Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4039-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4039-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Timea Katona
CORRESPONDING AUTHOR
Research Division Geophysics, Department of Geodesy and Geoinformation,
TU-Wien, Vienna, Austria
Benjamin Silas Gilfedder
Department of Hydrology, Bayreuth Center of Ecology and Environmental
Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
Limnological Station, Bayreuth Center of Ecology and Environmental
Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
Sven Frei
Department of Hydrology, Bayreuth Center of Ecology and Environmental
Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
Matthias Bücker
Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, Braunschweig,
Germany
Adrian Flores-Orozco
Research Division Geophysics, Department of Geodesy and Geoinformation,
TU-Wien, Vienna, Austria
Related authors
Adrian Flores Orozco, Jakob Gallistl, Benjamin Gilfedder, Timea Katona, Sven Frei, Peter Strauss, and Gunter Blöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4015, https://doi.org/10.5194/egusphere-2025-4015, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding the role of soil in the storage of organic carbon is critical for a large number of environmental processes. Current practices rely on the drilling and analysis of samples, which is expensive, time consuming and destructive. Here we present a technique able to map soil organic carbon measuring the electrical properties of the subsurface without the necessity of drilling. Our results could permit to advance soil management strategies to enhance carbon sequestration and storage.
Adrian Flores Orozco, Jakob Gallistl, Benjamin Gilfedder, Timea Katona, Sven Frei, Peter Strauss, and Gunter Blöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4015, https://doi.org/10.5194/egusphere-2025-4015, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding the role of soil in the storage of organic carbon is critical for a large number of environmental processes. Current practices rely on the drilling and analysis of samples, which is expensive, time consuming and destructive. Here we present a technique able to map soil organic carbon measuring the electrical properties of the subsurface without the necessity of drilling. Our results could permit to advance soil management strategies to enhance carbon sequestration and storage.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
The Cryosphere, 19, 143–171, https://doi.org/10.5194/tc-19-143-2025, https://doi.org/10.5194/tc-19-143-2025, 2025
Short summary
Short summary
We use electrical conductivity and induced polarization in an imaging framework to quantify hydrogeological parameters in the active Gran Sometta rock glacier. The results show high spatial variability in the hydrogeological parameters across the rock glacier and are validated by saltwater tracer tests coupled with 3D electrical conductivity imaging. Hydrogeological information was linked to kinematic data to further investigate its role in rock glacier movement.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Cited articles
Abdel Aal, G. Z. and Atekwana, E. A.: Spectral induced polarization (SIP)
response of biodegraded oil in porous media, Geophys. J. Int., 196, 804–817,
https://doi.org/10.1093/gji/ggt416, 2014.
Abdel Aal, G. Z., Atekwana, E. A., Rossbach, S., and Werkema, D. D.:
Sensitivity of geoelectrical measurements to the presence of bacteria in
porous media, J. Geophys. Res.-Biogeo., 115, G03017, https://doi.org/10.1029/2009jg001279, 2010a.
Abdel Aal, Gamal, Z., Estella, A., and Eliot, A.: Effect of
bioclogging in porous media on complex conductivity signatures, J. Geophys. Res.-Biogeo., 115,
G00G07, https://doi.org/10.1029/2009jg001159, 2010b.
Abdel Aal, G. Z., Atekwana, E. A., and Revil, A.: Geophysical signatures of
disseminated iron minerals: A proxy for understanding subsurface
biophysicochemical processes, J. Geophys. Res.-Biogeo., 119, 1831–1849, https://doi.org/10.1002/2014jg002659,
2014.
Abdulsamad, F., Revil, A., Ghorbani, A., Toy, V., Kirilova, M., Coperey, A., Duvillard, P., Ménard, G., and Ravanel, L.: Complex conductivity of graphitic schists and sandstones, J. Geophys. Res.-Sol. Ea., 124, 8223–8249, https://doi.org/10.1029/2019JB017628, 2019.
Albrecht, R., Gourry, J. C., Simonnot, M. O., and Leyval, C.: Complex
conductivity response to microbial growth and biofilm formation on
phenanthrene spiked medium, J. Appl. Geophys., 75, 558–564,
https://doi.org/10.1016/j.jappgeo.2011.09.001, 2011.
Alonso, D. M., Granados, M. L., Mariscal, R., and Douhal, A.: Polarity of
the acid chain of esters and transesterification activity of acid catalysts, J. Catal., 262, 18–26, https://doi.org/10.1016/j.jcat.2008.11.026, 2009.
Andrade, Â. L., Souza, D. M., Pereira, M. C., Fabris, J. D., and
Domingues, R. Z.: pH effect on the synthesis of magnetite nanoparticles by
the chemical reduction-precipitation method, Quim. Nova, 33, 524–527,
https://doi.org/10.1590/s0100-40422010000300006, 2010.
