Articles | Volume 18, issue 20
https://doi.org/10.5194/bg-18-5595-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-18-5595-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grazing behavior and winter phytoplankton accumulation
MIT-WHOI Joint Program in Oceanography & Applied Ocean Science and Engineering, Cambridge, MA, USA
Alexandre Mignot
Mercator Ocean International, Ramonville-Saint-Agne, France
Glenn Flierl
Department of Earth Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
Raffaele Ferrari
Department of Earth Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
Related authors
Caitlyn A. Hall, Sam Illingworth, Solmaz Mohadjer, Mathew Koll Roxy, Craig Poku, Frederick Otu-Larbi, Darryl Reano, Mara Freilich, Maria-Luisa Veisaga, Miguel Valencia, and Joey Morales
Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022, https://doi.org/10.5194/gc-5-275-2022, 2022
Short summary
Short summary
In this manifesto, we offer six points of reflection that higher education geoscience educators can act upon to recognise and unlearn their biases and diversify the geosciences in higher education, complementing current calls for institutional and organisational change. This serves as a starting point to gather momentum to establish community-built opportunities for implementing and strengthening diversity, equity, inclusion, and justice holistically in geoscience education.
Christopher B. Womack, Glenn Flierl, Shahine Bouabid, Andre N. Souza, Paolo Giani, Sebastian D. Eastham, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-3792, https://doi.org/10.5194/egusphere-2025-3792, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Climate emulators allow for rapid projections without the computational costs associated with full-scale climate models. Here, we outline a framework to compare a variety of emulation techniques both theoretically and practically through a series of stress tests that expose common sources of emulator error. Our results help clarify which emulators are best suited for different tasks and show how future climate scenarios can be used to support emulator design.
Gosha Geogdzhayev, Andre N. Souza, Glenn R. Flierl, and Raffaele Ferrari
EGUsphere, https://doi.org/10.5194/egusphere-2025-3768, https://doi.org/10.5194/egusphere-2025-3768, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Climate models serve as good guesses of how humans affect the climate, but they cannot explore all possible future scenarios of interest. We develop a method that can serve as a fast and cheap stand-in to evaluate likely changes in variables like surface temperature and relative humidity at a regional scale in arbitrary future climates. Crucially, our method captures relationships between different geographic areas and predicts both average values and likely ranges using a unified framework.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Caitlyn A. Hall, Sam Illingworth, Solmaz Mohadjer, Mathew Koll Roxy, Craig Poku, Frederick Otu-Larbi, Darryl Reano, Mara Freilich, Maria-Luisa Veisaga, Miguel Valencia, and Joey Morales
Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022, https://doi.org/10.5194/gc-5-275-2022, 2022
Short summary
Short summary
In this manifesto, we offer six points of reflection that higher education geoscience educators can act upon to recognise and unlearn their biases and diversify the geosciences in higher education, complementing current calls for institutional and organisational change. This serves as a starting point to gather momentum to establish community-built opportunities for implementing and strengthening diversity, equity, inclusion, and justice holistically in geoscience education.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Azam, F., Fenchel, T., Field, J. G., Gray, J., Meyer-Reil, L., and Thingstad, F.:
