastien Lafont, Christophe Chipeaux, Dominique Poirier, and Gwenaël Abril
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, https://doi.org/10.5194/bg-15-669-2018, 2018
Short summary
Short summary
Carbon leaching to streams represents a very small (~ 2 %) fraction of forest net ecosystem exchange (NEE). Such weak export of carbon from forest ecosystems, at least in temperate regions, is at odds with recent studies that attempt to integrate the contribution of inland waters in the continent carbon budget. Understanding why local and global carbon mass balances strongly diverge on the proportion of land NEE exported to aquatic systems is a major challenge for research in this field.
Katrin Magin, Celia Somlai-Haase, Ralf B. Schäfer, and Andreas Lorke
Biogeosciences, 14, 5003–5014, https://doi.org/10.5194/bg-14-5003-2017, https://doi.org/10.5194/bg-14-5003-2017, 2017
Short summary
Short summary
We analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from catchments in a temperate stream network. The carbon exported by streams and rivers corresponds to 2.7 % of the terrestrial NPP. CO2 evasion and downstream transport contribute about equally to this flux. A review of existing studies suggests that the catchment-specific carbon export varies in a relatively narrow range across different study regions and spatial scales.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Rose M. Smith, Sujay S. Kaushal, Jake J. Beaulieu, Michael J. Pennino, and Claire Welty
Biogeosciences, 14, 2831–2849, https://doi.org/10.5194/bg-14-2831-2017, https://doi.org/10.5194/bg-14-2831-2017, 2017
Short summary
Short summary
Urban streams receive excess nitrogen from numerous sources. We hypothesized that variations in carbon availability and subsurface infrastructure influence emissions of N2O and other greenhouse gases (CH4 and CO2) as excess N is utilized by microbes. We sampled eight streams draining four categories of stormwater and sanitary infrastructure. Dissolved nitrogen concentration was the strongest predictor of CO2 and N2O concentrations, while C : N ratio was the strongest predictor of CH4 in streams.
Cited articles
Arhonditsis, G. B., Papantou, D., Zhang, W., Perhar, G., Massos, E., and
Shi, M.: Bayesian calibration of mechanistic aquatic biogeochemical models
and benefits for environmental management, J. Marine Syst., 73, 8–30,
https://doi.org/10.1016/j.jmarsys.2007.07.004, 2008.
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., and Packmann,
A. I.: The ecology and biogeochemistry of stream biofilms,
Nat. Rev. Microbiol., 14, 251–263, https://doi.org/10.1038/nrmicro.2016.15, 2016.
Bengtsson, M. M., Attermeyer, K., and Catalán, N.: Interactive effects
on organic matter processing from soils to the ocean: are priming effects
relevant in aquatic ecosystems?, Hydrobiologia, 822, 1–17,
https://doi.org/10.1007/s10750-018-3672-2, 2018.
Berger, J. O. and Berry, D. A.: Statistical Analysis and the Illusion of
Objectivity, Am. Sci., 76, 159–165, 1988.
Berggren, M. and del Giorgio, P. A.: Distinct patterns of microbial
metabolism associated to riverine dissolved organic carbon of different
source and quality, J. Geophys. Res.-Biogeo., 120, 989–999,
https://doi.org/10.1002/2015JG002963, 2015.
Berggren, M., Laudon, H., Haei, M., Ström, L., and Jansson, M.:
Efficient aquatic bacterial metabolism of dissolved low-molecular-weight
compounds from terrestrial sources, ISME J., 4, 408–416, 2010.
Bernhardt, E. S. and Likens, G. E.: Dissolved Organic Carbon Enrichment
Alters Nitrogen Dynamics in a Forest Stream, Ecology, 83, 1689–1700,
https://doi.org/10.1890/0012-9658(2002)083[1689:DOCEAN]2.0.CO;2, 2002.
Bernhardt, E. S. and McDowell, W. H.: Twenty years apart: Comparisons of DOM
uptake during leaf leachate releases to Hubbard Brook Valley streams in 1979
versus 2000, J. Geophys. Res.-Biogeo., 113, G03032, https://doi.org/10.1029/2007JG000618, 2008.
Besemer, K., Luef, B., Preiner, S., Eichberger, B., Agis, M., and Peduzzi,
P.: Sources and composition of organic matter for bacterial growth in a
large European river floodplain system (Danube, Austria), Org. Geochem., 40,
321–331, 2009.