Arai, Y. and Sparks, D. L.: ATR–FTIR spectroscopic investigation on
phosphate adsorption mechanisms at the ferrihydrite–water interface, J. Colloid Interf. Sci., 241, 317–326, https://doi.org/10.1006/jcis.2001.7773, 2001.
Artz, R. R., Chapman, S. J., Robertson, A. J., Potts, J. M.,
Laggoun-Défarge, F., Gogo, S., and Francez, A. J.: FTIR
spectroscopy can be used as a screening tool for organic matter quality in
regenerating cutover peatlands, Soil Biol. Biochem., 40, 515–527,
https://doi.org/10.1016/j.soilbio.2007.09.019, 2008.
Atekwana, E., Patrauchan, M., and Revil, A.: Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation (No. DOE-Okstate-SC0007118),
Oklahoma State Univ., Stillwater, OK, USA, https://doi.org/10.2172/1327843,
2016.
Atekwana, E. A. and Slater, L. D.: Biogeophysics: A new frontier in Earth
science research, Rev. Geophys., 47, RG4004, https://doi.org/10.1029/2009rg000285, 2009.
Bakatula, E. N., Richard, D., Neculita, C. M., and Zagury, G. J.:
Determination of point of zero charge of natural organic materials, Environ. Sci. Pollut. Res., 25, 7823–7833, https://doi.org/10.1007/s11356-017-1115-7, 2018.
Biester, H., Knorr, K. H., Schellekens, J., Basler, A., and Hermanns, Y.
M.: Comparison of different methods to determine the degree of peat
decomposition in peat bogs, Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014,
2014.
Binley, A. and Kemna, A.: DC resistivity and induced polarization methods,
in: Hydrogeophysics, Springer, Dordrecht, 129–156,
https://doi.org/10.1007/1-4020-3102-5_5, 2005.
Binley, A. and Slater, L.: Resistivity and Induced Polarization: Theory and Applications to the Near-surface Earth, Cambridge University Press,
https://doi.org/10.1017/9781108685955.003, 2020.
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A.,
Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for
improved understanding of subsurface processes over multiple scales, Water Resour. Res.,
51, 3837–3866, https://doi.org/10.1002/2015wr017016, 2015.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi,
L., and Wörman, A.: Hyporheic flow and transport processes: Mechanisms,
models, and biogeochemical implications, Rev. Geophys., 52, 603–679,
https://doi.org/10.1002/2012rg000417, 2014.
Bragazza, L., Buttler, A., Siegenthaler, A., and Mitchell, E. A.: Plant
litter decomposition and nutrient release in peatlands, Geoph. Monog. Series, 184, 99–110,
https://doi.org/10.1029/2008gm000815, 2009.
Bücker, M. and Hördt, A.: Analytical modelling of membrane
polarization with explicit parametrization of pore radii and the electrical
double layer, Geophys. J. Int., 194, 804–813, https://doi.org/10.1093/gji/ggt136, 2013.
Bücker, M., Orozco, A. F., Hördt, A., and Kemna, A.: An analytical
membrane-polarization model to predict the complex conductivity signature of
immiscible liquid hydrocarbon contaminants, Near Surf. Geophys., 15, 547–562,
https://doi.org/10.3997/1873-0604.2017051, 2017.
Bücker, M., Orozco, A. F., and Kemna, A.: Electrochemical polarization
around metallic particles – Part 1: The role of diffuse-layer and
volume-diffusion relaxation, Geophysics, 83, E203–E217, https://doi.org/10.1190/geo2017-0401.1,
2018.
Bücker, M., Undorf, S., Flores Orozco, A., and Kemna, A.:
Electrochemical polarization around metallic particles – Part 2: The role of
diffuse surface charge, Geophysics, 84, E57–E73, https://doi.org/10.1190/geo2018-0150.1, 2019.
Canfield, D. E.: Reactive iron in marine sediments, Geochim. Cosmochim. Ac., 53, 619–632,
https://doi.org/10.1016/0016-7037(89)90005-7, 1989.
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner,
R. A.: The use of chromium reduction in the analysis of reduced inorganic
sulfur in sediments and shales, Chem. Geol., 54, 149–155,
https://doi.org/10.1016/0009-2541(86)90078-1, 1986.
Capps, K. A. and Flecker, A. S.: Invasive fishes generate biogeochemical
hotspots in a nutrient-limited system, PLoS One, 8, e54093,
https://doi.org/10.1371/journal.pone.0054093, 2013.
Cirmo, C. P. and McDonnell, J. J.: Linking the hydrologic and
biogeochemical controls of nitrogen transport in near-stream zones of
temperate-forested catchments: a review, J. Hydrol., 199, 88–120,
https://doi.org/10.1016/s0022-1694(96)03286-6, 1997.
