Articles | Volume 18, issue 17
https://doi.org/10.5194/bg-18-4953-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4953-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Trends in primary production in the Bay of Bengal – is it at a tipping point?
Carolin R. Löscher
CORRESPONDING AUTHOR
Nordcee, DIAS, Department of Biology, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark
Related authors
Anna Pedersen, Carolin R. Löscher, and Steffen M. Olsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1218, https://doi.org/10.5194/egusphere-2025-1218, 2025
Short summary
Short summary
The North Atlantic plays a crucial role in absorbing atmospheric CO2, but its air-sea CO2 flux varies across time and space. Using historical climate model simulations, we investigate how physical and oceanic processes drive the variability. Our results show that sea ice, temperature, salinity, wind stress, and ocean circulation shape CO2 exchange, with short-term fluctuations playing a dominant role. Understanding these complex interactions is key to predicting future ocean carbon uptake.
Isabell Schlangen, Elizabeth Leon-Palmero, Annabell Moser, Peihang Xu, Erik Laursen, and Carolin Regina Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3680, https://doi.org/10.5194/egusphere-2024-3680, 2024
Short summary
Short summary
We explored nitrogen fixation in the Arctic Ocean, revealing its key role in supporting coastal productivity, especially near melting glaciers. By combining molecular data, rate measurements, and environmental analysis, we identified dominant microbes like symbiotic unicellular cyanobacteria and linked high nitrogen fixation to glacial melt. Our findings suggest that climate-driven changes may expand niches for these microbes, reshaping nitrogen cycles and Arctic productivity in the future.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Preprint archived
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Anna Pedersen, Carolin R. Löscher, and Steffen M. Olsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1218, https://doi.org/10.5194/egusphere-2025-1218, 2025
Short summary
Short summary
The North Atlantic plays a crucial role in absorbing atmospheric CO2, but its air-sea CO2 flux varies across time and space. Using historical climate model simulations, we investigate how physical and oceanic processes drive the variability. Our results show that sea ice, temperature, salinity, wind stress, and ocean circulation shape CO2 exchange, with short-term fluctuations playing a dominant role. Understanding these complex interactions is key to predicting future ocean carbon uptake.
Isabell Schlangen, Elizabeth Leon-Palmero, Annabell Moser, Peihang Xu, Erik Laursen, and Carolin Regina Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3680, https://doi.org/10.5194/egusphere-2024-3680, 2024
Short summary
Short summary
We explored nitrogen fixation in the Arctic Ocean, revealing its key role in supporting coastal productivity, especially near melting glaciers. By combining molecular data, rate measurements, and environmental analysis, we identified dominant microbes like symbiotic unicellular cyanobacteria and linked high nitrogen fixation to glacial melt. Our findings suggest that climate-driven changes may expand niches for these microbes, reshaping nitrogen cycles and Arctic productivity in the future.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Preprint archived
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Balachandran, K. K., Laluraj, C. M., Retnamma, J., Madhu, N. V., Muraleedharan, K.
R., Vijay, J. G., Maheswaran, P. A., Ashraff, T. T. M., Nair, K. K. C., and
Achuthankutty, C. T.: Hydrography and biogeochemistry of the north western
Bay of Bengal and the north eastern Arabian Sea during winter monsoon,
J. Mar Syst., 73, 76–86, https://doi.org/10.1016/j.jmarsys.2007.09.002, 2008.
Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S.
O., Tucker, C. J., Falkowski, P. G., Field, C. B., Frouin, R., Esaias, W.
E., Kolber, D. D., and Pollack, N. H.: Biospheric Primary Production During
an ENSO Transition, Science, 291, 2594–2597, https://doi.org/10.1126/science.1055071,
2001.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary
ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Bemal, S., Anil, A. C., and Amol, P.: Picophytoplankton variability:
Influence of Rossby wave propagation in the southeastern Arabian Sea,
J. Mar Syst., 199, 103221,
https://doi.org/10.1016/j.jmarsys.2019.103221, 2019.
Beman, J. M. and Carolan, M. T.: Deoxygenation alters bacterial diversity
and community composition in the oceans largest oxygen minimum zone, Nat.
