Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3103-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3103-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Matthias Pucher
CORRESPONDING AUTHOR
WasserClusterLunz – Biologische Station GmbH, Lunz am See, Austria
Institute of Hydrobiology and Aquatic Ecosystem Management,
University of Natural Resources and Life Sciences, Vienna, Austria
Peter Flödl
Institute of Hydraulic Engineering and River Research, University of
Natural Resources and Life Sciences, Vienna, Austria
Daniel Graeber
Department Aquatic Ecosystem Analysis and Management (ASAM),
Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
Klaus Felsenstein
Department of Statistics, Vienna University of Technology, Vienna,
Austria
Thomas Hein
WasserClusterLunz – Biologische Station GmbH, Lunz am See, Austria
Institute of Hydrobiology and Aquatic Ecosystem Management,
University of Natural Resources and Life Sciences, Vienna, Austria
Gabriele Weigelhofer
WasserClusterLunz – Biologische Station GmbH, Lunz am See, Austria
Institute of Hydrobiology and Aquatic Ecosystem Management,
University of Natural Resources and Life Sciences, Vienna, Austria
Related authors
No articles found.
Anika Große, Alexander J. Reisinger, Nuria Perujo, Patrick Fink, Dietrich Borchardt, and Daniel Graeber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3548, https://doi.org/10.5194/egusphere-2025-3548, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In a lab study on Florida streams, we altered carbon and nitrogen levels to measure nitrate uptake by biofilms. After 48 hours, nitrate uptake increased, though the biofilm structure stayed the same. Bacteria-dominated biofilms responded to both carbon and nitrogen, while algae-dominated ones reacted more to nitrogen. Biofilms with high wastewater input did not show any changes in nitrate uptake. These findings help explain how streams can reduce pollution after nutrient pulses.
Michael Paster, Peter Flödl, Anton Neureiter, Gernot Weyss, Berhnard Hynek, Ulrich Pulg, Rannveig Øvrevik Skoglund, Helmut Habersack, and Christoph Hauer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-267, https://doi.org/10.5194/hess-2023-267, 2024
Manuscript not accepted for further review
Short summary
Short summary
Triggered by global warming, glacier melt is repeatedly reaching peak values year by year. This development leads to a continuous enlargement of glacier forelands, accompanied by increasing sediment availability and a change in meltwater runoff behavior. The study describes an essential development step of proglacial channel evolution using river engineering methods. This is relevant to adequately define glacifluvial processes and downstream sediment yields in these transitioning landscapes.
Michael Paster, Peter Flödl, Anton Neureiter, Gernot Weyss, Bernhard Hynek, Ulrich Pulg, Rannveig Øvrevik Skoglund, Helmut Habersack, and Christoph Hauer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-347, https://doi.org/10.5194/hess-2022-347, 2022
Manuscript not accepted for further review
Short summary
Short summary
Glaciers experienced record-breaking melting rates in recent years. This development leads to a continuous enlargement of glacier forelands, accompanied by increasing sediment availability and altered meltwater runoff behavior. This study describes the final development step of the gradual meltwater channel evolution using river engineering techniques. This is relevant to adequately define high alpine fluvial processes and sediment yields in these transitional landscapes.
Cited articles
Arhonditsis, G. B., Papantou, D., Zhang, W., Perhar, G., Massos, E., and
Shi, M.: Bayesian calibration of mechanistic aquatic biogeochemical models
and benefits for environmental management, J. Marine Syst., 73, 8–30,
https://doi.org/10.1016/j.jmarsys.2007.07.004, 2008.
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., and Packmann,
A. I.: The ecology and biogeochemistry of stream biofilms,
Nat. Rev. Microbiol., 14, 251–263, https://doi.org/10.1038/nrmicro.2016.15, 2016.
Bengtsson, M. M., Attermeyer, K., and Catalán, N.: Interactive effects
on organic matter processing from soils to the ocean: are priming effects
relevant in aquatic ecosystems?, Hydrobiologia, 822, 1–17,
https://doi.org/10.1007/s10750-018-3672-2, 2018.
Berger, J. O. and Berry, D. A.: Statistical Analysis and the Illusion of
Objectivity, Am. Sci., 76, 159–165, 1988.
Berggren, M. and del Giorgio, P. A.: Distinct patterns of microbial
metabolism associated to riverine dissolved organic carbon of different
source and quality, J. Geophys. Res.-Biogeo., 120, 989–999,
https://doi.org/10.1002/2015JG002963, 2015.
Berggren, M., Laudon, H., Haei, M., Ström, L., and Jansson, M.:
Efficient aquatic bacterial metabolism of dissolved low-molecular-weight
compounds from terrestrial sources, ISME J., 4, 408–416, 2010.