The ecological role of water-column microbes in the sea,
Mar. Ecol. Prog. Ser., 10, 257–263, 1983. a
Balaguru, K., Doney, S. C., Bianucci, L., Rasch, P. J., Leung, L. R., Yoon, J.-H., and Lima, I. D.:
Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate,
PLOS ONE,
13, 1–17, https://doi.org/10.1371/journal.pone.0191509, 2018. a
Barrios-O'Neill, D., Kelly, R., Dick, J. T., Ricciardi, A., MacIsaac, H. J., and Emmerson, M. C.:
On the context-dependent scaling of consumer feeding rates,
Ecol. Lett.,
19, 668–678, 2016. a
Barton, A. D., Finkel, Z. V., Ward, B. A., Johns, D. G., and Follows, M. J.:
On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities,
Limnol. Oceanogr.,
58, 254–266, 2013. a
Baumgartner, M. F. and Tarrant, A. M.:
The Physiology and Ecology of Diapause in Marine Copepods,
Annu. Rev. Mar. Sci.,
9, 387–411, 2017. a
Behrenfeld, M. J. and Boss, E. S.:
Resurrecting the ecological underpinnings of ocean plankton blooms,
Annu. Rev. Mar. Sci., 6, 167–194, https://doi.org/10.1146/annurev-marine-052913-021325,
2014. a, b, c, d
Behrenfeld, M. J. and Boss, E. S.:
Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles,
Glob. Change Biol.,
24, 55–77, https://doi.org/10.1111/gcb.13858, 2018. a, b, c, d
Bissinger, J. E., Montagnes, D. J., harples, J., and Atkinson, D.:
Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression,
Limnol. Oceanogr.,
53, 487–493, 2008. a
Boss, E. and Behrenfeld, M.:
In situ evaluation of the initiation of the North Atlantic phytoplankton bloom,
Geophys. Res. Lett.,
37, L18603, https://doi.org/10.1029/2010GL044174, 2010. a
Bouman, H. A., Platt, T., Doblin, M., Figueiras, F. G., Gudmundsson, K., Gudfinnsson, H. G., Huang, B., Hickman, A., Hiscock, M., Jackson, T., Lutz, V. A., Mélin, F., Rey, F., Pepin, P., Segura, V., Tilstone, G. H., van Dongen-Vogels, V., and Sathyendranath, S.: Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set, Earth Syst. Sci. Data, 10, 251–266, https://doi.org/10.5194/essd-10-251-2018, 2018. a
Briggs, N., Guðmundsson, K., Cetinić, I., D'Asaro, E., Rehm, E., Lee, C., and Perry, M. J.:
A multi-method autonomous assessment of primary productivity and export efficiency in the springtime North Atlantic, Biogeosciences, 15, 4515–4532, https://doi.org/10.5194/bg-15-4515-2018, 2018. a
Cole, H. S., Henson, S., Martin, A. P., and Yool, A.:
Basin-wide mechanisms for spring bloom initiation: how typical is the North Atlantic?,
ICES J. Mar. Sci.,
72, 2029–2040, 2015. a
Coleman, T. F. and Li, Y.:
An interior trust region approach for nonlinear minimization subject to bounds,
SIAM J. Optimiz.,
6, 418–445, 1996. a
Dolan,, J. R. and McKeon, K.: The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption by microzooplankton?, Ocean Sci., 1, 1–7, https://doi.org/10.5194/os-1-1-2005, 2005. a
Dubois, D. M.:
A model of patchiness for prey–predator plankton populations,
Ecol. Model.,
1, 67–80, 1975. a
Edwards, M. and Richardson, A. J.:
Impact of climate change on marine pelagic phenology and trophic mismatch,
Nature,
430, 881, 2004. a
Evans, C. and Brussaard, C. P.:
Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean,
Limnol. Oceanogr.,
57, 1826–1837, 2012. a
Fileman, E. and Leakey, R.:
Microzooplankton dynamics during the development of the spring bloom in the north-east Atlantic,
J. Mar. Biol. Assoc. UK,
85, 741–754, 2005. a
Fischer, A. D., Moberg, E. A., Alexander, H., Brownlee, E. F., Hunter-Cevera, K. R., Pitz, K. J., Rosengard, S. Z., and Sosik, H. M.:
Sixty years of Sverdrup: A retrospective of progress in the study of phytoplankton blooms,