Bianchi, T. S., Thornton, D. C. O., Yvon-Lewis, S. A., King, G. M.,
Eglinton, T. I., Shields, M. R., Ward, N. D., and Curtis, J.: Positive
priming of terrestrially derived dissolved organic matter in a freshwater
microcosm system, Geophys. Res. Lett., 42, 5460–5467,
https://doi.org/10.1002/2015GL064765, 2015.
Blöschl, G., Blaschke, A. P., Broer, M., Bucher, C., Carr, G., Chen, X., Eder, A., Exner-Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P., Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari, R., Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., and Zessner, M.: The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory, Hydrol. Earth Syst. Sci., 20, 227–255, https://doi.org/10.5194/hess-20-227-2016, 2016.
Brailsford, F. L., Glanville, H. C., Golyshin, P. N., Johnes, P. J., Yates,
C. A., and Jones, D. L.: Microbial uptake kinetics of dissolved organic
carbon (DOC) compound groups from river water and sediments, Sci. Rep.-UK, 9,
11229, https://doi.org/10.1038/s41598-019-47749-6, 2019.
Bürkner, P.-C.: brms: An R Package for Bayesian Multilevel Models Using
Stan, J. Stat. Softw., 80, 1–28, https://doi.org/10.18637/jss.v080.i01, 2017.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A.: Stan: A
Probabilistic Programming Language, J. Stat. Softw., 76, 1–32,
https://doi.org/10.18637/jss.v076.i01, 2017.
Casas-Ruiz, J. P., Catalán, N., Gómez-Gener, L., von Schiller, D.,
Obrador, B., Kothawala, D. N., López, P., Sabater, S., and Marcé,
R.: A tale of pipes and reactors: Controls on the in-stream dynamics of
dissolved organic matter in rivers, Limnol. Oceanogr., 62, 85–94,
https://doi.org/10.1002/lno.10471, 2017.
Catalán, N., Casas-Ruiz, J. P., Arce, M. I., Abril, M., Bravo, A. G.,
del Campo, R., Estévez, E., Freixa, A., Giménez-Grau, P.,
González-Ferreras, A. M., Gómez-Gener, L., Lupon, A., Martínez,
A., Palacin-Lizarbe, C., Poblador, S., Rasines-Ladero, R., Reyes, M.,
Rodríguez-Castillo, T., Rodríguez-Lozano, P., Sanpera-Calbet, I.,
Tornero, I., and Pastor, A.: Behind the Scenes: Mechanisms Regulating
Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams,
Global Biogeochem. Cy., 32, 1528–1541,
https://doi.org/10.1029/2018GB005919, 2018.
Cory, R. M. and Kaplan, L. A.: Biological lability of streamwater
fluorescent dissolved organic matter, Limnol. Oceanogr., 57, 1347–1360,
https://doi.org/10.4319/lo.2012.57.5.1347, 2012.
Covino, T. P.: The role of stream network nutrient uptake kinetics and groundwater exchange in modifying the timing, magnitude, and form of watershed export, PhD thesis, Montana State University, Bozeman, Montana, 266 pp., 2012.
Cox, R. T.: Probability, Frequency and Reasonable Expectation, Am. J. Phys.,
14, 1, https://doi.org/10.1119/1.1990764, 1946.
Cross, W. F., Benstead, J. P., Frost, P. C., and Thomas, S. A.: Ecological
stoichiometry in freshwater benthic systems: recent progress and
perspectives, Freshwater Biol., 50, 1895–1912,
https://doi.org/10.1111/j.1365-2427.2005.01458.x, 2005.
Dodds, W. K., López, A. J., Bowden, W. B., Gregory, S., Grimm, N. B.,
Hamilton, S. K., Hershey, A. E., Martí, E., McDowell, W. H., Meyer, J.
L., Morrall, D., Mulholland, P. J., Peterson, B. J., Tank, J. L., Valett, H.
M., Webster, J. R., and Wollheim, W.: N uptake as a function of
concentration in streams, J. N. Am. Benthol. Soc., 21, 206–220,
https://doi.org/10.2307/1468410, 2002.
Dodds, W. K., Martí, E., Tank, J. L., Pontius, J., Hamilton, S. K.,
Grimm, N. B., Bowden, W. B., McDowell, W. H., Peterson, B. J., and Valett,
H. M.: Carbon and nitrogen stoichiometry and nitrogen cycling rates in
streams, Oecologia, 140, 458–467, 2004.