Commun., 4, https://doi.org/10.1038/ncomms3705, 2013.
Benavides, M., Martias, C., Elifantz, H., Berman-Frank, I., Dupouy, C., and
Bonnet, S.: Dissolved Organic Matter Influences N2 Fixation in the New
Caledonian Lagoon (Western Tropical South Pacific), Front. Mar. Sci., 5, 89, https://doi.org/10.3389/fmars.2018.00089, 2018.
Bhaskar, J. T., Ramaiah, N., Gauns, M., and Fernandes, V.: Preponderance of
a few diatom species among the highly diverse microphytoplankton assemblages
in the Bay of Bengal, J. Mar. Biol., 152, 63–75, 2007.
Bhattathiri, P. M. A., Devassy, V. P., and Radhakrishna, K.: Primary
production in the Bay of Bengal during southwest monsoon of 1978,
Mahasagar-Bulletin of the National Institute of Oceanography, 13, 315–323,
1980.
Bhushan, R., Bikkina, S., Chatterjee, J., Singh, S. P., Goswami, V., Thomas, L. C., and Sudheer, A. K.: and
Sudheer, A. K.: Evidence for enhanced chlorophyll-a levels in the Bay of
Bengal during early north-east monsoon, J. Ocean. Mar.
Sci., 9, 15–23, https://doi.org/10.5897/JOMS2017.0144, 2018.
Boyle, R. A.: Code for ancient ocean 5 box model on euxinic/ ferruginous balance and the nitrogen cycle, PANGAEA [data set],
https://doi.pangaea.de/10.1594/PANGAEA.905498, 2019.
Boyle, R. A., Clark, J. R., Poulton, S. W., Shields-Zhou, G., Canfield, D.
E., and Lenton, T. M.: Nitrogen cycle feedbacks as a control on euxinia in
the mid-Proterozoic ocean, Nat. Commun., 4, 1533,
https://doi.org/10.1038/ncomms2511, 2013.
Bristow, L. A., Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker,
J., Forth, M., Gauns, M., Glud, R. N., Kuypers, M. M. M., Lavik, G.,
Milucka, J., Naqvi, S. W. A., Pratihary, A., Revsbech, N. P., Thamdrup, B.,
Treusch, A. H., and Canfield, D. E.: N2 production rates limited by nitrite
availability in the Bay of Bengal oxygen minimum zone, Nat. Geosci., 10,
24–29, https://doi.org/10.1038/ngeo2847, 2017.
Canfield, D. E., Kraft, B., Löscher, C. R., Boyle, R. A., Thamdrup, B.,
and Stewart, F. J.: The regulation of oxygen to low concentrations in marine
oxygen-minimum zones, J. Mar. Res., 77, 297–324,
https://doi.org/10.1357/002224019828410548, 2019.
Contreras-Rosales, L. A., Schefuß, E., Meyer, V., Palamenghi, L.,
Lückge, A., and Jennerjahn, T. C.: Origin and fate of sedimentary
organic matter in the northern Bay of Bengal during the last 18 ka, Glob. Planet. Change, 146, 53–66,
https://doi.org/10.1016/j.gloplacha.2016.09.008, 2016.
Cui, W., Yang, J., and Ma, Y.: A statistical analysis of mesoscale eddies in
the Bay of Bengal from 22-year altimetry data, Ac. Ocean. Sin., 35,
16, https://doi.org/10.1007/s13131-016-0945-3, 2016.
Dandapat, S. and Chakraborty, A.: Mesoscale Eddies in the Western Bay of
Bengal as Observed From Satellite Altimetry in 1993–2014: Statistical
Characteristics, Variability and Three-Dimensional Properties, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 9,
5044–5054, https://doi.org/10.1109/JSTARS.2016.2585179, 2016.
Devassy, V. P., Bhattathiri, P. M. A., and Radhakrishna, K.: Primary
production in the Bay of Bengal during August, 1977, Mahasagar-Bulletin of
National Institute of Oceanography, 16, 443–447, 1983.
Dähnke, K. and Thamdrup, B.: Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea, Biogeosciences, 10, 3079–3088, https://doi.org/10.5194/bg-10-3079-2013, 2013.