Cornell, R. M. and Schwertmann, U.: The Iron Oxides, VCH, ISBN:
3-527-28567-8, 1996.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B.,
and Raskin, R. G.: The value of the world's ecosystem services and
natural capital, Nature, 387, 253–260, https://doi.org/10.1038/387253a0, 1997.
Costanza, R., De Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L.,
Sutton, P., and Grasso, M.: Twenty years of ecosystem services: how far
have we come and how far do we still need to go?, Ecosyst. Serv., 28, 1–16,
https://doi.org/10.1016/j.ecoser.2017.09.008, 2017.
Davis, C. A., Atekwana, E., Atekwana, E., Slater, L. D., Rossbach, S., and
Mormile, M. R.: Microbial growth and biofilm formation in geologic media is
detected with complex conductivity measurements, Geophys. Res. Lett., 33, L18403,
https://doi.org/10.1029/2006gl027312, 2006.
deGroot-Hedlin, C. and Constable, S.: Occam's inversion to generate
smooth, two-dimensional models from magnetotelluric data, Geophysics, 55, 1613–1624,
https://doi.org/10.1190/1.1442813, 1990.
Diamond, J. S., McLaughlin, D. L., Slesak, R. A., and Stovall, A.: Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands, Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, 2020.
Durejka, S., Gilfedder, B. S., and Frei, S.: A method for long-term high
resolution 222Radon measurements using a new hydrophobic capillary membrane
system, J. Environ. Radioactiv., 208, 105980, https://doi.org/10.1016/j.jenvrad.2019.05.012, 2019.
Elifantz, H., Kautsky, L., Mor-Yosef, M., Tarchitzky, J., Bar-Tal, A., Chen,
Y., and Minz, D.: Microbial activity and organic matter dynamics during 4
years of irrigation with treated wastewater, Microb. Ecol., 62, 973–981,
https://doi.org/10.1007/s00248-011-9867-y, 2011.
Estop-Aragonés, C., Knorr, K. H., and Blodau, C.: Controls on in situ
oxygen and dissolved inorganic carbon dynamics in peats of a temperate fen, J. Geophys. Res.-Biogeo., 117, G02002, https://doi.org/10.1029/2011jg001888, 2012.
Estop-Aragonés, C., Knorr, K. H., and Blodau, C.: Belowground in situ
redox dynamics and methanogenesis recovery in a degraded fen during dry-wet
cycles and flooding, Biogeosciences, 10, 421–436, https://doi.org/10.5194/bg-10-421-2013, 2013.
Feng, L., Li, Q., Cameron, S. D., He, K., Colby, R., Walker, K. M., and
Ertaş, D.: Quantifying induced polarization of conductive inclusions in
porous Media and implications for Geophysical Measurements, Sci. Rep., 10, 1–12,
https://doi.org/10.1038/s41598-020-58390-z, 2020.
Fenner, N., Ostle, N., Freeman, C., Sleep, D., and Reynolds, B.: Peatland
carbon efflux partitioning reveals that Sphagnum photosynthate contributes
to the DOC pool, Plant Soil, 259, 345–354, https://doi.org/10.1023/b:plso.0000020981.90823.c1,
2004.
Flores Orozco, A., Williams, K. H., Long, P. E., Hubbard, S. S., and Kemna, A.:
Using complex resistivity imaging to infer biogeochemical processes
associated with bioremediation of an uranium-contaminated aquifer, J. Geophys. Res.-Biogeo.,
116, G03001, https://doi.org/10.1029/2010jg001591, 2011.
Flores Orozco, A., Kemna, A., and Zimmermann, E.: Data error quantification
in spectral induced polarization imaging, Geophysics, 77, E227–E237,
https://doi.org/10.1190/geo2010-0194.1, 2012a.
Flores Orozco, A., Kemna, A., Oberdörster, C., Zschornack, L., Leven,
C., Dietrich, P., and Weiss, H.: Delineation of subsurface hydrocarbon
contamination at a former hydrogenation plant using spectral induced
polarization imaging, J. Contam. Hydrol., 136, 131–144, https://doi.org/10.1016/j.jconhyd.2012.06.001, 2012b.
Flores Orozco, A., Williams, K. H., and Kemna, A.: Time-lapse spectral
induced polarization imaging of stimulated uranium bioremediation, Near Surf. Geophys.,
11, 531–544, https://doi.org/10.3997/1873-0604.2013020, 2013.
Flores Orozco, A., Velimirovic, M., Tosco, T., Kemna, A., Sapion, H., Klaas,
N., and Bastiaens, L.: Monitoring the injection of microscale
zerovalent iron particles for groundwater remediation by means of complex
electrical conductivity imaging, Environ. Sci. Technol., 49, 5593–5600,
https://doi.org/10.1021/acs.est.5b00208, 2015.