Ejarque, E., Freixa, A., Vazquez, E., Guarch, A., Amalfitano, S., Fazi, S.,
Romaní, A. M., and Butturini, A.: Quality and reactivity of dissolved
organic matter in a Mediterranean river across hydrological and spatial
gradients, Sci. Total Environ., 599–600, 1802–1812,
https://doi.org/10.1016/j.scitotenv.2017.05.113, 2017.
Ellison, A. M.: Bayesian inference in ecology, Ecol. Lett., 7, 509–520,
https://doi.org/10.1111/j.1461-0248.2004.00603.x, 2004.
Ensign, S. H. and Doyle, M. W.: In-channel transient storage and associated
nutrient retention: Evidence from experimental manipulations, Limnol.
Oceanogr., 50, 1740–1751, https://doi.org/10.4319/lo.2005.50.6.1740, 2005.
Fellman, J. B., Miller, M. P., Cory, R. M., D'Amore, D. V., and White, D.:
Characterizing Dissolved Organic Matter Using PARAFAC Modeling of
Fluorescence Spectroscopy: A Comparison of Two Models, Environ. Sci.
Technol., 43, 6228–6234, https://doi.org/10.1021/es900143g, 2009a.
Fellman, J. B., Hood, E., D'amore, D. V., Edwards, R. T., and White, D.:
Seasonal changes in the chemical quality and biodegradability of dissolved
organic matter exported from soils to streams in coastal temperate
rainforest watersheds, Biogeochemistry, 95, 277–293, 2009b.
Findlay, S. and Sinsabaugh, R. L.: Aquatic ecosystems: interactivity of
dissolved organic matter, Academic Press, Amsterdam, The Netherlands and Boston, Massachusetts, USA, 512 pp., 2003.
Freeman, C., Lock, M. A., Marxsen, J., and Jones, S. E.: Inhibitory effects
of high molecular weight dissolved organic matter upon metabolic processes
in biofilms from contrasting rivers and streams, Freshwater Biol., 24,
159–166, https://doi.org/10.1111/j.1365-2427.1990.tb00315.x, 1990.
Freixa, A., Ejarque, E., Crognale, S., Amalfitano, S., Fazi, S., Butturini,
A., and Romaní, A. M.: Sediment microbial communities rely on different
dissolved organic matter sources along a Mediterranean river continuum,
Limnol. Oceanogr., 61, 1389–1405, https://doi.org/10.1002/lno.10308, 2016.
Garcia, R. D., Reissig, M., Queimaliños, C. P., Garcia, P. E., and
Dieguez, M. C.: Climate-driven terrestrial inputs in ultraoligotrophic
mountain streams of Andean Patagonia revealed through chromophoric and
fluorescent dissolved organic matter, Sci. Total Environ., 521–522,
280–292, https://doi.org/10.1016/j.scitotenv.2015.03.102, 2015.
Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A.: R-squared for Bayesian
Regression Models, Am. Stat., 73, 307–309,
https://doi.org/10.1080/00031305.2018.1549100, 2019.
Ghosh, J. and Ghattas, A. E.: Bayesian Variable Selection Under
Collinearity, Am. Stat., 69, 165–173,
https://doi.org/10.1080/00031305.2015.1031827, 2015.
Gibson, C. A. and O'Reilly, C. M.: Organic matter stoichiometry influences
nitrogen and phosphorus uptake in a headwater stream, Freshw. Sci., 31,
395–407, https://doi.org/10.1899/11-033.1, 2012.
Godwin, C. M. and Cotner, J. B.: What intrinsic and extrinsic factors
explain the stoichiometric diversity of aquatic heterotrophic bacteria?,
ISME J., 12, 598–609, https://doi.org/10.1038/ismej.2017.195, 2018.
Goodman, S. N.: Toward Evidence-Based Medical Statistics, 1: The P Value
Fallacy, Ann. Intern. Med., 130, 995–1004,
https://doi.org/10.7326/0003-4819-130-12-199906150-00008, 1999a.
Goodman, S. N.: Toward Evidence-Based Medical Statistics, 2: The Bayes
Factor, Ann. Intern. Med., 130, 1005–1013,
https://doi.org/10.7326/0003-4819-130-12-199906150-00019, 1999b.
Graeber, D., Boëchat, I. G., Encina-Montoya, F., Esse, C., Gelbrecht,
J., Goyenola, G., Gücker, B., Heinz, M., Kronvang, B., Meerhoff, M.,
Nimptsch, J., Pusch, M. T., Silva, R. C. S., von Schiller, D., and
Zwirnmann, E.: Global effects of agriculture on fluvial dissolved organic
matter, Sci. Rep.-UK, 5, 16328, https://doi.org/10.1038/srep16328, 2015.