Bernhardt, E. S. and Likens, G. E.: Dissolved Organic Carbon Enrichment
Alters Nitrogen Dynamics in a Forest Stream, Ecology, 83, 1689–1700,
https://doi.org/10.1890/0012-9658(2002)083[1689:DOCEAN]2.0.CO;2, 2002.
Bernhardt, E. S. and McDowell, W. H.: Twenty years apart: Comparisons of DOM
uptake during leaf leachate releases to Hubbard Brook Valley streams in 1979
versus 2000, J. Geophys. Res.-Biogeo., 113, G03032, https://doi.org/10.1029/2007JG000618, 2008.
Besemer, K., Luef, B., Preiner, S., Eichberger, B., Agis, M., and Peduzzi,
P.: Sources and composition of organic matter for bacterial growth in a
large European river floodplain system (Danube, Austria), Org. Geochem., 40,
321–331, 2009.
Bianchi, T. S., Thornton, D. C. O., Yvon-Lewis, S. A., King, G. M.,
Eglinton, T. I., Shields, M. R., Ward, N. D., and Curtis, J.: Positive
priming of terrestrially derived dissolved organic matter in a freshwater
microcosm system, Geophys. Res. Lett., 42, 5460–5467,
https://doi.org/10.1002/2015GL064765, 2015.
Blöschl, G., Blaschke, A. P., Broer, M., Bucher, C., Carr, G., Chen, X., Eder, A., Exner-Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P., Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari, R., Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., and Zessner, M.: The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory, Hydrol. Earth Syst. Sci., 20, 227–255, https://doi.org/10.5194/hess-20-227-2016, 2016.
Brailsford, F. L., Glanville, H. C., Golyshin, P. N., Johnes, P. J., Yates,
C. A., and Jones, D. L.: Microbial uptake kinetics of dissolved organic
carbon (DOC) compound groups from river water and sediments, Sci. Rep.-UK, 9,
11229, https://doi.org/10.1038/s41598-019-47749-6, 2019.
Bürkner, P.-C.: brms: An R Package for Bayesian Multilevel Models Using
Stan, J. Stat. Softw., 80, 1–28, https://doi.org/10.18637/jss.v080.i01, 2017.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A.: Stan: A
Probabilistic Programming Language, J. Stat. Softw., 76, 1–32,
https://doi.org/10.18637/jss.v076.i01, 2017.
Casas-Ruiz, J. P., Catalán, N., Gómez-Gener, L., von Schiller, D.,
Obrador, B., Kothawala, D. N., López, P., Sabater, S., and Marcé,
R.: A tale of pipes and reactors: Controls on the in-stream dynamics of
dissolved organic matter in rivers, Limnol. Oceanogr., 62, 85–94,
https://doi.org/10.1002/lno.10471, 2017.
Catalán, N., Casas-Ruiz, J. P., Arce, M. I., Abril, M., Bravo, A. G.,
del Campo, R., Estévez, E., Freixa, A., Giménez-Grau, P.,
González-Ferreras, A. M., Gómez-Gener, L., Lupon, A., Martínez,
A., Palacin-Lizarbe, C., Poblador, S., Rasines-Ladero, R., Reyes, M.,
Rodríguez-Castillo, T., Rodríguez-Lozano, P., Sanpera-Calbet, I.,
Tornero, I., and Pastor, A.: Behind the Scenes: Mechanisms Regulating
Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams,
Global Biogeochem. Cy., 32, 1528–1541,
https://doi.org/10.1029/2018GB005919, 2018.
Cory, R. M. and Kaplan, L. A.: Biological lability of streamwater
fluorescent dissolved organic matter, Limnol. Oceanogr., 57, 1347–1360,
https://doi.org/10.4319/lo.2012.57.5.1347, 2012.
Covino, T. P.: The role of stream network nutrient uptake kinetics and groundwater exchange in modifying the timing, magnitude, and form of watershed export, PhD thesis, Montana State University, Bozeman, Montana, 266 pp., 2012.
Cox, R. T.: Probability, Frequency and Reasonable Expectation, Am. J. Phys.,
14, 1, https://doi.org/10.1119/1.1990764, 1946.
Cross, W. F., Benstead, J. P., Frost, P. C., and Thomas, S. A.: Ecological
stoichiometry in freshwater benthic systems: recent progress and
perspectives, Freshwater Biol., 50, 1895–1912,
https://doi.org/10.1111/j.1365-2427.2005.01458.x, 2005.
