Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4059-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4059-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The motion of trees in the wind: a data synthesis
Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
Sarab Sethi
Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
Ebba Dellwik
Department of Wind Energy, Technical University of Denmark,
Frederiksborgvej 399, Roskilde, 4000, Denmark
Nikolas Angelou
Department of Wind Energy, Technical University of Denmark,
Frederiksborgvej 399, Roskilde, 4000, Denmark
Amanda Bunce
Department of Natural Resources and the Environment, University of Connecticut,
Mansfield, CT 06269, USA
Tim van Emmerik
Hydrology and Quantitative Water Management Group, Wageningen
University, Wageningen, 6708, the Netherlands
Marine Duperat
Department of Wood and Forest Sciences, Laval University, Quebec, QC G1V
0A6, Canada
Jean-Claude Ruel
Department of Wood and Forest Sciences, Laval University, Quebec, QC G1V
0A6, Canada
Axel Wellpott
Bavarian State Institute of Forestry (LWF),
Hans-Carl-von-Carlowitz-Platz 1, 85354 Freising, Germany
Skip Van Bloem
Baruch Institute of Coastal Ecology and Forest Science, Clemson
University, P.O. Box 596, Georgetown, SC 29442, USA
Alexis Achim
Centre de recherche sur les matériaux renouvelables,
Département des sciences du bois et de la forêt, Université
Laval, Québec, QC G1V 0A6, Canada
Brian Kane
Department of Environmental Conservation, University of
Massachusetts, Amherst, MA 01003, USA
Dominick M. Ciruzzi
Department of Civil and Environmental Engineering, University of Wisconsin
Madison, Madison, WI 53706, USA
Steven P. Loheide II
Department of Civil and Environmental Engineering, University of Wisconsin
Madison, Madison, WI 53706, USA
Ken James
School of Ecosystem and Forest Sciences, Faculty of Science,
University of Melbourne, Melbourne, 3052, Australia
Daniel Burcham
Centre for Urban Greenery and Ecology, National Parks Board, 259569,
Singapore
John Moore
Timberlands Ltd., Rotorua 3010, New Zealand
Dirk Schindler
Environmental Meteorology, University of Freiburg, D-79085 Freiburg, Germany
Sven Kolbe
Environmental Meteorology, University of Freiburg, D-79085 Freiburg, Germany
Kilian Wiegmann
Argus Electronic GmbH, Erich-Schlesinger-Str. 49d, 18059 Rostock, Germany
Mark Rudnicki
College of Forest Resources and Environmental Science, Michigan
Technological University, Houghton, MI 49931, USA
Victor J. Lieffers
Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
John Selker
Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
Andrew V. Gougherty
Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Tim Newson
Department of Civil and Environmental Engineering, Western
University, London, Ontario N6G 1G8, Canada
Andrew Koeser
Department of Environmental Horticulture, IFAS, University of
Florida, Gainsville, 32607, USA
Gulf Coast Research and Education Center, University of Florida, 14625 County Road 672,
Wimauma, FL 33598, USA
Jason Miesbauer
The Morton Arboretum, Lisle, IL 60532, USA
Roger Samelson
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR 97331, USA
Jim Wagner
Oregon Research Electronics, Tangent, OR 97389, USA
Anthony R. Ambrose
Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720-3140, USA
Andreas Detter
Brudi and Partner TreeConsult, Berengariastr. 9, 82131 Gauting,
Germany
Steffen Rust
Faculty of Resource Management, University of Applied Science and Art, Göttingen, Germany
David Coomes
Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
Barry Gardiner
Institut Européen de la Forêt Cultivée, 69 route
d'Arcachon, 33612, Cestas, France
Related authors
No articles found.