Flores Orozco, A., Kemna, A., Binley, A., and Cassiani, G.: Analysis of
time-lapse data error in complex conductivity imaging to alleviate
anthropogenic noise for site characterization, Geophysics, 84, B181–B193,
https://doi.org/10.1190/geo2017-0755.1, 2019.
Flores Orozco, A., Gallistl, J., Steiner, M., Brandstätter, C., and
Fellner, J.: Mapping biogeochemically active zones in landfills with induced
polarization imaging: The Heferlbach landfill, Waste Manage., 107, 121–132,
https://doi.org/10.1016/j.wasman.2020.04.001, 2020.
Flores Orozco, A., Aigner, L., and Gallistl, J.: Investigation of cable
effects in spectral induced polarization imaging at the field scale using
multicore and coaxial cables, Geophysics, 86, E59–E75, https://doi.org/10.1190/geo2019-0552.1,
2021.
Frei, S., Lischeid, G., and Fleckenstein, J. H.: Effects of
micro-topography on surface–subsurface exchange and runoff generation in a
virtual riparian wetland – A modeling study, Adv. Water Resour., 33, 1388–1401,
https://doi.org/10.1016/j.advwatres.2010.07.006, 2010.
Frei, S., Knorr, K. H., Peiffer, S., and Fleckenstein, J. H.: Surface
micro-topography causes hot spots of biogeochemical activity in wetland
systems: A virtual modeling experiment, J. Geophys. Res.-Biogeo., 117, G00N12, https://doi.org/10.1029/2012jg002012,
2012.
Garcia-Artigas, R., Himi, M., Revil, A., Urruela, A., Lovera, R.,
Sendrós, A., and Rivero, L.: Time-domain induced polarization as a
tool to image clogging in treatment wetlands, Sci. Total Environ., 724, 138189,
https://doi.org/10.1016/j.scitotenv.2020.138189, 2020.
Gu, B., Liang, L., Dickey, M. J., Yin, X., and Dai, S.: Reductive
precipitation of uranium (VI) by zero-valent iron, Environ. Sci. Technol., 32, 3366–3373,
https://doi.org/10.1021/es980010o, 1998.
Gutknecht, J. L., Goodman, R. M., and Balser, T. C.: Linking soil process
and microbial ecology in freshwater wetland ecosystems, Plant Soil, 289, 17–34,
https://doi.org/10.1007/s11104-006-9105-4, 2006.
Hansen, D. J., McGuire, J. T., Mohanty, B. P., and Ziegler, B. A.: Evidence
of aqueous iron sulfid clusters in the vadose zone, Vadose Zone J., 13, 1–12,
https://doi.org/10.2136/vzj2013.07.0136, 2014.
Hartley, A. E. and Schlesinger, W. H.: Environmental controls on nitric
oxide emission from northern Chihuahuan desert soils, Biogeochemistry, 50, 279–300,
https://doi.org/10.1023/a:1006377832207, 2000.
Hayati, A. A. and Proctor, M. C. F.: Limiting nutrients in acid-mire
vegetation: peat and plant analyses and experiments on plant responses to
added nutrients, J. Ecol., 79, 75–95, https://doi.org/10.2307/2260785, 1991.
Hördt, A., Bairlein, K., Bielefeld, A., Bücker, M., Kuhn, E.,
Nordsiek, S., and Stebner, H.: The dependence of induced polarization on
fluid salinity and pH, studied with an extended model of membrane
polarization, J. Appl. Geophys., 135, 408–417, https://doi.org/10.1016/j.jappgeo.2016.02.007, 2016.
Kang, H., Kwon, M. J., Kim, S., Lee, S., Jones, T. G., Johncock, A. C.,
and Freeman, C.: Biologically driven DOC release from peatlands during
recovery from acidification, Nat. Commun., 9, 1–7, https://doi.org/10.1038/s41467-018-06259-1,
2018.
Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, Å.: Carbon storage
and fluxes within freshwater wetlands: a critical review, Wetlands, 30, 111–124,
https://doi.org/10.1007/s13157-009-0003-4, 2010.
Kemna, A.: Tomographic Inversion of Complex Resistivity: Theory and
Application, Der Andere Verlag Osnabrück, Germany, ISBN 3-934366-92-9,
2000.
Kemna, A., Binley, A., Ramirez, A., and Daily, W.: Complex resistivity
tomography for environmental applications, Chem. Eng. J., 77, 11–18,
https://doi.org/10.1016/s1385-8947(99)00135-7, 2000.
Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H.: Imaging and
characterisation of subsurface solute transport using electrical resistivity
tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146,
https://doi.org/10.1016/s0022-1694(02)00145-2, 2002.
Kemna, A., Binley, A., and Slater, L.: Crosshole IP imaging for engineering
and environmental applications, Geophysics, 69, 97–107, https://doi.org/10.1190/1.1649379, 2004.
Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A.,
Slater, L., and Kruschwitz, S.: An overview of the spectral induced
polarization method for near-surface applications, Near Surf. Geophys., 10, 453–468,
https://doi.org/10.3997/1873-0604.2012027, 2012.
Kessouri, P., Furman, A., Huisman, J. A., Martin, T., Mellage, A.,
Ntarlagiannis, D., and Kemna, A.: Induced polarization applied to
biogeophysics: recent advances and future prospects, Near Surf. Geophys., 17, 595–621, https://doi.org/10.1002/nsg.12072, 2019.
Kleinebecker, T., Hölzel, N., and Vogel, A.: South Patagonian
ombrotrophic bog vegetation reflects biogeochemical gradients at the
landscape level, J. Veg. Sci., 19, 151–160, https://doi.org/10.3170/2008-8-18370, 2008.
Kosmulski, M., Maczka, E., Jartych, E., and Rosenholm, J. B.: Synthesis and
characterization of goethite and goethite–hematite composite: experimental
study and literature survey, Adv. Colloid Interfac., 103, 57–76,
https://doi.org/10.1016/s0001-8686(02)00083-0, 2003.
LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A., and Owen, E.: The
effects of noise on Occam's inversion of resistivity tomography data, Geophysics, 61, 538–548, https://doi.org/10.1190/1.1443980, 1996.
Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A.: Complex
conductivity of water-saturated packs of glass beads, J. Colloid Interfac., 321, 103–117,
https://doi.org/10.1016/j.jcis.2007.12.031, 2008.
Lesmes, D. P. and Frye, K. M.: Influence of pore fluid chemistry on the
complex conductivity and induced polarization responses of Berea sandstone, J. Geophys. Res.-Sol. Ea., 106, 4079–4090, https://doi.org/10.1029/2000jb900392, 2001.
Linke, T. and Gislason, S. R.: Stability of iron minerals in Icelandic
peat areas and transport of heavy metals and nutrients across oxidation and
salinity gradients–a modelling approach, Energy Proced., 146, 30–37,
https://doi.org/10.1016/j.egypro.2018.07.005, 2018.
Lischeid, G., Kolb, A., and Alewell, C.: Apparent translatory flow in
groundwater recharge and runoff generation, J. Hydrol., 265, 195–211,
https://doi.org/10.1016/s0022-1694(02)00108-7, 2002.
Liu, H.: Thermal response of soil microbial respiration is positively
associated with labile carbon content and soil microbial activity, Geoderma, 193, 275–281, https://doi.org/10.1016/j.geoderma.2012.10.015, 2013.
Mansoor, N. and Slater, L.: On the relationship between iron concentration
and induced polarization in marsh soils, Geophysics, 72, A1–A5,
https://doi.org/10.1190/1.2374853, 2007.
Marshall, D. J. and Madden, T. R.: Induced polarization, a study of its
causes, Geophysics, 24, 790–816, https://doi.org/10.1190/1.1438659, 1959.
Maurya, P. K., Rønde, V. K., Fiandaca, G., Balbarini, N., Auken, E.,
Bjerg, P. L., and Christiansen, A. V.: Detailed landfill leachate plume
mapping using 2D and 3D electrical resistivity tomography-with correlation
to ionic strength measured in screens, J. Appl. Geophys., 138, 1–8,
https://doi.org/10.1016/j.jappgeo.2017.01.019, 2017.
McAnallen, L., Doherty, R., Donohue, S., Kirmizakis, P., and Mendonça,
C.: Combined use of geophysical and geochemical methods to assess areas of
active, degrading and restored blanket bog, Sci. Total Environ., 621, 762–771,
https://doi.org/10.1016/j.scitotenv.2017.11.300, 2018.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B.,
Groffman, P. M., and McDowell, W. H.: Biogeochemical hot spots and hot
moments at the interface of terrestrial and aquatic ecosystems, Ecosystems, 6, 301–312, https://doi.org/10.1007/s10021-003-0161-9, 2003.
Mellage, A., Smeaton, C. M., Furman, A., Atekwana, E. A., Rezanezhad, F.,
and Van Cappellen, P.: Linking spectral induced polarization (SIP) and
subsurface microbial processes: Results from sand column incubation
experiments, Environ. Sci. Technol., 52, 2081–2090, https://doi.org/10.1021/acs.est.7b04420, 2018.
Mishra, U. and Riley, W. J.: Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks, Biogeosciences, 12, 3993–4004, https://doi.org/10.5194/bg-12-3993-2015, 2015.
Misra, S., Torres-Verdín, C., Revil, A., Rasmus, J., and Homan, D.:
Interfacial polarization of disseminated conductive minerals in absence of
redox-active species – Part 1: Mechanistic model and validation, Geophysics, 81, E139–E157, https://doi.org/10.1190/geo2015-0346.1, 2016a.