Dodds, W. K., López, A. J., Bowden, W. B., Gregory, S., Grimm, N. B.,
Hamilton, S. K., Hershey, A. E., Martí, E., McDowell, W. H., Meyer, J.
L., Morrall, D., Mulholland, P. J., Peterson, B. J., Tank, J. L., Valett, H.
M., Webster, J. R., and Wollheim, W.: N uptake as a function of
concentration in streams, J. N. Am. Benthol. Soc., 21, 206–220,
https://doi.org/10.2307/1468410, 2002.
Dodds, W. K., Martí, E., Tank, J. L., Pontius, J., Hamilton, S. K.,
Grimm, N. B., Bowden, W. B., McDowell, W. H., Peterson, B. J., and Valett,
H. M.: Carbon and nitrogen stoichiometry and nitrogen cycling rates in
streams, Oecologia, 140, 458–467, 2004.
Ejarque, E., Freixa, A., Vazquez, E., Guarch, A., Amalfitano, S., Fazi, S.,
Romaní, A. M., and Butturini, A.: Quality and reactivity of dissolved
organic matter in a Mediterranean river across hydrological and spatial
gradients, Sci. Total Environ., 599–600, 1802–1812,
https://doi.org/10.1016/j.scitotenv.2017.05.113, 2017.
Ellison, A. M.: Bayesian inference in ecology, Ecol. Lett., 7, 509–520,
https://doi.org/10.1111/j.1461-0248.2004.00603.x, 2004.
Ensign, S. H. and Doyle, M. W.: In-channel transient storage and associated
nutrient retention: Evidence from experimental manipulations, Limnol.
Oceanogr., 50, 1740–1751, https://doi.org/10.4319/lo.2005.50.6.1740, 2005.
Fellman, J. B., Miller, M. P., Cory, R. M., D'Amore, D. V., and White, D.:
Characterizing Dissolved Organic Matter Using PARAFAC Modeling of
Fluorescence Spectroscopy: A Comparison of Two Models, Environ. Sci.
Technol., 43, 6228–6234, https://doi.org/10.1021/es900143g, 2009a.
Fellman, J. B., Hood, E., D'amore, D. V., Edwards, R. T., and White, D.:
Seasonal changes in the chemical quality and biodegradability of dissolved
organic matter exported from soils to streams in coastal temperate
rainforest watersheds, Biogeochemistry, 95, 277–293, 2009b.
Findlay, S. and Sinsabaugh, R. L.: Aquatic ecosystems: interactivity of
dissolved organic matter, Academic Press, Amsterdam, The Netherlands and Boston, Massachusetts, USA, 512 pp., 2003.
Freeman, C., Lock, M. A., Marxsen, J., and Jones, S. E.: Inhibitory effects
of high molecular weight dissolved organic matter upon metabolic processes
in biofilms from contrasting rivers and streams, Freshwater Biol., 24,
159–166, https://doi.org/10.1111/j.1365-2427.1990.tb00315.x, 1990.
Freixa, A., Ejarque, E., Crognale, S., Amalfitano, S., Fazi, S., Butturini,
A., and Romaní, A. M.: Sediment microbial communities rely on different
dissolved organic matter sources along a Mediterranean river continuum,
Limnol. Oceanogr., 61, 1389–1405, https://doi.org/10.1002/lno.10308, 2016.
Garcia, R. D., Reissig, M., Queimaliños, C. P., Garcia, P. E., and
Dieguez, M. C.: Climate-driven terrestrial inputs in ultraoligotrophic
mountain streams of Andean Patagonia revealed through chromophoric and
fluorescent dissolved organic matter, Sci. Total Environ., 521–522,
280–292, https://doi.org/10.1016/j.scitotenv.2015.03.102, 2015.
Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A.: R-squared for Bayesian
Regression Models, Am. Stat., 73, 307–309,
https://doi.org/10.1080/00031305.2018.1549100, 2019.
Ghosh, J. and Ghattas, A. E.: Bayesian Variable Selection Under
Collinearity, Am. Stat., 69, 165–173,
https://doi.org/10.1080/00031305.2015.1031827, 2015.
Gibson, C. A. and O'Reilly, C. M.: Organic matter stoichiometry influences
nitrogen and phosphorus uptake in a headwater stream, Freshw. Sci., 31,
395–407, https://doi.org/10.1899/11-033.1, 2012.
Godwin, C. M. and Cotner, J. B.: What intrinsic and extrinsic factors
explain the stoichiometric diversity of aquatic heterotrophic bacteria?,
ISME J., 12, 598–609, https://doi.org/10.1038/ismej.2017.195, 2018.