Graeber, D., Poulsen, J. R., Heinz, M., Rasmussen, J. J., Zak, D.,
Gücker, B., Kronvang, B., and Kamjunke, N.: Going with the flow:
Planktonic processing of dissolved organic carbon in streams, Sci. Total
Environ., 625, 519–530, https://doi.org/10.1016/j.scitotenv.2017.12.285, 2018.
Graeber, D., Gücker, B., Wild, R., Wells, N. S., Anlanger, C., Kamjunke,
N., Norf, H., Schmidt, C., and Brauns, M.: Biofilm-specific uptake does not
explain differences in whole-stream DOC tracer uptake between a forest and
an agricultural stream, Biogeochemistry, 144, 85–101,
https://doi.org/10.1007/s10533-019-00573-6, 2019.
Gücker, B., Silva, R. C. S., Graeber, D., Monteiro, J. A. F., and
Boëchat, I. G.: Urbanization and agriculture increase exports and
differentially alter elemental stoichiometry of dissolved organic matter
(DOM) from tropical catchments, Sci. Total Environ., 550, 785–792,
https://doi.org/10.1016/j.scitotenv.2016.01.158, 2016.
Guillemette, F. and del Giorgio, P. A.: Simultaneous consumption and
production of fluorescent dissolved organic matter by lake bacterioplankton,
Environ. Microbiol., 14, 1432–1443,
https://doi.org/10.1111/j.1462-2920.2012.02728.x, 2012.
Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B.
D., and Bergamaschi, B. A.: Optical properties of dissolved organic matter
(DOM): Effects of biological and photolytic degradation, Limnol. Oceanogr.,
61, 1015–1032, https://doi.org/10.1002/lno.10270, 2016.
Heibati, M., Stedmon, C. A., Stenroth, K., Rauch, S., Toljander, J.,
Säve-Söderbergh, M., and Murphy, K. R.: Assessment of drinking water
quality at the tap using fluorescence spectroscopy, Water Res., 125, 1–10,
https://doi.org/10.1016/j.watres.2017.08.020, 2017.
Jaynes, E. T.: Probability Theory: The Logic of Science, Cambridge
University Press, Cambridge, UK, 762 pp., 2003.
Jeffreys, S. H.: The Theory of Probability, 3rd edn., Oxford University Press, Oxford, New York, USA, 470 pp., 1998.
Kamjunke, N., Herzsprung, P., and Neu, T. R.: Quality of dissolved organic
matter affects planktonic but not biofilm bacterial production in streams,
Sci. Total Environ., 506–507, 353–360,
https://doi.org/10.1016/j.scitotenv.2014.11.043, 2015.
Kamjunke, N., von Tümpling, W., Hertkorn, N., Harir, M.,
Schmitt-Kopplin, P., Norf, H., Weitere, M., and Herzsprung, P.: A new
approach for evaluating transformations of dissolved organic matter (DOM)
via high-resolution mass spectrometry and relating it to bacterial activity,
Water Res., 123, 513–523, https://doi.org/10.1016/j.watres.2017.07.008, 2017.
Kass, R. E. and Raftery, A. E.: Bayes Factors, J. Am. Stat. Assoc., 90,
773–795, https://doi.org/10.1080/01621459.1995.10476572, 1995.
Koehler, B., von Wachenfeldt, E., Kothawala, D., and Tranvik, L. J.:
Reactivity continuum of dissolved organic carbon decomposition in lake
water, J. Geophys. Res.-Biogeo., 117, G01024, https://doi.org/10.1029/2011JG001793, 2012.
Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., and
Tranvik, L. J.: Inner filter correction of dissolved organic matter
fluorescence, Limnol. Oceanogr.-Meth., 11, 616–630,
https://doi.org/10.4319/lom.2013.11.616, 2013.
Kruschke, J. K.: Bayesian estimation supersedes the t test,
J. Exp. Psychol. Gen., 142, 573–603, https://doi.org/10.1037/a0029146, 2013.
Kuhnert, P. M., Martin, T. G., and Griffiths, S. P.: A guide to eliciting
and using expert knowledge in Bayesian ecological models, Ecol. Lett., 13,
900–914, https://doi.org/10.1111/j.1461-0248.2010.01477.x, 2010.