Cecilia Chavana-Bryant, Phil Wilkes, Wanxin Yang, Andrew Burt, Peter Vines, Amy C. Bennett, Georgia C. Pickavance, Declan L. M. Cooper, Simon L. Lewis, Oliver L. Phillips, Benjamin Brede, Alvaro Lau, Martin Herold, Iain McNicol, Edward T. A. Mitchard, David A. Coomes, Toby Jackson, Loic Makaga, Heddy O. Milamizokou Napo, Alfred Ngomanda, Stephan Ntie, Vincent Medjibe, Pacome Dimbonda, Luna Soenens, Virginie Daelemans, Laetitia Proux, Reuben Nilus, Nicolas Labriere, Kathryn Jeffery, David F. R. P. Burslem, Daniel Clewley, David Moffat, Lan Qie, Harm Bartholomeus, Vincent Gregoire, Nicolas Barbier, Geraldine Derroire, Katharine Abernethy, Klaus Scipal, and Mat Disney
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-67, https://doi.org/10.5194/essd-2025-67, 2025
Preprint under review for ESSD
Short summary
Short summary
The ForestScan project provides a comprehensive set of datasets of tropical forest 3D structural measurements using terrestrial, unpiloted aerial vehicle and aerial laser scanning, plus tree census data. Collected at three sites in French Guiana, Gabon, and Malaysia, these datasets are crucial for calibrating and validating earth observation-derived forest biomass estimates, therefore, expanding and enhancing their use, and aiding global conservation efforts.
Tim Hans Martin van Emmerik, Tim Willem Janssen, Tianlong Jia, Thank-Khiet L. Bui, Riccardo Taormina, Hong-Q. Nguyen, and Louise Jeanne Schreyers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2270, https://doi.org/10.5194/egusphere-2024-2270, 2024
Preprint archived
Short summary
Short summary
Plastic pollution has negative effects on the environment. Tropical rivers around the world suffer from both plastic pollution and invasive water hyacinths. Water hyacinths grow rapidly and form dense floating mats. Using drones, cameras and AI, we show that along the Saigon river, Vietnam, the majority of floating plastic pollution is carried by water hyacinths. Better understanding water hyacinth-plastic trapping supports improving pollution monitoring and management strategies.
Ferdinand Briegel, Jonas Wehrle, Dirk Schindler, and Andreas Christen
Geosci. Model Dev., 17, 1667–1688, https://doi.org/10.5194/gmd-17-1667-2024, https://doi.org/10.5194/gmd-17-1667-2024, 2024
Short summary
Short summary
We present a new approach to model heat stress in cities using artificial intelligence (AI). We show that the AI model is fast in terms of prediction but accurate when evaluated with measurements. The fast-predictive AI model enables several new potential applications, including heat stress prediction and warning; downscaling of potential future climates; evaluation of adaptation effectiveness; and, more fundamentally, development of guidelines to support urban planning and policymaking.
Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
Short summary
Short summary
River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Short summary
This study presents the first experimental investigation using two nacelle-mounted wind lidars that reveal the upwind and downwind conditions relative to a full-scale floating wind turbine. We find that in the case of floating wind turbines with small pitch and roll oscillating motions (< 1°), the ambient turbulence is the main driving factor that determines the propagation of the wake characteristics.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022, https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary
Short summary
In this study we use state-of-the-art scanning wind lidars to investigate the wind field in the near-wake region of a mature, open-grown tree. Our measurements provide for the first time a picture of the mean and the turbulent spatial fluctuations in the flow in the wake of a tree in its natural environment. Our observations support the hypothesis that even simple models can realistically simulate the turbulent fluctuations in the wake and thus predict the effect of trees in flow models.
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
Short summary
Impactful open, accessible, reusable, and reproducible hydrologic research practices are being embraced by individuals and the community, but taking the plunge can seem overwhelming. We present the Open Hydrology Principles and Practical Guide to help hydrologists move toward open science, research, and education. We discuss the benefits and how hydrologists can overcome common challenges. We encourage all hydrologists to join the open science community (https://open-hydrology.github.io).
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Cited articles
Angelou, N., Dellwik, E., and Mann, J.: Wind load estimation on an open-grown
European oak tree, For. An Int. J. For. Res., 92, 381–392, https://doi.org/10.1093/forestry/cpz026,
2019.
Baker, C. J.: Measurements of the natural frequencies of trees, J. Exp.