Falkowski, P. G., Barber, R. T., and Smetacek, V. V.: Biogeochemical
Controls and Feedbacks on Ocean Primary Production, Science, 281, 200–207,
1998.
Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T., and Riebesell,
U.: Dynamics and stoichiometry of nutrients and phytoplankton in waters
influenced by the oxygen minimum zone in the eastern tropical Pacific,
Deep-Sea Res. Pt. I, 62, 20–31, 2012.
Gauns, M., Madhupratap, M., Nagappa, R., Retnamma, J., Fernandes, V.,
Bhaskar, J., and PrasannaKumar, S.: Comparative accounts of biological
productivity characteristics and estimates of carbon fluxes in the Arabian
Sea and the Bay of Bengal, Deep-Sea Res. Pt. II, 52, 2003–2017, https://doi.org/10.1016/j.dsr2.2005.05.009, 2005.
Gomes, H. R., Goes, J. I., and Saino, T.: Influence of physical processes
and freshwater discharge on the seasonality of phytoplankton regime in the
Bay of Bengal, Cont. Shelf Res., 20, 313–330, 2000.
Greaser, S. R., Subrahmanyam, B., Trott, C. B., and Roman-Stork, H. L.:
Interactions Between Mesoscale Eddies and Synoptic Oscillations in the Bay
of Bengal During the Strong Monsoon of 2019, J. Geophys. Res.-Oceans, 125, e2020JC016772,
https://doi.org/10.1029/2020JC016772, 2020.
Gregg, W. W., Conkright, M. E., Ginoux, P., O'Reilly, J. E., and Casey, N.
W.: Ocean primary production and climate: Global decadal changes, Geophys. Res. Lett., 30, 1809, https://doi.org/10.1029/2003GL016889, 2003.
Gregg, W. W. and Casey, N. W.: Modeling coccolithophores in the global
oceans, Deep-Sea Res. Pt. II, 54,
447–477, 2007.
Gregg, W. W., Rousseaux, C. S., and Franz, B. A.: Global trends in ocean
phytoplankton: a new assessment using revised ocean colour data, Remote
Sens. Lett., 8, 1102–1111, https://doi.org/10.1080/2150704x.2017.1354263, 2017.
Gregg, W. W. and Rousseaux, C. S.: Global ocean primary production trends
in the modern ocean color satellite record (1998–2015), Environ. Res. Lett., 14, 124011, https://doi.org/10.1088/1748-9326/ab4667, 2019.
Hegde, S., Anil, A., Patil, J., Mitbavkar, S., Krishnamurthy, V., and
Gopalakrishna, V.: Influence of environmental settings on the prevalence of
Trichodesmium spp. in the Bay of Bengal, Mar. Ecol. Prog. Ser.,
356, 93–101, https://doi.org/10.3354/meps07259, 2008.
Ittekkot, V.: The abiotically driven biological pump in the ocean and
short-term fluctuations in atmospheric CO2 contents, Glob. Planet. Change, 8, 17–25, https://doi.org/10.1016/0921-8181(93)90060-2,
1993.
Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M., and
Chisholm, S. W.: Niche partitioning among Prochlorococcus ecotypes along
ocean-scale environmental gradients, Science, 311, 1737–1740,
https://doi.org/10.1126/science.1118052, 2006.
Jyothibabu, R., Maheswaran, P. A., Madhu, N. V., Asharaf, T. T. M., Gerson,
V. J., Haridas, C., Venugopal, P., Revichandran, C., Nair, K. K. C., and
Gopalakrishnan, T. C.: Differential response of winter cooling on biological
production in the northeastern Arabian Sea and northwestern Bay of Bengal,
Curr. Sci., 87, 783–791, 2004.
Jyothibabu, R., Karnan, C., Jagadeesan, L., Arunpandi, N., Pandiarajan, R.
S., Muraleedharan, K. R., and Balachandran, K. K.: Trichodesmium blooms and
warm-core ocean surface features in the Arabian Sea and the Bay of Bengal,
Mar. Poll. Bull., 121, 201–215, https://doi.org/10.1016/j.marpolbul.2017.06.002, 2017.
Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Karnan, C., Lallu, K. R., and
Vinayachandran, P. N.: Response of phytoplankton to heavy cloud cover and
turbidity in the northern Bay of Bengal, Sci. Rep., 8, 11282–11282,
https://doi.org/10.1038/s41598-018-29586-1, 2018.
Krishna, M. S., Prasad, M. H. K., Rao, D. B., Viswanadham, R., Sarma, V. V.
S. S., and Reddy, N. P. C.: Export of dissolved inorganic nutrients to the
northern Indian Ocean from the Indian monsoonal rivers during discharge
period, Geochim. Cosmochim. Ac., 172, 430–443,
https://doi.org/10.1016/j.gca.2015.10.013, 2016.
Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H.
A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M., Figueiras, F. G.,
Furuya, K., González-Benítez, N., Gudfinnsson, H. G., Gudmundsson,
K., Huang, B., Isada, T., Kovač, Ž., Lutz, V. A., Marañón,
E., Raman, M., Richardson, K., Rozema, P. D., Poll, W. H. v. d., Segura, V.,
Tilstone, G. H., Uitz, J., Dongen-Vogels, V. v., Yoshikawa, T., and
Sathyendranath, S.: Primary Production, an Index of Climate Change in the
Ocean: Satellite-Based Estimates over Two Decades, Remote Sens., 12, 826, https://doi.org/10.3390/rs12050826,
2020.
Kumar, S., Ramesh, R., Sardesai, S., and Sheshshayee, M. S.: High new
production in the Bay of Bengal: Possible causes and implications,
Geophys. Res. Lett., 31, L18304, https://doi.org/10.1029/2004GL021005, 2004.
Larkin, A. A., Garcia, C. A., Ingoglia, K. A., Garcia, N. S., Baer, S. E.,
Twining, B. S., Lomas, M. W., and Martiny, A. C.: Subtle biogeochemical
regimes in the Indian Ocean revealed by spatial and diel frequency of
Prochlorococcus haplotypes, Limnol. Oceanogr., 65, 220–232,
https://doi.org/10.1002/lno.11251, 2020.
Li, G., Lin, Q., Ni, G., Shen, P., Fan, Y., Huang, L., and Tan, Y.: Vertical
Patterns of Early Summer chlorophyll a Concentration in the Indian Ocean
with Special Reference to the Variation of Deep Chlorophyll Maximum, J.
Mar. Biol., 2012, 801248, https://doi.org/10.1155/2012/801248, 2012.
Longhurst, A. R., Sathyendrenath, S., Platt, T., Caverhill, C., and Res., J.
P.: An estimat ion of global primary product ion in the ocean from satellite
radiometer data, J. Plankton Res., 17, 1245–1271, 1995.
Löscher, C. R., Mohr, W., Bange, H. W., and Canfield, D. E.: No nitrogen fixation in the Bay of Bengal?, Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, 2020.
Madhu, N. V., Maheswaran, P. A., Retnamma, J., Sunil, V., Revichandran, C.,
Thangavel, B., Gopalakrishnan, T. C., and Nair, K. K. C.: Enhanced
biological production off Chennai triggered by October 1999 super cyclone
(Orissa), Curr. Sci., 82, 1472–1479, 2002.
Madhu, N. V., Jyothibabu, R., Maheswaran, P., Gerson, V. J., Gopalakrishnan,
T., and Nair, K.: Lack of seasonality in phytoplankton standing stock
(chlorophyll a) and production in the western Bay of Bengal, Cont. Shelf Res., 26, 1868–1883, 2006.
Madhupratap, M., Gauns, M., Nagappa, R., PrasannaKumar, S., Muraleedharan,
P. M., DeSousa, S. N., Sardessai, S., and Muraleedharan, D. U.:
Biogeochemistry of the Bay of Bengal: Physical, chemical and primary
productivity characteristics of the central and western Bay of Bengal during
summer monsoon 2001, Deep-Sea Res. Pt. II, 50, 881–896, https://doi.org/10.1016/S0967-0645(02)00611-2, 2003.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of
Plankton, Annu. Rev. Mar. Sci., 8, 161–184,
https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Martiny, A. C., Kathuria, S., and Berube, P. M.: Widespread metabolic
potential for nitrite and nitrate assimilation among Prochlorococcus
ecotypes, P. Natl. Acad. Sci. USA, 106, 10787–10792,
https://doi.org/10.1073/pnas.0902532106, 2009.