Kuserk, F. T., Kaplan, L. A., and Bott, T. L.: In Situ Measures of Dissolved
Organic Carbon Flux in a Rural Stream, Can. J. Fish. Aquat. Sci., 41,
964–973, https://doi.org/10.1139/f84-110, 1984.
Lambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V.: Along-stream transport and transformation of dissolved organic matter in a large tropical river, Biogeosciences, 13, 2727–2741, https://doi.org/10.5194/bg-13-2727-2016, 2016a.
Lambert, T., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V.: Shift in the chemical composition of dissolved organic matter in the Congo River network, Biogeosciences, 13, 5405–5420, https://doi.org/10.5194/bg-13-5405-2016, 2016b.
Lambert, T., Bouillon, S., Darchambeau, F., Morana, C., Roland, F. A. E.,
Descy, J.-P., and Borges, A. V.: Effects of human land use on the
terrestrial and aquatic sources of fluvial organic matter in a temperate
river basin (The Meuse River, Belgium), Biogeochemistry, 136, 191–211,
https://doi.org/10.1007/s10533-017-0387-9, 2017.
Lemoine, N. P.: Moving beyond noninformative priors: why and how to choose
weakly informative priors in Bayesian analyses, Oikos, 128, 912–928,
https://doi.org/10.1111/oik.05985, 2019.
Lutz, B. D., Bernhardt, E. S., Roberts, B. J., Cory, R. M., and Mulholland,
P. J.: Distinguishing dynamics of dissolved organic matter components in a
forested stream using kinetic enrichments, Limnol. Oceanogr., 57, 76–89,
https://doi.org/10.4319/lo.2012.57.1.0076, 2012.
Ly, A., Verhagen, J., and Wagenmakers, E.-J.: Harold Jeffreys's default
Bayes factor hypothesis tests: Explanation, extension, and application in
psychology, J. Math. Psychol., 72, 19–32,
https://doi.org/10.1016/j.jmp.2015.06.004, 2016.
Martínez, A., Kominoski, J. S., and Larrañaga, A.: Leaf-litter
leachate concentration promotes heterotrophy in freshwater biofilms:
Understanding consequences of water scarcity, Sci. Total Environ., 599–600,
1677–1684, https://doi.org/10.1016/j.scitotenv.2017.05.043, 2017.
Massicotte, P.: eemR: Tools for Pre-Processing Emission-Excitation-Matrix (EEM) Fluorescence Data, CRAN, https://CRAN.R-project.org/package=eemR (last access: 19 May 2021), 2019.
McCarthy, M. A.: Bayesian Methods for Ecology, Cambridge University Press,
Cambridge, UK, 310 pp., 2007.
McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R
and Stan, Apple Academic Press Inc., Boca Raton, Florida, USA, 469 pp., 2016.
Merseburger, G., Martí, E., Sabater, F., and Ortiz, J. D.: Point-source
effects on N and P uptake in a forested and an agricultural Mediterranean
streams, Sci. Total Environ., 409, 957–967,
https://doi.org/10.1016/j.scitotenv.2010.11.014, 2011.
Mineau, M. M., Rigsby, C. M., Ely, D. T., Fernandez, I. J., Norton, S. A.,
Ohno, T., Valett, H. M., and Simon, K. S.: Chronic catchment nitrogen
enrichment and stoichiometric constraints on the bioavailability of
dissolved organic matter from leaf leachate, Freshwater Biol., 58, 248–260,
https://doi.org/10.1111/fwb.12054, 2013.
Mineau, M. M., Wollheim, W. M., Buffam, I., Findlay, S. E. G., Hall, R. O.,
Hotchkiss, E. R., Koenig, L. E., McDowell, W. H., and Parr, T. B.: Dissolved
organic carbon uptake in streams: A review and assessment of reach-scale
measurements, J. Geophys. Res.-Biogeo., 121, 2019–2029,
https://doi.org/10.1002/2015JG003204, 2016.
Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., and Ly, A.:
BayesFactor: Computation of Bayes Factors for Common Designs, CRAN, available at: https://CRAN.R-project.org/package=BayesFactor (last access: 19 May 2021), 2018.
Mulholland, P. J., Hall, R. O., Sobota, D. J., Dodds, W. K., Findlay, S. E.
G., Grimm, N. B., Hamilton, S. K., McDowell, W. H., O'Brien, J. M., Tank, J.
L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Gregory, S. V., Johnson, S.
L., Meyer, J. L., Peterson, B. J., Poole, G. C., Valett, H. M., Webster, J.