Oceanography,
27, 222–235, 2014. a
Flynn, K. J., Stoecker, D. K., Mitra, A., Raven, J. A., Glibert, P. M., Hansen, P. J., Granéli, E., and Burkholder, J. M.:
Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types,
J. Plankton Res.,
35, 3–11, 2013. a
Freilich, M.: mara-freilich/grazing_functions_bg: v1.02 (v1.02), Zenodo [code], https://doi.org/10.5281/zenodo.5553355, 2021. a
Geider, R. J., Maclntyre, H. L., and Kana, T. M.:
A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature,
Limnol. Oceanogr.,
43, 679–694, 1998. a
Hague, M. and Vichi, M.: Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat, Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021, 2021. a
Holling, C. S.:
Some characteristics of simple types of predation and parasitism,
Can. Entomol.,
91, 385–398, 1959. a
Holling, C. S.:
The functional response of invertebrate predators to prey density,
Mem. Entomol. Soc. Can.,
98, 5–86, 1966. a
Huisman, J., van Oostveen, P., and Weissing, F. J.:
Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms,
Limnol. Oceanogr.,
44, 1781–1787, 1999. a
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.:
An optimal definition for ocean mixed layer depth,
J. Geophys. Res.-Oceans,
105, 16803–16821, 2000. a
Karayanni, H., Christaki, U., Van Wambeke, F., Denis, M., and Moutin, T.:
Influence of ciliated protozoa and heterotrophic nanoflagellates on the fate of primary production in the northeast Atlantic Ocean,
J. Geophys. Res.-Oceans,
110, C07S15, https://doi.org/10.1029/2004JC002602, 2005. a
Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models, Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, 2015. a, b
Leles, S. G., Bruggeman, J., Polimene, L., Blackford, J., Flynn, K. J., and Mitra, A.:
Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas,
Prog. Oceanogr.,
190, 102481, https://doi.org/10.1016/j.pocean.2020.102481, 2020. a
Lessard, E. J. and Murrell, M. C.:
Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea,
Aquat. Microb. Ecol.,
16, 173–188, 1998. a
Liu, K., Chen, B., Zheng, L., Su, S., Huang, B., Chen, M., and Liu, H.:
What controls microzooplankton biomass and herbivory rate across marginal seas of China?,
Limnol. Oceanogr.,
66, 61–75, 2021. a
Llort, J., Lévy, M., Sallée, J.-B., and Tagliabue, A.:
Onset, intensification, and decline of phytoplankton blooms in the Southern Ocean,
ICES J. Mar. Sci.,
72, 1971–1984, 2015. a
López-Urrutia, Á.:
The metabolic theory of ecology and algal bloom formation,
Limnol. Oceanogr.,
53, 2046–2047, 2008. a
Lutz, M. J., Caldeira, K., Dunbar, R. B., and Behrenfeld, M. J.:
Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean,
J. Geophys. Res.-Oceans,
112, C10011, https://doi.org/10.1029/2006JC003706, 2007. a
Mahadevan, A., D'Asaro, E., Lee, C., and Perry, M. J.:
Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,
Science,
337, 54–58, 2012. a
Mateus, M. D.:
Bridging the gap between knowing and modeling viruses in marine systems–An upcoming frontier,
Frontiers in Marine Science,
3, 284, https://doi.org/10.3389/fmars.2016.00284, 2017. a
Moeller, H. V., Laufkötter, C., Sweeney, E. M., and Johnson, M. D.:
Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima,
Nat. Commun.,
10, 1–8, 2019. a
Mojica, K. D., Carlson, C. A., and Behrenfeld, M. J.:
Regulation of low and high nucleic acid fluorescent heterotrophic prokaryote subpopulations and links to viral-induced mortality within natural prokaryote-virus communities,
Microb. Ecol.,
79, 213–230, 2020. a
Morison, F., Franzè, G., Harvey, E., and Menden-Deuer, S.:
Light fluctuations are key in modulating plankton trophic dynamics and their impact on primary production,