Goodman, S. N.: Toward Evidence-Based Medical Statistics, 1: The P Value
Fallacy, Ann. Intern. Med., 130, 995–1004,
https://doi.org/10.7326/0003-4819-130-12-199906150-00008, 1999a.
Goodman, S. N.: Toward Evidence-Based Medical Statistics, 2: The Bayes
Factor, Ann. Intern. Med., 130, 1005–1013,
https://doi.org/10.7326/0003-4819-130-12-199906150-00019, 1999b.
Graeber, D., Boëchat, I. G., Encina-Montoya, F., Esse, C., Gelbrecht,
J., Goyenola, G., Gücker, B., Heinz, M., Kronvang, B., Meerhoff, M.,
Nimptsch, J., Pusch, M. T., Silva, R. C. S., von Schiller, D., and
Zwirnmann, E.: Global effects of agriculture on fluvial dissolved organic
matter, Sci. Rep.-UK, 5, 16328, https://doi.org/10.1038/srep16328, 2015.
Graeber, D., Poulsen, J. R., Heinz, M., Rasmussen, J. J., Zak, D.,
Gücker, B., Kronvang, B., and Kamjunke, N.: Going with the flow:
Planktonic processing of dissolved organic carbon in streams, Sci. Total
Environ., 625, 519–530, https://doi.org/10.1016/j.scitotenv.2017.12.285, 2018.
Graeber, D., Gücker, B., Wild, R., Wells, N. S., Anlanger, C., Kamjunke,
N., Norf, H., Schmidt, C., and Brauns, M.: Biofilm-specific uptake does not
explain differences in whole-stream DOC tracer uptake between a forest and
an agricultural stream, Biogeochemistry, 144, 85–101,
https://doi.org/10.1007/s10533-019-00573-6, 2019.
Gücker, B., Silva, R. C. S., Graeber, D., Monteiro, J. A. F., and
Boëchat, I. G.: Urbanization and agriculture increase exports and
differentially alter elemental stoichiometry of dissolved organic matter
(DOM) from tropical catchments, Sci. Total Environ., 550, 785–792,
https://doi.org/10.1016/j.scitotenv.2016.01.158, 2016.
Guillemette, F. and del Giorgio, P. A.: Simultaneous consumption and
production of fluorescent dissolved organic matter by lake bacterioplankton,
Environ. Microbiol., 14, 1432–1443,
https://doi.org/10.1111/j.1462-2920.2012.02728.x, 2012.
Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B.
D., and Bergamaschi, B. A.: Optical properties of dissolved organic matter
(DOM): Effects of biological and photolytic degradation, Limnol. Oceanogr.,
61, 1015–1032, https://doi.org/10.1002/lno.10270, 2016.
Heibati, M., Stedmon, C. A., Stenroth, K., Rauch, S., Toljander, J.,
Säve-Söderbergh, M., and Murphy, K. R.: Assessment of drinking water
quality at the tap using fluorescence spectroscopy, Water Res., 125, 1–10,
https://doi.org/10.1016/j.watres.2017.08.020, 2017.
Jaynes, E. T.: Probability Theory: The Logic of Science, Cambridge
University Press, Cambridge, UK, 762 pp., 2003.
Jeffreys, S. H.: The Theory of Probability, 3rd edn., Oxford University Press, Oxford, New York, USA, 470 pp., 1998.
Kamjunke, N., Herzsprung, P., and Neu, T. R.: Quality of dissolved organic
matter affects planktonic but not biofilm bacterial production in streams,
Sci. Total Environ., 506–507, 353–360,
https://doi.org/10.1016/j.scitotenv.2014.11.043, 2015.
Kamjunke, N., von Tümpling, W., Hertkorn, N., Harir, M.,
Schmitt-Kopplin, P., Norf, H., Weitere, M., and Herzsprung, P.: A new
approach for evaluating transformations of dissolved organic matter (DOM)
via high-resolution mass spectrometry and relating it to bacterial activity,
Water Res., 123, 513–523, https://doi.org/10.1016/j.watres.2017.07.008, 2017.
Kass, R. E. and Raftery, A. E.: Bayes Factors, J. Am. Stat. Assoc., 90,
773–795, https://doi.org/10.1080/01621459.1995.10476572, 1995.
Koehler, B., von Wachenfeldt, E., Kothawala, D., and Tranvik, L. J.:
Reactivity continuum of dissolved organic carbon decomposition in lake
water, J. Geophys. Res.-Biogeo., 117, G01024, https://doi.org/10.1029/2011JG001793, 2012.
Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., and
Tranvik, L. J.: Inner filter correction of dissolved organic matter
fluorescence, Limnol. Oceanogr.-Meth., 11, 616–630,
https://doi.org/10.4319/lom.2013.11.616, 2013.
Kruschke, J. K.: Bayesian estimation supersedes the t test,
J. Exp. Psychol. Gen., 142, 573–603, https://doi.org/10.1037/a0029146, 2013.
Kuhnert, P. M., Martin, T. G., and Griffiths, S. P.: A guide to eliciting
and using expert knowledge in Bayesian ecological models, Ecol. Lett., 13,
900–914, https://doi.org/10.1111/j.1461-0248.2010.01477.x, 2010.
Kuserk, F. T., Kaplan, L. A., and Bott, T. L.: In Situ Measures of Dissolved
Organic Carbon Flux in a Rural Stream, Can. J. Fish. Aquat. Sci., 41,
964–973, https://doi.org/10.1139/f84-110, 1984.
Lambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V.: Along-stream transport and transformation of dissolved organic matter in a large tropical river, Biogeosciences, 13, 2727–2741, https://doi.org/10.5194/bg-13-2727-2016, 2016a.
Lambert, T., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V.: Shift in the chemical composition of dissolved organic matter in the Congo River network, Biogeosciences, 13, 5405–5420, https://doi.org/10.5194/bg-13-5405-2016, 2016b.
Lambert, T., Bouillon, S., Darchambeau, F., Morana, C., Roland, F. A. E.,
Descy, J.-P., and Borges, A. V.: Effects of human land use on the
terrestrial and aquatic sources of fluvial organic matter in a temperate
river basin (The Meuse River, Belgium), Biogeochemistry, 136, 191–211,
https://doi.org/10.1007/s10533-017-0387-9, 2017.
Lemoine, N. P.: Moving beyond noninformative priors: why and how to choose
weakly informative priors in Bayesian analyses, Oikos, 128, 912–928,
https://doi.org/10.1111/oik.05985, 2019.
Lutz, B. D., Bernhardt, E. S., Roberts, B. J., Cory, R. M., and Mulholland,
P. J.: Distinguishing dynamics of dissolved organic matter components in a
forested stream using kinetic enrichments, Limnol. Oceanogr., 57, 76–89,
https://doi.org/10.4319/lo.2012.57.1.0076, 2012.
Ly, A., Verhagen, J., and Wagenmakers, E.-J.: Harold Jeffreys's default
Bayes factor hypothesis tests: Explanation, extension, and application in
psychology, J. Math. Psychol., 72, 19–32,
https://doi.org/10.1016/j.jmp.2015.06.004, 2016.
Martínez, A., Kominoski, J. S., and Larrañaga, A.: Leaf-litter
leachate concentration promotes heterotrophy in freshwater biofilms:
Understanding consequences of water scarcity, Sci. Total Environ., 599–600,
1677–1684, https://doi.org/10.1016/j.scitotenv.2017.05.043, 2017.
Massicotte, P.: eemR: Tools for Pre-Processing Emission-Excitation-Matrix (EEM) Fluorescence Data, CRAN, https://CRAN.R-project.org/package=eemR (last access: 19 May 2021), 2019.
McCarthy, M. A.: Bayesian Methods for Ecology, Cambridge University Press,
Cambridge, UK, 310 pp., 2007.
McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R
and Stan, Apple Academic Press Inc., Boca Raton, Florida, USA, 469 pp., 2016.
Merseburger, G., Martí, E., Sabater, F., and Ortiz, J. D.: Point-source
effects on N and P uptake in a forested and an agricultural Mediterranean
streams, Sci. Total Environ., 409, 957–967,
https://doi.org/10.1016/j.scitotenv.2010.11.014, 2011.
Mineau, M. M., Rigsby, C. M., Ely, D. T., Fernandez, I. J., Norton, S. A.,
Ohno, T., Valett, H. M., and Simon, K. S.: Chronic catchment nitrogen
enrichment and stoichiometric constraints on the bioavailability of
dissolved organic matter from leaf leachate, Freshwater Biol., 58, 248–260,
https://doi.org/10.1111/fwb.12054, 2013.
Mineau, M. M., Wollheim, W. M., Buffam, I., Findlay, S. E. G., Hall, R. O.,
Hotchkiss, E. R., Koenig, L. E., McDowell, W. H., and Parr, T. B.: Dissolved
organic carbon uptake in streams: A review and assessment of reach-scale
measurements, J. Geophys. Res.-Biogeo., 121, 2019–2029,
https://doi.org/10.1002/2015JG003204, 2016.
Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., and Ly, A.:
BayesFactor: Computation of Bayes Factors for Common Designs, CRAN, available at: https://CRAN.R-project.org/package=BayesFactor (last access: 19 May 2021), 2018.
Mulholland, P. J., Hall, R. O., Sobota, D. J., Dodds, W. K., Findlay, S. E.
G., Grimm, N. B., Hamilton, S. K., McDowell, W. H., O'Brien, J. M., Tank, J.
L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Gregory, S. V., Johnson, S.
L., Meyer, J. L., Peterson, B. J., Poole, G. C., Valett, H. M., Webster, J.
R., Arango, C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw,
C. L., Helton, A. M., Johnson, L. T., Niederlehner, B. R., Potter, J. D.,
Sheibley, R. W., and Thomasn, S. M.: Nitrate removal in stream ecosystems
measured by 15N addition experiments: Denitrification, Limnol. Oceanogr.,
54, 666–680, https://doi.org/10.4319/lo.2009.54.3.0666, 2009.
Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz,
R., and Khan, S. J.: Organic Matter Fluorescence in Municipal Water
Recycling Schemes: Toward a Unified PARAFAC Model, Environ. Sci. Technol.,
45, 2909–2916, https://doi.org/10.1021/es103015e, 2011.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods-UK, 6, 658–661, https://doi.org/10.1039/C3AY41935E, 2014.
Mutschlecner, A. E., Guerard, J. J., Jones, J. B., and Harms, T. K.:
Phosphorus Enhances Uptake of Dissolved Organic Matter in Boreal Streams,
Ecosystems, 21, 675–688, https://doi.org/10.1007/s10021-017-0177-1, 2018.
Niño-García, J. P., Ruiz-González, C., and del Giorgio, P. A.:
Interactions between hydrology and water chemistry shape bacterioplankton
biogeography across boreal freshwater networks, ISME J., 10, 1755–1766,
https://doi.org/10.1038/ismej.2015.226, 2016.
O'Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., and Eichmiller,
J.: The saturation of N cycling in Central Plains streams: 15N experiments
across a broad gradient of nitrate concentrations, Biogeochemistry, 84,
31–49, https://doi.org/10.1007/s10533-007-9073-7, 2007.
Ohno, T. and Bro, R.: Dissolved Organic Matter Characterization Using
Multiway Spectral Decomposition of Fluorescence Landscapes,
Soil Sci. Soc. Am. J., 70, 2028–2037, https://doi.org/10.2136/sssaj2006.0005, 2006.
Oviedo-Vargas, D., Royer, T. V., and Johnson, L. T.: Dissolved organic
carbon manipulation reveals coupled cycling of carbon, nitrogen, and
phosphorus in a nitrogen-rich stream, Limnol. Oceanogr., 58, 1196–1206,
https://doi.org/10.4319/lo.2013.58.4.1196, 2013.
Payn, R. A., Webster, J. R., Mulholland, P. J., Valett, H. M., and Dodds, W.
K.: Estimation of stream nutrient uptake from nutrient addition experiments,
Limnol. Oceanogr.-Meth., 3, 174–182, https://doi.org/10.4319/lom.2005.3.174, 2005.
Pucher, M.: MatthiasPucher/INSBIRE: INSBIRE: Interactions in Nutrient
Spirals using BayesIan nonlinear REgression, Zenodo,
https://doi.org/10.5281/zenodo.4071851, 2020.
Pucher, M., Wünsch, U., Weigelhofer, G., Murphy, K., Hein, T., and
Graeber, D.: staRdom: Versatile Software for Analyzing Spectroscopic Data of
Dissolved Organic Matter in R, Water, 11, 2366, https://doi.org/10.3390/w11112366, 2019.
R Development Core Team: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria, 2019.
Ribot, M., von Schiller, D., Peipoch, M., Sabater, F., Grimm, N. B., and
Martí, E.: Influence of nitrate and ammonium availability on uptake
kinetics of stream biofilms, Freshw. Sci., 32, 1155–1167,
https://doi.org/10.1899/12-209.1, 2013.
Romani, A. M., Guasch, H., Munoz, I., Ruana, J., Vilalta, E., Schwartz, T.,
Emtiazi, F., and Sabater, S.: Biofilm structure and function and possible
implications for riverine DOC dynamics, Microb. Ecol., 47, 316–328, 2004.
Sabater, S., Guasch, H., Romaní, A., and Muñoz, I.: The effect of
biological factors on the efficiency of river biofilms in improving water
quality, Hydrobiologia, 469, 149–156,
https://doi.org/10.1023/A:1015549404082, 2002.