Bot., 48, 1125–1132, https://doi.org/10.1093/jxb/48.5.1125, 1997.
Bastin, J. F., Barbier, N., Réjou-Méchain, M., Fayolle, A.,
Gourlet-Fleury, S., Maniatis, D., De Haulleville, T., Baya, F., Beeckman,
H., Beina, D., Couteron, P., Chuyong, G., Dauby, G., Doucet, J. L.,
Droissart, V., Dufrêne, M., Ewango, C., Gillet, J. F., Gonmadje, C. H.,
Hart, T., Kavali, T., Kenfack, D., Libalah, M., Malhi, Y., Makana, J. R.,
Pélissier, R., Ploton, P., Serckx, A., Sonké, B., Stevart, T.,
Thomas, D. W., De Cannière, C., and Bogaert, J.: Seeing Central African
forests through their largest trees, Sci. Rep., 5, 13156, https://doi.org/10.1038/srep13156,
2015.
Blackburn, P., Petty, J. A., and Miller, K. F.: An assessment of the static
and dynamic factors involved in windthrow, Forestry, 61, 29–43,
https://doi.org/10.1093/forestry/61.1.29, 1988.
Bonnesoeur, V., Constant, T., Moulia, B., and Fournier, M.: Forest trees
filter chronic wind-signals to acclimate to high winds, New Phytol., 210,
850–860, https://doi.org/10.1111/nph.13836, 2016.
Bunce, A., Volin, J. C., Miller, D. R., Parent, J., and Rudnicki, M.:
Determinants of tree sway frequency in temperate deciduous forests of the
Northeast United States, Agr. Forest Meteorol., 266/267, 87–96,
https://doi.org/10.1016/J.AGRFORMET.2018.11.020, 2019.
Burcham, D.: Ambient vibration of mature Hopea odorata trees, Harvard Dataverse [Dataset], V1, https://doi.org/10.7910/DVN/FHJBYG, last access: 1 September 2020.
Ciftci, C., Brena, S. F., Kane, B., and Arwade, S. R.: The effect of crown
architecture on dynamic amplification factor of an open-grown sugar maple,
Trees, 27, 1175–1189, https://doi.org/10.1007/s00468-013-0867-z, 2013.
Ciruzzi, D. M. and Loheide, S. P.: Monitoring tree sway as an indicator of
water stress, Geophys. Res. Lett., 46, 12021–12029,
https://doi.org/10.1029/2019GL084122, 2019.
Ciruzzi, D. and Loheide, S.: Continuous acceleration time series for tree sway monitoring in a temperate, humid environment, HydroShare [Dataset], http://www.hydroshare.org/resource/38ae9d9fb88d49f9ad2eed1ee07475c0, last access: 2 February 2021.
Cohen, J.: A coefficient of agreement for nominal scales, Educ. Psychol.
Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104, 1960.
Dargahi, M., Newson, T., and R. Moore, J.: A numerical approach to estimate
natural frequency of trees with variable properties, Forests, 11, 915,
https://doi.org/10.3390/f11090915, 2020.
de Langre, E.: Effects of wind on plants, Annu. Rev. Fluid Mech., 40,
141–168, https://doi.org/10.1146/annurev.fluid.40.111406.102135, 2008.
de Langre, E.: Plant vibrations at all scales: a review, J. Exp. Bot.,
70, 3521–3531, https://doi.org/10.1093/jxb/erz209, 2019.
Dellwik, E., van der Laan, M. P., Angelou, N., Mann, J., and Sogachev, A.:
Observed and modeled near-wake flow behind a solitary tree, Agr. Forest
Meteorol., 265, 78–87, https://doi.org/10.1016/j.agrformet.2018.10.015, 2019.
Duperat, M., Ruel, J.-C., and Gardiner, B.: Impact of thinning in naturally regenerated balsam fir stand, Scholars Portal Dataverse [Dataset], V1, https://doi.org/10.5683/SP2/WZIKSR (last access: 4 September 2020), 2019.