R., Arango, C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw,
C. L., Helton, A. M., Johnson, L. T., Niederlehner, B. R., Potter, J. D.,
Sheibley, R. W., and Thomasn, S. M.: Nitrate removal in stream ecosystems
measured by 15N addition experiments: Denitrification, Limnol. Oceanogr.,
54, 666–680, https://doi.org/10.4319/lo.2009.54.3.0666, 2009.
Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz,
R., and Khan, S. J.: Organic Matter Fluorescence in Municipal Water
Recycling Schemes: Toward a Unified PARAFAC Model, Environ. Sci. Technol.,
45, 2909–2916, https://doi.org/10.1021/es103015e, 2011.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods-UK, 6, 658–661, https://doi.org/10.1039/C3AY41935E, 2014.
Mutschlecner, A. E., Guerard, J. J., Jones, J. B., and Harms, T. K.:
Phosphorus Enhances Uptake of Dissolved Organic Matter in Boreal Streams,
Ecosystems, 21, 675–688, https://doi.org/10.1007/s10021-017-0177-1, 2018.
Niño-García, J. P., Ruiz-González, C., and del Giorgio, P. A.:
Interactions between hydrology and water chemistry shape bacterioplankton
biogeography across boreal freshwater networks, ISME J., 10, 1755–1766,
https://doi.org/10.1038/ismej.2015.226, 2016.
O'Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., and Eichmiller,
J.: The saturation of N cycling in Central Plains streams: 15N experiments
across a broad gradient of nitrate concentrations, Biogeochemistry, 84,
31–49, https://doi.org/10.1007/s10533-007-9073-7, 2007.
Ohno, T. and Bro, R.: Dissolved Organic Matter Characterization Using
Multiway Spectral Decomposition of Fluorescence Landscapes,
Soil Sci. Soc. Am. J., 70, 2028–2037, https://doi.org/10.2136/sssaj2006.0005, 2006.
Oviedo-Vargas, D., Royer, T. V., and Johnson, L. T.: Dissolved organic
carbon manipulation reveals coupled cycling of carbon, nitrogen, and
phosphorus in a nitrogen-rich stream, Limnol. Oceanogr., 58, 1196–1206,
https://doi.org/10.4319/lo.2013.58.4.1196, 2013.
Payn, R. A., Webster, J. R., Mulholland, P. J., Valett, H. M., and Dodds, W.
K.: Estimation of stream nutrient uptake from nutrient addition experiments,
Limnol. Oceanogr.-Meth., 3, 174–182, https://doi.org/10.4319/lom.2005.3.174, 2005.
Pucher, M.: MatthiasPucher/INSBIRE: INSBIRE: Interactions in Nutrient
Spirals using BayesIan nonlinear REgression, Zenodo,
https://doi.org/10.5281/zenodo.4071851, 2020.
Pucher, M., Wünsch, U., Weigelhofer, G., Murphy, K., Hein, T., and
Graeber, D.: staRdom: Versatile Software for Analyzing Spectroscopic Data of
Dissolved Organic Matter in R, Water, 11, 2366, https://doi.org/10.3390/w11112366, 2019.
R Development Core Team: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria, 2019.
Ribot, M., von Schiller, D., Peipoch, M., Sabater, F., Grimm, N. B., and
Martí, E.: Influence of nitrate and ammonium availability on uptake
kinetics of stream biofilms, Freshw. Sci., 32, 1155–1167,
https://doi.org/10.1899/12-209.1, 2013.
Romani, A. M., Guasch, H., Munoz, I., Ruana, J., Vilalta, E., Schwartz, T.,
Emtiazi, F., and Sabater, S.: Biofilm structure and function and possible
implications for riverine DOC dynamics, Microb. Ecol., 47, 316–328, 2004.
Sabater, S., Guasch, H., Romaní, A., and Muñoz, I.: The effect of
biological factors on the efficiency of river biofilms in improving water
quality, Hydrobiologia, 469, 149–156,
https://doi.org/10.1023/A:1015549404082, 2002.
Shutova, Y., Baker, A., Bridgeman, J., and Henderson, R. K.: Spectroscopic
characterisation of dissolved organic matter changes in drinking water
treatment: From PARAFAC analysis to online monitoring wavelengths, Water
Res., 54, 159–169, https://doi.org/10.1016/j.watres.2014.01.053, 2014.