Misra, S., Torres-Verdín, C., Revil, A., Rasmus, J., and Homan, D.:
Interfacial polarization of disseminated conductive minerals in absence of
redox-active species – Part 2: Effective electrical conductivity and
dielectric permittivity Interfacial polarization due to inclusions, Geophysics, 81, E159–E176, https://doi.org/10.1190/geo2015-0400.1, 2016b.
Morse, J. L., Werner, S. F., Gillin, C. P., Goodale, C. L., Bailey, S. W.,
McGuire, K. J., and Groffman, P. M.: Searching for biogeochemical hot spots
in three dimensions: Soil C and N cycling in hydropedologic settings in a
northern hardwood forest, J. Geophys. Res.-Biogeo., 119, 1596–1607, https://doi.org/10.1002/2013jg002589, 2014.
Ntarlagiannis, D., Williams, K. H., Slater, L., and Hubbard, S.:
Low-frequency electrical response to microbial induced sulfid precipitation, J. Geophys. Res.-Biogeo., 110, G02009, https://doi.org/10.1029/2005jg000024, 2005.
Ntarlagiannis, D., Doherty, R., and Williams, K. H.: Spectral induced
polarization signatures of abiotic FeS precipitation SIP signatures of FeS
precipitation, Geophysics, 75, F127–F133, https://doi.org/10.1190/1.3467759, 2010.
Parikh, S. J. and Chorover, J.: ATR-FTIR spectroscopy reveals bond
formation during bacterial adhesion to iron oxide, Langmuir, 22, 8492–8500,
https://doi.org/10.1021/la061359p, 2006.
Parry, L. E., West, L. J., Holden, J., and Chapman, P. J.: Evaluating
approaches for estimating peat depth, J. Geophys. Res.-Biogeo., 119, 567–576,
https://doi.org/10.1002/2013jg002411, 2014.
Partington, D., Brunner, P., Frei, S., Simmons, C. T., Werner, A. D.,
Therrien, R., and Fleckenstein, J. H.: Interpreting streamflow
generation mechanisms from integrated surface-subsurface flow models of a
riparian wetland and catchment, Water Resour. Res., 49, 5501–5519, https://doi.org/10.1002/wrcr.20405,
2013.
Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H.:
Mineral discrimination and removal of inductive coupling with multifrequency
IP, Geophysics, 43, 588–609, https://doi.org/10.1190/1.1440839, 1978.
Personna, Y. R., Ntarlagiannis, D., Slater, L., Yee, N., O'Brien, M., and
Hubbard, S.: Spectral induced polarization and electrodic potential
monitoring of microbially mediated iron sulfid transformations, J. Geophys. Res.-Biogeo., 113, G02020,
https://doi.org/10.1029/2007jg000614, 2008.
Placencia-Gómez, E., Slater, L., Ntarlagiannis, D., and Binley, A.:
Laboratory SIP signatures associated with oxidation of disseminated metal
sulfids, J. Contam. Hydrol., 148, 25–38, https://doi.org/10.1016/j.jconhyd.2013.02.007, 2013.
Ponziani, M., Slob, E. C., Ngan-Tillard, D. J. M., and Vanhala, H.:
Influence of water content on the electrical conductivity of peat, Int. Water Technol. J., 1, 14–21, 2011.
Qi, Y., Soueid Ahmed, A., Revil, A., Ghorbani, A., Abdulsamad, F., Florsch,
N., and Bonnenfant, J.: Induced polarization response of porous media with
metallic particles – Part 7: Detection and quantification of buried slag
heaps, Geophysics, 83, E277–E291, https://doi.org/10.1190/geo2017-0760.1, 2018.
Revil, A.: Spectral induced polarization of shaly sands: Influence of the
electrical double layer, Water Resour. Res., 48, W02517, https://doi.org/10.1029/2011wr011260, 2012.
Revil, A. and Florsch, N.: Determination of permeability from spectral
induced polarization in granular media, Geophys. J. Int., 181, 1480–1498,
https://doi.org/10.1111/j.1365-246x.2010.04573.x, 2010.
Revil, A. and Skold, M.: Salinity dependence of spectral induced
polarization in sands and sandstones, Geophys. J. Int., 187, 813–824,
https://doi.org/10.1111/j.1365-246x.2011.05181.x, 2011.
Revil, A., Atekwana, E., Zhang, C., Jardani, A., and Smith, S.: A new model
for the spectral induced polarization signature of bacterial growth in
porous media, Water Resour. Res., 48, W09545, https://doi.org/10.1029/2012wr011965, 2012.
Revil, A., Florsch, N., and Mao, D.: Induced polarization response of
porous media with metallic particles – Part 1: A theory for disseminated
semiconductors, Geophysics, 80, D525–D538, https://doi.org/10.1190/geo2014-0577.1, 2015a.
Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D., and Florsch, N.:
Induced polarization response of porous media with metallic particles – Part
2: Comparison with a broad database of experimental data, Geophysics, 80, D539–D552,
https://doi.org/10.1190/geo2014-0578.1, 2015b.
Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., Deng, Y.,
and van Baaren, E. S.: Complex conductivity of soils, Water Resour. Res., 53, 7121–7147,
https://doi.org/10.1002/2017wr020655, 2017a.
Revil, A., Sleevi, M. F., and Mao, D.: Induced polarization response of
porous media with metallic particles – Part 5: Influence of the background
polarization, Geophysics, 82, E77–E96, https://doi.org/10.1190/geo2016-0388.1, 2017b.
Revil, A., Mao, D., Shao, Z., Sleevi, M. F., and Wang, D.: Induced
polarization response of porous media with metallic particles – Part 6: The
case of metals and semimetals, Geophysics, 82, E97–E110, https://doi.org/10.1190/geo2016-0389.1,
2017c.
Revil, A., Coperey, A., Mao, D., Abdulsamad, F., Ghorbani, A., Rossi, M.,
and Gasquet, D.: Induced polarization response of porous media with
metallic particles – Part 8: Influence of temperature and salinity, Geophysics, 83, E435–E456, https://doi.org/10.1190/geo2018-0089.1, 2018.
Rosier, C. L., Atekwana, E. A., Aal, G. A., and Patrauchan, M. A.: Cell
concentrations and metabolites enhance the SIP response to biofilm matrix
components, J. Appl. Geophys., 160, 183–194, https://doi.org/10.1016/j.jappgeo.2018.10.023, 2019.
Schurr, J. M.: On the theory of the dielectric dispersion of spherical
colloidal particles in electrolyte solution1, J. Phys. Chem., 68, 2407–2413,
https://doi.org/10.1021/j100791a004, 1964.
Schwartz, N. and Furman, A.: On the spectral induced polarization
signature of soil organic matter, Geophys. J. Int., 200, 589–595, https://doi.org/10.1093/gji/ggu410,
2014.
Schwarz, G.: A theory of the low-frequency dielectric dispersion of
colloidal particles in electrolyte solution1, 2, J. Phys. Chem., 66, 2636–2642,
https://doi.org/10.1021/j100818a066, 1962.
Seigel, H., Nabighian, M., Parasnis, D. S., and Vozoff, K.: The early
history of the induced polarization method, Leading Edge, 26, 312–321,
https://doi.org/10.1190/1.2715054, 2007.
Skold, M., Revil, A., and Vaudelet, P.: The pH dependence of spectral
induced polarization of silica sands: Experiment and modeling, Geophys. Res. Lett., 38, L12304,
https://doi.org/10.1029/2011gl047748, 2011.
Slater, L. and Atekwana, E.: Geophysical signatures of subsurface
microbial processes, Eos, Transactions American Geophysical Union, 94, 77–78, https://doi.org/10.1002/2013eo080001, 2013.
Slater, L. and Binley, A.: Synthetic and field-based electrical imaging of
a zerovalent iron barrier: Implications for monitoring long-term barrier
performance, Geophysics, 71, B129–B137, https://doi.org/10.1190/1.2235931, 2006.
Slater L. D. and Reeve A.: Investigating peatland stratigraphy and
hydrogeology using integrated electrical geophysics, Geophys.,
67, 365–378, https://doi.org/10.1190/1.1468597, 2002.
Slater, L., Binley, A. M., Daily, W., and Johnson, R.: Cross-hole
electrical imaging of a controlled saline tracer injection, J. Appl. Geophys., 44, 85–102,
https://doi.org/10.1016/s0926-9851(00)00002-1, 2000.
Slater, L., Ntarlagiannis, D., Personna, Y. R., and Hubbard, S.: Pore-scale
spectral induced polarization signatures associated with FeS biomineral
transformations, Geophys. Res. Lett., 34, L21404, https://doi.org/10.1029/2007gl031840, 2007.
Strohmeier, S., Knorr, K.-H., Reichert, M., Frei, S., Fleckenstein, J. H., Peiffer, S., and Matzner, E.: Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: insights from high frequency measurements, Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, 2013.
Tamura, H., Goto, K., Yotsuyanagi, T., and Nagayama, M.: Spectrophotometric
determination of iron (II) with 1, 10-phenanthroline in the presence of
large amounts of iron (III), Talanta, 21, 314–318,
https://doi.org/10.1016/0039-9140(74)80012-3, 1974.
Tsukanov, K. and Schwartz, N.: Relationship between wheat root properties
and its electrical signature using the spectral induced polarization method, Vadose Zone J., 19, e20014, https://doi.org/10.1002/vzj2.20014, 2020.