Shutova, Y., Baker, A., Bridgeman, J., and Henderson, R. K.: Spectroscopic
characterisation of dissolved organic matter changes in drinking water
treatment: From PARAFAC analysis to online monitoring wavelengths, Water
Res., 54, 159–169, https://doi.org/10.1016/j.watres.2014.01.053, 2014.
Small, G. E., Helton, A. M., and Kazanci, C.: Can consumer stoichiometric
regulation control nutrient spiraling in streams?, J. N. Am. Benthol. Soc.,
28, 747–765, https://doi.org/10.1899/08-099.1, 2009.
Stedmon, C. A. and Markager, S.: Resolving the variability in dissolved
organic matter fluorescence in a temperate estuary and its catchment using
PARAFAC analysis, Limnol. Oceanogr., 50, 686–697,
https://doi.org/10.4319/lo.2005.50.2.0686, 2005.
Stevenson, F. J. and He, X.-T.: Nitrogen in Humic Substances as Related to
Soil Fertility, in: Humic Substances in Soil and Crop Sciences: Selected
Readings, John Wiley & Sons, Ltd., Madison, Wisconsin, 91–109,
https://doi.org/10.2136/1990.humicsubstances.c5, 1990.
Stream Solute Workshop: Concepts and Methods for Assessing Solute Dynamics
in Stream Ecosystems, J. N. Am. Benthol. Soc., 9, 95–119,
https://doi.org/10.2307/1467445, 1990.
Stutter, M., Graeber, D., and Weigelhofer, G.: Available Dissolved Organic
Carbon Alters Uptake and Recycling of Phosphorus and Nitrogen from River
Sediments, Water, 12, 3321, https://doi.org/10.3390/w12123321, 2020.
Stutter, M. I., Graeber, D., Evans, C. D., Wade, A. J., and Withers, P. J.
A.: Balancing macronutrient stoichiometry to alleviate eutrophication, Sci.
Total Environ., 634, 439–447,
https://doi.org/10.1016/j.scitotenv.2018.03.298, 2018.
Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., and
Stephen, M. L.: A review of allochthonous organic matter dynamics and
metabolism in streams, J. N. Am. Benthol. Soc., 29, 118–146,
https://doi.org/10.1899/08-170.1, 2010.
Taylor, P. G. and Townsend, A. R.: Stoichiometric control of organic
carbon-nitrate relationships from soils to the sea, Nature, 464,
1178–1181, https://doi.org/10.1038/nature08985, 2010.
Teissier, S., Torre, M., Delmas, F., and Garabétian, F.: Detailing
biogeochemical N budgets in riverine epilithic biofilms, J. N. Am. Benthol.
Soc., 26, 178–190,
https://doi.org/10.1899/0887-3593(2007)26[178:DBNBIR]2.0.CO;2, 2007.
Theng, B. K. G. (Ed.): Humic Substances, in: Developments in Clay
Science, Elsevier, Amsterdam, the Netherlands, Oxford, United Kingdom and Cambridge, Massachusetts, 391–456, https://doi.org/10.1016/B978-0-444-53354-8.00012-8, 2012.
Trentman, M. T., Dodds, W. K., Fencl, J. S., Gerber, K., Guarneri, J.,
Hitchman, S. M., Peterson, Z., and Rüegg, J.: Quantifying ambient
nitrogen uptake and functional relationships of uptake versus concentration
in streams: a comparison of stable isotope, pulse, and plateau approaches,
Biogeochemistry, 125, 65–79, https://doi.org/10.1007/s10533-015-0112-5, 2015.
Tsutsuki, K. and Kuwatsuka, S.: Chemical studies on soil humic acids,
Soil Sci. Plant Nutr., 25, 183–195,
https://doi.org/10.1080/00380768.1979.10433159, 1979.
von Schiller, D., Bernal, S., and Martí, E.: Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake, Biogeosciences, 8, 875–882, https://doi.org/10.5194/bg-8-875-2011, 2011.
Weigelhofer, G.: The potential of agricultural headwater streams to retain
soluble reactive phosphorus, Hydrobiologia, 793, 149–160,
https://doi.org/10.1007/s10750-016-2789-4, 2017.
Weigelhofer, G., Fuchsberger, J., Teufl, B., Welti, N., and Hein, T.:
Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in
Agricultural Catchments, J. Environ. Qual., 41, 373–379,
https://doi.org/10.2134/jeq2010.0436, 2012.
Weigelhofer, G., Ramião, J. P., Pitzl, B., Bondar-Kunze, E., and
O'Keeffe, J.: Decoupled water-sediment interactions restrict the phosphorus
buffer mechanism in agricultural streams, Sci. Total Environ., 628–629,
44–52, https://doi.org/10.1016/j.scitotenv.2018.02.030, 2018a.