Duperat, M., Gardiner, B., and Ruel, J.-C.: Testing an individual tree wind
damage risk model in a naturally regenerated balsam fir stand: potential
impact of thinning on the level of risk, For. An. Int. J. For. Res., 94, 141–150,
https://doi.org/10.1093/forestry/cpaa023, 2020.
Espírito-Santo, F. D. B., Gloor, M., Keller, M., Malhi, Y., Saatchi,
S., Nelson, B., Junior, R. C. O., Pereira, C., Lloyd, J., Frolking, S.,
Palace, M., Shimabukuro, Y. E., Duarte, V., Mendoza, A. M.,
López-González, G., Baker, T. R., Feldpausch, T. R., Brienen, R. J.
W., Asner, G. P., Boyd, D. S., and Phillips, O. L.: Size and frequency of
natural forest disturbances and the Amazon forest carbon balance, Nat.
Commun., 5, 3434, https://doi.org/10.1038/ncomms4434, 2014.
Fulcher, B. D. and Jones, N. S.: hctsa: A computational framework for
automated time-series phenotyping using massive feature extraction, Cell
Syst., 5, 527–531, https://doi.org/10.1016/j.cels.2017.10.001, 2017.
Gardiner, B. A.: Mathematical modelling of the static and dynamic
characteristics of plantation trees, in: Franke, Mathematical Modelling of Forest Ecosystems, edited by: J. and Roeder, A., Frankfurt am Main, Sauerläinder's Verlag, 40–61,
1992.
Gougherty, A. V., Keller, S. R., Kruger, A., Stylinski, C. D., Elmore, A. J.,
and Fitzpatrick, M. C.: Estimating tree phenology from high frequency tree
movement data, Agr. Forest Meteorol., 263, 217–224,
https://doi.org/10.1016/j.agrformet.2018.08.020, 2018.
Hale, S. E., Gardiner, B. A., Wellpott, A., Nicoll, B. C., and Achim, A.:
Wind loading of trees: Influence of tree size and competition, Eur. J. For.
Res., 131, 203–217, https://doi.org/10.1007/s10342-010-0448-2, 2012.
Holbo, H. R., Corbett, T. C., and Horton, P. J.: Aeromechanical behavior of
selected Douglas-fir, Agr. Meteorol., 21, 81–91,
https://doi.org/10.1016/0002-1571(80)90056-4, 1980.
Jackson, T.: Strain measurements on 21 trees in Wytham Woods, UK. NERC Environmental Information Data Centre, [Dataset], https://doi.org/10.5285/533d87d3-48c1-4c6e-9f2f-fda273ab45bc (last access: 21 May 2020), 2018a.
Jackson, T.: A time-series of strains in response to wind measured on 19 trees in Danum Valley, Malaysia, NERC Environmental Information Data Centre, [Dataset], https://doi.org/10.5285/657f420e-f956-4c33-b7d6-98c7a18aa07a (last access: 20 July 2020), 2018b.
Jackson, T.: Tree motion data synthesis, Github [Dataset], https://github.com/TobyDJackson/Tree_motion_data_synthesis, last access: 1 May 2021.
Jackson, T., Shenkin, A., Moore, J., Bunce, A., Emmerik, T. van, Kane, B.,
Burcham, D., James, K., Selker, J., Calders, K., Origo, N., Disney, M.,
Burt, A., Wilkes, P., Raumonen, P., Menaca, J. G. de T., Lau, A., Herold,
M., Goodman, R. C., Fourcaud, T., and Malhi, Y.: An architectural
understanding of natural sway frequencies in trees, J. R. Soc. Interface, 16, 20190116,
https://doi.org/10.1098/RSIF.2019.0116, 2019.
Jackson, T., Bunce, A., James, K., Wellpott, A., Van Bloem, S., Achim, A.,
and Gardiner, B.: The motion of trees in the wind – a collection of multiple
data sets, Zenodo [Dataset], https://doi.org/10.5281/ZENODO.4915883, last access: 15 June 2021.