Uhlemann, S. S., Sorensen, J. P. R., House, A. R., Wilkinson, P. B., Roberts, C.,
Gooddy, D. C., Binley, A. M., and Chambers, J. E.: Integrated time-lapse
geoelectrical imaging of wetland hydrological processes, Water Resour. Res., 52,
1607–1625, https://doi.org/10.1002/2015wr017932, 2016.
Ulrich, C. and Slater, L.: Induced polarization measurements on
unsaturated, unconsolidated sands, Geophysics, 69, 762–771, https://doi.org/10.1190/1.1759462,
2004.
Urban, N. R.: Retention of sulfur in lake-sediments, in: Environmental Chemistry of Lakes and Reservoirs, edited by: Baker, L. A.,
Am. Chem. S., 237, 323–369,
https://doi.org/10.1021/ba-1994-0237.ch010, 1994.
Vindedahl, A. M., Strehlau, J. H., Arnold, W. A., and Penn, R. L.:
Organic matter and iron oxide nanoparticles: aggregation, interactions, and
reactivity, Environ. Sci.-Nano, 3, 494–505, https://doi.org/10.1039/c5en00215j, 2016.
Wainwright, H. M., Flores Orozco, A., Bücker, M., Dafflon, B., Chen, J.,
Hubbard, S. S., and Williams, K. H.: Hierarchical Bayesian method for
mapping biogeochemical hot spots using induced polarization imaging, Water Resour. Res.,
52, 533–551, https://doi.org/10.1002/2015wr017763, 2016.
Wang, Y., Wang, H., He, J. S., and Feng, X.: Iron-mediated soil carbon
response to water-table decline in an alpine wetland, Nat. Commun., 8, 1–9,
https://doi.org/10.1038/ncomms15972, 2017.
Ward, S. H.: The resistivity and induced polarization methods, in: Symposium on the Application of Geophysics to Engineering and Environmental Problems 1988,
Society of Exploration Geophysicists, 109–250, https://doi.org/10.4133/1.2921804, 1988.
Waxman, M. H. and Smits, L. J. M.: Electrical conductivities in
oil-bearing shaly sands, Soc. Petrol. Eng. J., 8, 107–122, https://doi.org/10.2118/1863-a, 1968.
Weigand, M. and Kemna, A.: Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems, Biogeosciences, 14, 921–939, https://doi.org/10.5194/bg-14-921-2017, 2017.
Weller, A., Zhang, Z., and Slater, L.: High-salinity polarization of
sandstones, Geophysics, 80, D309–D318, https://doi.org/10.1190/geo2014-0483.1, 2015.
Williams, K. H., Ntarlagiannis, D., Slater, L. D., Dohnalkova, A., Hubbard,
S. S., and Banfield, J. F.: Geophysical imaging of stimulated
microbial biomineralization, Environ. Sci. Technol., 39, 7592–7600, https://doi.org/10.1021/es0504035, 2005.
Williams, K. H., Kemna, A., Wilkins, M. J., Druhan, J., Arntzen, E.,
N'Guessan, A. L., and Banfield, J. F.: Geophysical monitoring of
coupled microbial and geochemical processes during stimulated subsurface
bioremediation, Environ. Sci. Technol., 43, 6717–6723, https://doi.org/10.1021/es900855j, 2009.
Wong, J.: An electrochemical model of the induced-polarization phenomenon in
disseminated sulfid ores, Geophysics, 44, 1245–1265, https://doi.org/10.1190/1.1441005, 1979.
Zhang, C., Ntarlagiannis, D., Slater, L., and Doherty, R.: Monitoring
microbial sulfate reduction in porous media using multipurpose electrodes, J. Geophys. Res.-Biogeo., 115, G00G09, https://doi.org/10.1029/2009jg001157, 2010.
Zhang, C., Slater, L., and Prodan, C.: Complex dielectric properties
of sulfate-reducing bacteria suspensions, Geomicrobiol. J., 30, 490–496,
https://doi.org/10.1080/01490451.2012.719997, 2013.
Zimmermann, E., Kemna, A., Berwix, J., Glaas, W., and Vereecken, H.: EIT
measurement system with high phase accuracy for the imaging of spectral
induced polarization properties of soils and sediments, Meas. Sci. Technol., 19, 094010,
https://doi.org/10.1088/0957-0233/19/9/094010, 2008.
Zimmermann, E., Huisman, J. A., Mester, A., and van Waasen, S.: Correction
of phase errors due to leakage currents in wideband EIT field measurements
on soil and sediments, Meas. Sci. Technol., 30, 084002, https://doi.org/10.1088/1361-6501/ab1b09, 2019.
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
We used electrical geophysical methods to map variations in the rates of microbial activity...
Altmetrics
Final-revised paper
Preprint