Meyer, J., Löscher, C. R., Neulinger, S. C., Reichel, A. F., Loginova, A., Borchard, C., Schmitz, R. A., Hauss, H., Kiko, R., and Riebesell, U.: Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation – a mesocosm experiment in the eastern tropical North Atlantic, Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, 2016.
Mohanty, S. S., Pramanik, D. S., and Dash, B. P.: Primary Productivity of
Bay of Bengal at Chandipur in Odisha,India, Int. J. Sci. Res., 4, 1–13, 2014.
Moore, L. R., Rocap, G., and Chisholm, S. W.: Physiology and molecular
phylogeny of coexisting Prochlorococcus ecotypes, Nature, 393, 464–467,
https://doi.org/10.1038/30965, 1998.
Muraleedharan, K., Jasmine, P., Achuthankutty, C. T., Revichandran, C.,
Kumar, P. D., Anand, P., and Rejomon, G.: Influence of basin-scale and
mesoscale physical processes on biological productivity in the Bay of Bengal
during the summer monsoon, Prog. Ocean., 72, 364–383, 2007.
Murty, V. S. N., Gupta, G. V. M., Sarma, V. V., Rao, B. P., Jyothi, D.,
Shastri, P. N. M., and Supraveena, Y.: Effect of vertical stability and
circulation on the depth of the chlorophyll maximum in the Bay of Bengal
during May-June, 1996, Deep-Sea Res. Pt. I, 47, 859–873, 2000.
Nair, P. V. R., Samuel, S., Joseph, K. J., and Balachandran, V. K.: Primary
production and potential fishery resources in the seas around India, in:
Proceedings of the symposium on “Living resources of the seas around India”,
Cochin: Central Marine Fisheries Research Institute, 184–198, 1973.
Nair, P. V. R. and Gopinathan, C. P.: Primary production in coastal waters,
CMFRI Bull., 34, 29–32, 1983.
Naqvi, S. W. A., Naik, H., D'Souza, W., Narvekar, P. V., Paropkari, A. L.,
and Bange, H. W.: Carbon and nitrogen fluxes in the North Indian Ocean, in:
Carbon and nutrient fluxes in continental margins: A global synthesis,
edited by: Liu, K.-K., Atkinson, L., Quiñones, R., and Talaue-McManus,
L., Springer-Verlag, New York, 180–191, 2010.
Nielsen, E. S. and Jensen, E. A.: Primary Oceanic Production: The Autotrophic Production of organic matter in the oceans, in: Galathea Report Copenhagen 1957–9, Library of the National History Museum Copenhagen, 1, 49–136, 1957.
Olson, R. J., Chisholm, S. W., Zettler, E. R., Altabet, M. A., and
Dusenberry, J.: Spatial and temporal
distributions of prochlorophyte picoplankton in the North Atlantic Ocean, Deep Sea Res. Pt. A,
37, 1033–1051, 1990.
Prasanna Kumar, S., Muraleedharan, P. M., Thoppil, P., Gauns, M., Nagappa,
R., De Souza, S. N., Sardesai, S., and Madhupratap, M.: Why Bay of Bengal is
less productive during summer monsoon compared to the Arabian Sea?,
Geophys. Res. Lett., 29, 881–884, https://doi.org/10.1029/2002GL016013, 2002.
Prasanna Kumar, S., Narvekar, J., Murukesh, N., Nagappa, R., Sardessai, S., Gauns,
M., Fernandes, V., and Bhaskar, J.: Is the biological productivity in the
Bay of Bengal light limited?, Curr. Sci., 98, 1331–1339, 2010.
Pujari, L., Wu, C., Kan, J., Li, N., Wang, X., Zhang, G., Shang, X., Wang,
M., Zhou, C., and Sun, J.: Diversity and Spatial Distribution of
Chromophytic Phytoplankton in the Bay of Bengal Revealed by RuBisCO Genes
(rbcL), 10, 1501, https://doi.org/10.3389/fmicb.2019.01501, 2019.