Jackson, T. D., Shenkin, A. F., Majalap, N., Bin Jami, J., Bin Sailim, A.,
Reynolds, G., Coomes, D. A., Chandler, C. J., Boyd, D. S., Burt, A., Wilkes,
P., Disney, M., and Malhi, Y.: The mechanical stability of the world's
tallest broadleaf trees, Biotropica, 53, 110–120, https://doi.org/10.1111/btp.12850, 2020.
James, K. R., Haritos, N., and Ades, P. K.: Mechanical stability of trees
under dynamic loads, Am. J. Bot., 93, 1522–1530,
https://doi.org/10.3732/ajb.93.10.1522, 2006.
Kane, B. and Smiley, E. T.: Drag coefficients and crown area estimation of
red maple, Can. J. For. Res., 36, 1951–1958, https://doi.org/10.1139/x06-086, 2006.
Kerzenmacher, T. and Gardiner, B.: A mathematical model to describe the
dynamic response of a spruce tree to the wind, Trees-Struct. Funct.,
12, 385–394, https://doi.org/10.1007/s004680050165, 1998.
Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., and
Jones, N. S.: catch22: Canonical time-series characteristics, Data Min.
Knowl. Discov., 33, 1821–1852,
https://doi.org/10.1007/s10618-019-00647-x, 2019.
MacFarlane, D. W. and Kane, B.: Neighbour effects on tree architecture:
functional trade-offs balancing crown competitiveness with wind resistance,
edited by M. Larjavaara, Funct. Ecol., 31, 1624–1636,
https://doi.org/10.1111/1365-2435.12865, 2017.
Magnabosco Marra, D., Trumbore, S. E., Higuchi, N., Ribeiro, G. H. P. M.,
Negrón-Juárez, R. I., Holzwarth, F., Rifai, S. W., dos Santos, J.,
Lima, A. J. N., Kinupp, V. F., Chambers, J. Q., and Wirth, C.: Windthrows
control biomass patterns and functional composition of Amazon forests, Glob.
Change Biol., 24, 5867–588, https://doi.org/10.1111/gcb.14457, 2018.
Mayer, H.: Wind-induced tree sways, Trees, 1, 195–206,
https://doi.org/10.1007/BF01816816, 1987.
Moore, J., Gardiner, B., and Sellier, D.: Tree mechanics and wind loading, in:
Plant Biomechanics, Springer International Publishing, Chamber, 79–106,
2018.
Moore, J. R. and Maguire, D. A.: Natural sway frequencies and damping ratios
of trees: concepts, review and synthesis of previous studies, Trees-Struct. Funct., 18, 195–203, https://doi.org/10.1007/s00468-003-0295-6, 2004.
Moore, J. R., Gardiner, B. A., Blackburn, G. R. A., Brickman, A., and
Maguire, D. A.: An inexpensive instrument to measure the dynamic response of
standing trees to wind loading, Agr. Forest Meteorol., 132, 78–83,
https://doi.org/10.1016/j.agrformet.2005.07.007, 2005.
Oliver, H. R. and Mayhead, G. J.: Wind measurements in a pine forest during
a destructive gale, Forestry, 47, 185–194,
https://doi.org/10.1093/forestry/47.2.185, 1974.
Pan, W.: Akaike's information criterion in generalized estimating equations,
Biometrics, 57, 120–125, https://doi.org/10.1111/j.0006-341X.2001.00120.x, 2001.
Rifai, S. W., Urquiza Muñoz, J. D., Negrón-Juárez, R. I.,
Ramírez Arévalo, F. R., Tello-Espinoza, R., Vanderwel, M. C.,
Lichstein, J. W., Chambers, J. Q., and Bohlman, S. A.: Landscape-scale
consequences of differential tree mortality from catastrophic wind
disturbance in the Amazon, Ecol. Appl., 26, 2225–2237,
https://doi.org/10.1002/eap.1368, 2016.
Rodriguez, M., De Langre, E., and Moulia, B.: A scaling law for the effects
of architecture and allometry on tree vibration modes suggests a biological
tuning to modal compartmentalization, Am. J. Bot., 95, 1523–1537,
https://doi.org/10.3732/ajb.0800161, 2008.