Small, G. E., Helton, A. M., and Kazanci, C.: Can consumer stoichiometric
regulation control nutrient spiraling in streams?, J. N. Am. Benthol. Soc.,
28, 747–765, https://doi.org/10.1899/08-099.1, 2009.
Stedmon, C. A. and Markager, S.: Resolving the variability in dissolved
organic matter fluorescence in a temperate estuary and its catchment using
PARAFAC analysis, Limnol. Oceanogr., 50, 686–697,
https://doi.org/10.4319/lo.2005.50.2.0686, 2005.
Stevenson, F. J. and He, X.-T.: Nitrogen in Humic Substances as Related to
Soil Fertility, in: Humic Substances in Soil and Crop Sciences: Selected
Readings, John Wiley & Sons, Ltd., Madison, Wisconsin, 91–109,
https://doi.org/10.2136/1990.humicsubstances.c5, 1990.
Stream Solute Workshop: Concepts and Methods for Assessing Solute Dynamics
in Stream Ecosystems, J. N. Am. Benthol. Soc., 9, 95–119,
https://doi.org/10.2307/1467445, 1990.
Stutter, M., Graeber, D., and Weigelhofer, G.: Available Dissolved Organic
Carbon Alters Uptake and Recycling of Phosphorus and Nitrogen from River
Sediments, Water, 12, 3321, https://doi.org/10.3390/w12123321, 2020.
Stutter, M. I., Graeber, D., Evans, C. D., Wade, A. J., and Withers, P. J.
A.: Balancing macronutrient stoichiometry to alleviate eutrophication, Sci.
Total Environ., 634, 439–447,
https://doi.org/10.1016/j.scitotenv.2018.03.298, 2018.
Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., and
Stephen, M. L.: A review of allochthonous organic matter dynamics and
metabolism in streams, J. N. Am. Benthol. Soc., 29, 118–146,
https://doi.org/10.1899/08-170.1, 2010.
Taylor, P. G. and Townsend, A. R.: Stoichiometric control of organic
carbon-nitrate relationships from soils to the sea, Nature, 464,
1178–1181, https://doi.org/10.1038/nature08985, 2010.
Teissier, S., Torre, M., Delmas, F., and Garabétian, F.: Detailing
biogeochemical N budgets in riverine epilithic biofilms, J. N. Am. Benthol.
Soc., 26, 178–190,
https://doi.org/10.1899/0887-3593(2007)26[178:DBNBIR]2.0.CO;2, 2007.
Theng, B. K. G. (Ed.): Humic Substances, in: Developments in Clay
Science, Elsevier, Amsterdam, the Netherlands, Oxford, United Kingdom and Cambridge, Massachusetts, 391–456, https://doi.org/10.1016/B978-0-444-53354-8.00012-8, 2012.
Trentman, M. T., Dodds, W. K., Fencl, J. S., Gerber, K., Guarneri, J.,
Hitchman, S. M., Peterson, Z., and Rüegg, J.: Quantifying ambient
nitrogen uptake and functional relationships of uptake versus concentration
in streams: a comparison of stable isotope, pulse, and plateau approaches,
Biogeochemistry, 125, 65–79, https://doi.org/10.1007/s10533-015-0112-5, 2015.
Tsutsuki, K. and Kuwatsuka, S.: Chemical studies on soil humic acids,
Soil Sci. Plant Nutr., 25, 183–195,
https://doi.org/10.1080/00380768.1979.10433159, 1979.
von Schiller, D., Bernal, S., and Martí, E.: Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake, Biogeosciences, 8, 875–882, https://doi.org/10.5194/bg-8-875-2011, 2011.
Weigelhofer, G.: The potential of agricultural headwater streams to retain
soluble reactive phosphorus, Hydrobiologia, 793, 149–160,
https://doi.org/10.1007/s10750-016-2789-4, 2017.
Weigelhofer, G., Fuchsberger, J., Teufl, B., Welti, N., and Hein, T.:
Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in
Agricultural Catchments, J. Environ. Qual., 41, 373–379,
https://doi.org/10.2134/jeq2010.0436, 2012.
Weigelhofer, G., Ramião, J. P., Pitzl, B., Bondar-Kunze, E., and
O'Keeffe, J.: Decoupled water-sediment interactions restrict the phosphorus
buffer mechanism in agricultural streams, Sci. Total Environ., 628–629,
44–52, https://doi.org/10.1016/j.scitotenv.2018.02.030, 2018a.