Radhakrishna, K., Devassay, V. P., Bhargava, R. M. S., and Bhattathiri, P.
M. A.: Primary production in the Northern Arabian Sea, Ind. J. Mar. Sci., 7, 271–275, 1978.
Ramaiah, N., Fernandes, V., Bhaskar, J., Retnamma, J., Gauns, M., and
Jayraj, E. A.: Seasonal variability in biological carbon biomass standing
stocks and production in the surface layers of the Bay of Bengal, IInd. J. Mar. Sci., 39, 369–379, 2010.
Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R. R., Lachkar, Z., Schmidt, H., Segschneider, J., and Singh, A.: Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean, Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, 2020.
Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren,
N. A., Arellano, A., Coleman, M., Hauser, L., Hess, W. R., Johnson, Z. I.,
Land, M., Lindell, D., Post, A. F., Regala, W., Shah, M., Shaw, S. L.,
Steglich, C., Sullivan, M. B., Ting, C. S., Tolonen, A., Webb, E. A.,
Zinser, E. R., and Chisholm, S. W.: Genome divergence in two Prochlorococcus
ecotypes reflects oceanic niche differentiation, Nature, 424, 1042–1047,
https://doi.org/10.1038/nature01947, 2003.
Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna
Kumar, S., Ravichandran, M., Vichi, M., and Lévy, M.: A reduction in
marine primary productivity driven by rapid warming over the tropical Indian
Ocean, Geophys. Res. Lett., 43, 826–833, https://doi.org/10.1002/2015GL066979, 2016.
Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S.,
Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson,
K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J.,
Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S.,
Heidelberg, J. F., Utterback, T., Rogers, Y.-H., Falcón, L. I., Souza,
V., Bonilla-Rosso, G., Eguiarte, L. E., Karl, D. M., Sathyendranath, S.,
Platt, T., Bermingham, E., Gallardo, V., Tamayo-Castillo, G., Ferrari, M.
R., Strausberg, R. L., Nealson, K., Friedman, R., Frazier, M., and Venter,
J. C.: The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic
through Eastern Tropical Pacific, PLOS Biol., 5, e77,
https://doi.org/10.1371/journal.pbio.0050077, 2007.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink
for Anthropogenic CO2, 16, 367–371, https://doi.org/10.1126/science.1097403,
Science, 2004.
Sahu, B. K., Baliarsingh, S. K., Lotliker, A. A., Parida, C., Srichandan,
S., and Sahu, K. C.: Winter thermal inversion and Trichodesmium dominance in
north-western Bay of Bengal, Ocean Sci. J., 52, 301–306,
https://doi.org/10.1007/s12601-017-0028-1, 2017.
Sarma, V. V. S. S. and Udaya Bhaskar, T. V. S.: Ventilation of Oxygen to
Oxygen Minimum Zone Due to Anticyclonic Eddies in the Bay of Bengal, J. Geophys. Res.-Biogeo., 123,
2145–2153, https://doi.org/10.1029/2018jg004447, 2018.
Sarma, V. V. S. S., Chopra, M., Rao, D., Priya, M., Rajula, G., Lakshmi, D., and Rao,
V.: Role of eddies on controlling total and size-fractionated primary
production in the Bay of Bengal, Cont. Shelf Res., 204, 104186, https://doi.org/10.1016/j.csr.2020.104186, 2020.
Sarmiento, J. and Gruber, N.: Sinks for Anthropogenic Carbon, Phys.
Today, 55, 30–36, https://doi.org/10.1063/1.1510279, 2002.
Saxena, H., Sahoo, D., Khan, M. A., Kumar, S., Sudheer, A. K., and Singh,
A.: Dinitrogen fixation rates in the Bay of Bengal during summer monsoon,
Environ. Res. Commun., 2, 051007, https://doi.org/10.1088/2515-7620/ab89fa,
2020.
Shetye, S. S., Sudhakar, M., Jena, B., and Mohan, R.: Occurrence of Nitrogen
Fixing Cyanobacterium Trichodesmium under Elevated CO2 Conditions in
the Western Bay of Bengal, Int. J. Ocean., 2013,
350465, https://doi.org/10.1155/2013/350465, 2013.