Limnology and Oceanography Letters,
5, 346–353, 2020. a
Morozov, A. Y.:
Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling,
J. Theor. Biol.,
265, 45–54, 2010. a
Mullin, M. M., Stewart, E. F., and Fuglister, F. J.:
Ingestion by planktonic grazers as a function of concentration of food,
Limnol. Oceanogr.,
20, 259–262, 1975. a
Nachman, G.:
A functional response model of a predator population foraging in a patchy habitat,
J. Anim. Ecol.,
75, 948–958, 2006. a
Ohman, M. D.:
Omnivory by Euphausia pacifica: The role of copepod prey.,
Mar. Ecol. Prog. Ser.,
19, 125–131, 1984. a
Organelli, E., Claustre, H., Bricaud, A., Barbieux, M., Uitz, J., D'Ortenzio, F., and Dall'Olmo, G.:
Bio-optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements,
J. Geophys. Res.-Oceans,
122, 3543–3564, 2017. a
Paparella, F. and Vichi, M.:
Stirring, mixing, growing: microscale processes change larger scale phytoplankton dynamics,
Frontiers in Marine Science,
7, 654, https://doi.org/10.3389/fmars.2020.00654, 2020. a
Prowe, A. F., Pahlow, M., Dutkiewicz, S., Follows, M., and Oschlies, A.:
Top-down control of marine phytoplankton diversity in a global ecosystem model,
Prog. Oceanogr.,
101, 1–13, 2012. a
Randelhoff, A., Lacour, L., Marec, C., Leymarie, E., Lagunas, J., Xing, X., Darnis, G., Penkerc'h, C., Sampei, M., Fortier, L., D'Ortenzio, F., Claustre, H., and Babin, M.:
Arctic mid-winter phytoplankton growth revealed by autonomous profilers,
Science Advances,
6, eabc2678,
https://doi.org/10.1126/sciadv.abc2678, 2020. a
Real, L. A.:
The kinetics of functional response,
Am. Nat.,
111, 289–300, 1977. a
Rose, J. M. and Caron, D. A.:
Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters,
Limnol. Oceanogr.,
52, 886–895, 2007. a
Stelfox-Widdicombe, C. E., Edwards, E. S., Burkill, P. H., and Sleigh, M. A.:
Microzooplankton grazing activity in the temperate and sub-tropical NE Atlantic: summer 1996,
Mar. Ecol. Prog. Ser.,
208, 1–12, 2000. a
Strom, S. L. and Welschmeyer, N. A.:
Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean,
Limnol. Oceanogr.,
36, 50–63, 1991. a
Strom, S. L., Macri, E. L., and Olson, M. B.:
Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton,
Limnol. Oceanogr.,
52, 1480–1494, 2007. a
Taylor, R. J.:
Predation, Springer Science & Business Media, 2013. a
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.:
Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations,
Global Biogeochem. Cy.,
24, GB3016, https://doi.org/10.1029/2009GB003680, 2010. a
Verity, P. G.:
Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton,
Limnol. Oceanogr.,
36, 729–750, 1991. a
Verity, P. G., Stoecker, D. K., Sieracki, M. E., and Nelson, J. R.:
Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47∘N, 18∘W,
Deep-Sea Res. Pt. I,
40, 1793–1814, 1993. a
Visser, A. W.:
Motility of zooplankton: fitness, foraging and predation,
J. Plankton Res.,
29, 447–461, 2007. a
Weitz, J. S., Stock, C. A., Wilhelm, S. W., Bourouiba, L., Coleman, M. L., Buchan, A., Follows, M. J., Fuhrman, J. A., Jover, L. F., Lennon, J. T., et al.:
A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes,
ISME J.,
9, 1352–1364, 2015. a
Yang, B., Boss, E. S., Haëntjens, N., Long, M. C., Behrenfeld, M. J., Eveleth, R., and Doney, S. C.:
Phytoplankton Phenology in the North Atlantic: Insights From Profiling Float Measurements,
Frontiers in Marine Science,
7, 139, 2020. a
Yorke, J. A. and Anderson Jr., W. N.:
Predator-prey patterns,
P. Natl. Acad. Sci. USA,
70, 2069–2071, 1973. a
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Observations reveal that in some regions phytoplankton biomass increases during the wintertime...
Altmetrics
Final-revised paper
Preprint