Weigelhofer, G., Ramião, J. P., Puritscher, A., and Hein, T.: How do
chronic nutrient loading and the duration of nutrient pulses affect nutrient
uptake in headwater streams?, Biogeochemistry, 141, 249–263,
https://doi.org/10.1007/s10533-018-0518-y, 2018b.
Weigelhofer, G., Jirón, T. S., Yeh, T.-C., Steniczka, G., and Pucher,
M.: Dissolved Organic Matter Quality and Biofilm Composition Affect
Microbial Organic Matter Uptake in Stream Flumes, Water, 12, 3246,
https://doi.org/10.3390/w12113246, 2020.
Welti, N., Striebel, M., Ulseth, A. J., Cross, W. F., DeVilbiss, S.,
Glibert, P. M., Guo, L., Hirst, A. G., Hood, J., and Kominoski, J. S.:
Bridging food webs, ecosystem metabolism, and biogeochemistry using
ecological stoichiometry theory, Front. Microbiol., 8, 1298, https://doi.org/10.3389/fmicb.2017.01298, 2017.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse,
J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wickland, K. P., Neff, J. C., and Aiken, G. R.: Dissolved Organic Carbon in
Alaskan Boreal Forest: Sources, Chemical Characteristics, and
Biodegradability, Ecosystems, 10, 1323–1340,
https://doi.org/10.1007/s10021-007-9101-4, 2007.
Wickland, K. P., Aiken, G. R., Butler, K., Dornblaser, M. M., Spencer, R. G.
M., and Striegl, R. G.: Biodegradability of dissolved organic carbon in the
Yukon River and its tributaries: Seasonality and importance of inorganic
nitrogen, Global Biogeochem. Cy., 26, GB0E03, https://doi.org/10.1029/2012GB004342, 2012.
Wiegner, T. N., Kaplan, L. A., Newbold, J. D., and Ostrom, P. H.:
Contribution of dissolved organic C to stream metabolism: a mesocosm study
using 13C-enriched tree-tissue leachate, J. N. Am. Benthol. Soc., 24,
48–67, https://doi.org/10.1899/0887-3593(2005)024<0048:CODOCT>2.0.CO;2, 2005.
Williams, C. J., Yamashita, Y., Wilson, H. F., Jaffé, R., and
Xenopoulos, M. A.: Unraveling the role of land use and microbial activity in
shaping dissolved organic matter characteristics in stream ecosystems,
Limnol. Oceanogr., 55, 1159–1171,
https://doi.org/10.4319/lo.2010.55.3.1159, 2010.
Williams, C. J., Frost, P. C., and Xenopoulos, M. A.: Beyond best management
practices: pelagic biogeochemical dynamics in urban stormwater ponds, Ecol.
Appl., 23, 1384–1395, https://doi.org/10.1890/12-0825.1, 2013.
Wünsch, U. J., Murphy, K. R., and Stedmon, C. A.: Fluorescence Quantum
Yields of Natural Organic Matter and Organic Compounds: Implications for the
Fluorescence-based Interpretation of Organic Matter Composition, Front. Mar.
Sci., 2, 98, https://doi.org/10.3389/fmars.2015.00098, 2015.
Wymore, A. S., Coble, A. A., Rodríguez-Cardona, B., and McDowell, W.
H.: Nitrate uptake across biomes and the influence of elemental
stoichiometry: A new look at LINX II, Global Biogeochem. Cy., 30,
1183–1191, https://doi.org/10.1002/2016GB005468, 2016.
Xenopoulos, M. A., Barnes, R. T., Boodoo, K. S., Butman, D., Catalán,
N., D'Amario, S. C., Fasching, C., Kothawala, D. N., Pisani, O., and
Solomon, C. T.: How humans alter dissolved organic matter composition in
freshwater: relevance for the Earth's biogeochemistry, Biogeochemistry,
1–26, https://doi.org/10.1007/s10533-021-00753-3, 2021.
Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G. L., and Jaffé,
R.: Effects of Watershed History on Dissolved Organic Matter Characteristics
in Headwater Streams, Ecosystems, 14, 1110–1122,
https://doi.org/10.1007/s10021-011-9469-z, 2011.
Yamashita, Y., Boyer, J. N., and Jaffé, R.: Evaluating the distribution
of terrestrial dissolved organic matter in a complex coastal ecosystem using
fluorescence spectroscopy, Cont. Shelf Res., 66, 136–144,
https://doi.org/10.1016/j.csr.2013.06.010, 2013.
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake...
Altmetrics
Final-revised paper
Preprint