Shetye, S. S., Sudhakar, M., Mohan, R., and Jena, B.: Contrasting
productivity and redox potential in Arabian Sea and Bay of Bengal, J. Earth Sci., 25, 366–370, https://doi.org/10.1007/s12583-014-0415-9, 2014.
Singh, A. and Ramesh, R.: Contribution of riverine dissolved inorganic
nitrogen flux to new production in the coastal northern Indian Ocean: An
assessment, Int. J. Oceanogr., 2011, 1687–9406, https://doi.org/10.1155/2011/983561, 2011.
Singh, A. and Ramesh, R.: Environmental controls on new and primary
production in the northern Indian Ocean, Prog. Oceanogr., 131,
138–145, https://doi.org/10.1016/j.pocean.2014.12.006, 2015.
Singh, A., Gandhi, N., and Ramesh, R.: Contribution of atmospheric nitrogen
deposition to new production in the nitrogen limlited photic zone of the
northern Indian Ocean, J. Geophys. Res., 117, C06004,
https://doi.org/10.1029/2011JC007737, 2012.
Singh, A., Gandhi, N., Ramesh, R., and Prakash, S.: Role of cyclonic eddy in
enhancing primary and new production in the Bay of Bengal, J. Sea
Res., 97, 5–13,
https://doi.org/10.1016/j.seares.2014.12.002, 2015.
Snider, R. G.: The Indian Ocean expedition – An international venture, Eos, Transactions American Geophysical Union, 42,
289–294, https://doi.org/10.1029/TR042i003p00289, 1961.
Subha Anand, S., Rengarajan, R., Sarma, V. V. S. S., Sudheer, A. K.,
Bhushan, R., and Singh, S. K.: Spatial variability of upper ocean POC export
in the Bay of Bengal and the Indian Ocean determined using particle-reactive
234Th, J. Geophys. Res.-Oceans, 122, 3753–3770, https://doi.org/10.1002/2016JC012639,
2017.
Subramanian, V.: Sediment load of Indian rivers, Curr. Sci., 64, 928–930,
1993.
Thushara, V., Vinayachandran, P. N. M., Matthews, A. J., Webber, B. G. M., and Queste, B. Y.: Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal, Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, 2019.
Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P.: The
paradox of marine heterotrophic nitrogen fixation: abundances of
heterotrophic diazotrophs do not account for nitrogen fixation rates in the
Eastern Tropical South Pacific, Environ Microbiol., 16, 3095–3114, https://doi.org/10.1111/1462-2920.12346, 2014.
Vaulot, D. and Partensky, F.: Cell cycle
distributions of prochlorophytes in the north western Mediterranean Sea, 39,
727–742, 1992.
Vidya, P. J. and Prasanna Kumar, S.: Role of mesoscale eddies on the
variability of biogenic flux in the northern and central Bay of Bengal,
J. Geophys. Res.-Oceans, 118, 5760–5771,
https://doi.org/10.1002/jgrc.20423, 2013.
Vimal Kumar, K., Jayalakshmi, K., Sajeev, R., and Gupta, G.: Role of
Mesoscale Eddies in the Distribution Pattern of Zooplankton Standing Stock
of Western Bay of Bengal During Spring Transition, J. Mar. Biol. Oceanogr., 5,
https://doi.org/10.4172/2324-8661.1000150, 2016.
Wu, C., Kan, J., Liu, H., Pujari, L., Guo, C., Wang, X., and Sun, J.:
Heterotrophic Bacteria Dominate the Diazotrophic Community in the Eastern
Indian Ocean (EIO) during Pre-Southwest Monsoon, Microb. Ecol., 78,
804–819, https://doi.org/10.1007/s00248-019-01355-1, 2019.
Yuqiu, W., Xiangweic, Z., Zhao, Y., Huang, D., and Sun, J.: Biogeographic
variations of picophytoplankton in three contrasting seas: the Bay of
Bengal, South China Sea and Western Pacific Ocean, Aquat. Microb. Ecol., 84, 91–103, https://doi.org/10.3354/ame01928, 2020.
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production,...
Altmetrics
Final-revised paper
Preprint