Rodriguez, M., Ploquin, S., Moulia, B., and de Langre, E.: The multimodal
dynamics of a walnut Ttree: Experiments and models, J. Appl. Mech., 79,
44505, https://doi.org/10.1115/1.4005553, 2012.
Schelhaas, M.-J. J., Nabuurs, G.-J. J., and Schuck, A.: Natural disturbances
in the European forests in the 19th and 20th centuries, Glob. Change Biol.,
9, 1620–1633, 2003.
Schindler, D. and Mohr, M.: Non-oscillatory response to wind loading
dominates movement of Scots pine trees, Agr. Forest Meteorol., 250/251,
209–216, https://doi.org/10.1016/j.agrformet.2017.12.258, 2018.
Schindler, D., Vogt, R., Fugmann, H., Rodriguez, M., Schönborn, J., and
Mayer, H.: Vibration behavior of plantation-grown Scots pine trees in
response to wind excitation, Agr. Forest Meteorol., 150, 984–993,
https://doi.org/10.1016/j.agrformet.2010.03.003, 2010.
Sellier, D. and Fourcaud, T.: Crown structure and wood properties: Influence
on tree sway and response to high winds, Am. J. Bot., 96, 885–896,
https://doi.org/10.3732/ajb.0800226, 2009.
Sellier, D., Brunet, Y., and Fourcaud, T.: A numerical model of tree
aerodynamic response to a turbulent airflow, Forestry, 81, 279–297,
https://doi.org/10.1093/forestry/cpn024, 2008.
Senf, C. and Seidl, R.: Mapping the forest disturbance regimes of Europe,
Nat. Sustain., 4, 63–70, https://doi.org/10.1038/s41893-020-00609-y, 2020.
Spatz, H. C. and Theckes, B.: Oscillation damping in trees, Plant Sci., 207,
66–71, https://doi.org/10.1016/j.plantsci.2013.02.015, 2013.
Theckes, B., De Langre, E., and Boutillon, X.: Damping by branching: A
bioinspiration from trees, Bioinspir. Biomim., 6, 046010,
https://doi.org/10.1088/1748-3182/6/4/046010, 2011.
van Emmerik, T., Steele-Dunne, S., Hut, R., Gentine, P., Guerin, M.,
Oliveira, R. S., Wagner, J., Selker, J., and Van De Giesen, N.: Measuring
tree properties and responses using low-cost accelerometers, Sensors,
Switzerland, 17, 1098, https://doi.org/10.3390/s17051098, 2017.
van Emmerik, T., Steele-Dunne, S., Gentine, P., Oliveira, R. S.,
Bittencourt, P., Barros, F., and van de Giesen, N.: Ideas and perspectives:
Tree-atmosphere interaction responds to water-related stem variations,
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018,
2018.
van Emmerik, T., Steele-Dunne, S. C., Hut, R. W., Gentine, P., Guerin, M. F., Oliveira, R. S., Wagner, J., Selker, J. S., and van de Giesen, N. C.:
Tree sway measured with accelerometers of 19 trees in the Brazilian Amazon, https://data.4tu.nl/articles/dataset/Tree_of_19_Amazon_trees/12714989/1, last access: 5 September 2021.
Welch, P.: The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified periodograms,
IEEE Trans. Audio Electroacoust., 15, 70–73,
https://doi.org/10.1109/TAU.1967.1161901, 1967.
Short summary
We have all seen trees swaying in the wind, but did you know that this motion can teach us about ecology? We summarized tree motion data from many different studies and looked for similarities between trees. We found that the motion of trees in conifer forests is quite similar to each other, whereas open-grown trees and broadleaf forests show more variation. It has been suggested that additional damping or amplification of tree motion occurs at high wind speeds, but we found no evidence of this.
We have all seen trees swaying in the wind, but did you know that this motion can teach us about...
Altmetrics
Final-revised paper
Preprint