Weigelhofer, G., Ramião, J. P., Puritscher, A., and Hein, T.: How do
chronic nutrient loading and the duration of nutrient pulses affect nutrient
uptake in headwater streams?, Biogeochemistry, 141, 249–263,
https://doi.org/10.1007/s10533-018-0518-y, 2018b.
Weigelhofer, G., Jirón, T. S., Yeh, T.-C., Steniczka, G., and Pucher,
M.: Dissolved Organic Matter Quality and Biofilm Composition Affect
Microbial Organic Matter Uptake in Stream Flumes, Water, 12, 3246,
https://doi.org/10.3390/w12113246, 2020.
Welti, N., Striebel, M., Ulseth, A. J., Cross, W. F., DeVilbiss, S.,
Glibert, P. M., Guo, L., Hirst, A. G., Hood, J., and Kominoski, J. S.:
Bridging food webs, ecosystem metabolism, and biogeochemistry using
ecological stoichiometry theory, Front. Microbiol., 8, 1298, https://doi.org/10.3389/fmicb.2017.01298, 2017.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse,
J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wickland, K. P., Neff, J. C., and Aiken, G. R.: Dissolved Organic Carbon in
Alaskan Boreal Forest: Sources, Chemical Characteristics, and
Biodegradability, Ecosystems, 10, 1323–1340,
https://doi.org/10.1007/s10021-007-9101-4, 2007.
Wickland, K. P., Aiken, G. R., Butler, K., Dornblaser, M. M., Spencer, R. G.
M., and Striegl, R. G.: Biodegradability of dissolved organic carbon in the
Yukon River and its tributaries: Seasonality and importance of inorganic
nitrogen, Global Biogeochem. Cy., 26, GB0E03, https://doi.org/10.1029/2012GB004342, 2012.
Wiegner, T. N., Kaplan, L. A., Newbold, J. D., and Ostrom, P. H.:
Contribution of dissolved organic C to stream metabolism: a mesocosm study
using 13C-enriched tree-tissue leachate, J. N. Am. Benthol. Soc., 24,
48–67, https://doi.org/10.1899/0887-3593(2005)024<0048:CODOCT>2.0.CO;2, 2005.
Williams, C. J., Yamashita, Y., Wilson, H. F., Jaffé, R., and
Xenopoulos, M. A.: Unraveling the role of land use and microbial activity in
shaping dissolved organic matter characteristics in stream ecosystems,
Limnol. Oceanogr., 55, 1159–1171,
https://doi.org/10.4319/lo.2010.55.3.1159, 2010.
Williams, C. J., Frost, P. C., and Xenopoulos, M. A.: Beyond best management
practices: pelagic biogeochemical dynamics in urban stormwater ponds, Ecol.
Appl., 23, 1384–1395, https://doi.org/10.1890/12-0825.1, 2013.
Wünsch, U. J., Murphy, K. R., and Stedmon, C. A.: Fluorescence Quantum
Yields of Natural Organic Matter and Organic Compounds: Implications for the
Fluorescence-based Interpretation of Organic Matter Composition, Front. Mar.
Sci., 2, 98, https://doi.org/10.3389/fmars.2015.00098, 2015.
Wymore, A. S., Coble, A. A., Rodríguez-Cardona, B., and McDowell, W.
H.: Nitrate uptake across biomes and the influence of elemental
stoichiometry: A new look at LINX II, Global Biogeochem. Cy., 30,
1183–1191, https://doi.org/10.1002/2016GB005468, 2016.
Xenopoulos, M. A., Barnes, R. T., Boodoo, K. S., Butman, D., Catalán,
N., D'Amario, S. C., Fasching, C., Kothawala, D. N., Pisani, O., and
Solomon, C. T.: How humans alter dissolved organic matter composition in
freshwater: relevance for the Earth's biogeochemistry, Biogeochemistry,
1–26, https://doi.org/10.1007/s10533-021-00753-3, 2021.
Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G. L., and Jaffé,
R.: Effects of Watershed History on Dissolved Organic Matter Characteristics
in Headwater Streams, Ecosystems, 14, 1110–1122,
https://doi.org/10.1007/s10021-011-9469-z, 2011.
Yamashita, Y., Boyer, J. N., and Jaffé, R.: Evaluating the distribution
of terrestrial dissolved organic matter in a complex coastal ecosystem using
fluorescence spectroscopy, Cont. Shelf Res., 66, 136–144,
https://doi.org/10.1016/j.csr.2013.06.010, 2013.
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake...
Altmetrics
Final-revised paper
Preprint