Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6147-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-18-6147-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, 34100, Italy
Giorgio Bolzon
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, 34100, Italy
Laura Feudale
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, 34100, Italy
Gianpiero Cossarini
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, 34100, Italy
Related authors
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
Short summary
Forecasting of marine biogeochemistry can be improved via the assimilation of observations. Floating buoys provide multivariate information about the status of the ocean interior. Information on the ocean interior can be expanded/augmented by machine learning. In this work, we show the enhanced impact of assimilating new in situ variables (oxygen) and reconstructed variables (nitrate) in the operational forecast system (MedBFM) model of the Mediterranean Sea.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Preprint under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Gianpiero Cossarini, Andrew Moore, Stefano Ciavatta, and Katja Fennel
State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025, https://doi.org/10.5194/sp-5-opsr-12-2025, 2025
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from a single nutrient to fully explicit representations of multiple nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, the initial and boundary conditions, and the lack of observations.
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
Short summary
Forecasting of marine biogeochemistry can be improved via the assimilation of observations. Floating buoys provide multivariate information about the status of the ocean interior. Information on the ocean interior can be expanded/augmented by machine learning. In this work, we show the enhanced impact of assimilating new in situ variables (oxygen) and reconstructed variables (nitrate) in the operational forecast system (MedBFM) model of the Mediterranean Sea.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Preprint under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Cited articles
Aksnes, D. L., Ohman, M. D., and Rivière, P.: Optical effect on the
nitracline in a coastal upwelling area, Limnol. Oceanogr., 52, 1179–1187,
https://doi.org/10.4319/lo.2007.52.3.1179, 2007.
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2021.
Barbieux, M., Uitz, J., Gentili, B., Pasqueron de Fommervault, O., Mignot, A., Poteau, A., Schmechtig, C., Taillandier, V., Leymarie, E., Penkerc'h, C., D'Ortenzio, F., Claustre, H., and Bricaud, A.: Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database, Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, 2019.
Beckmann, A. and Hense, I.: Beneath the surface: Characteristics of oceanic
ecosystems under weak mixing conditions – A theoretical investigation,
Prog. Oceanogr., 75, 771–796, https://doi.org/10.1016/j.pocean.2007.09.002,
2007.
Bethoux, J. P., Gentili, B., Morin, P., Nicolas, E., Pierre, C., and
Ruiz-Pino, D.: The Mediterranean Sea: a miniature ocean for climatic and
environmental studies and a key for the climatic functioning of the North
Atlantic, Prog. Oceanogr., 44, 131–146,
https://doi.org/10.1016/S0079-6611(99)00023-3, 1999.
Bittig, H. C., Maurer, T. L., Plant, J. N., Schmechtig, C., Wong, A. P. S.,
Claustre, H., Trull, T. W., Udaya Bhaskar, T. V. S., Boss, E., Dall'Olmo,
G., Organelli, E., Poteau, A., Johnson, K. S., Hanstein, C., Leymarie, E.,
Le Reste, S., Riser, S. C., Rupan, A. R., Taillandier, V., Thierry, V., and
Xing, X.: A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage,
Front. Mar. Sci., 6, 502, https://doi.org/10.3389/fmars.2019.00502, 2019.
Buga, L., Sarbu, G., Fryberg, L., Magnus, W., Wesslander, K., Gatti, J.,
Leroy, D., Iona, S., Larsen, M., Koefoed Rømer, J., Østrem, A. K.,
Lipizer, M., and Giorgietti, A.: EMODnet Chemistry Eutrophication and
Acidity aggregated datasets v2018, EMODnet Thematic Lot n° 4/SI2.749773,
https://doi.org/10.6092/EC8207EF-ED81-4EE5-BF48-E26FF16BF02E, 2018.
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation
in the geosciences: An overview of methods, issues, and perspectives, WIREs Clim. Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018.
Chai, F., Johnson, K. S., Claustre, H., Xing, X., Wang, Y., Boss, E., Riser,
S., Fennel, K., Schofield, O., and Sutton, A.: Monitoring ocean
biogeochemistry with autonomous platforms, Nat. Rev. Earth Environ., 1,
315–326, https://doi.org/10.1038/s43017-020-0053-y, 2020.
Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall'Olmo, G.,
Polimene, L., and Allen, J. I.: Assimilation of remotely-sensed optical
properties to improve marine biogeochemistry modelling, Prog. Oceanogr.,
127, 74–95, https://doi.org/10.1016/j.pocean.2014.06.002, 2014.
Ciavatta, S., Kay, S., Saux-Picart, S., Butenschoen, M., and Allen, J. I.:
Decadal reanalysis of biogeochemical indicators and fluxes in the North West
European shelf-sea ecosystem, J. Geophys. Res.-Oceans, 121, 1824–1845,
https://doi.org/10.1002/2015JC011496, 2016.
Ciavatta, S., Brewin, R. J. W., Skákala, J., Polimene, L., Mora, L., de Artioli, Y., and Allen, J. I.: Assimilation of Ocean-Color Plankton
Functional Types to Improve Marine Ecosystem Simulations, J. Geophys. Res.-Oceans, 123, 834–854, https://doi.org/10.1002/2017JC013490, 2018.
Ciavatta, S., Kay, S., Brewin, R. J. W., Cox, R., Cicco, A. D., Nencioli,
F., Polimene, L., Sammartino, M., Santoleri, R., Skákala, J., and
Tsapakis, M.: Ecoregions in the Mediterranean Sea Through the Reanalysis of
Phytoplankton Functional Types and Carbon Fluxes, J. Geophys. Res.-Oceans,
124, 6737–6759, https://doi.org/10.1029/2019JC015128, 2019.
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the Global Ocean
with Biogeochemical-Argo, Annu. Rev. Mar. Sci., 12, 23–48,
https://doi.org/10.1146/annurev-marine-010419-010956, 2020.
Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647–1658, https://doi.org/10.5194/bg-12-1647-2015, 2015.
Cossarini, G., Querin, S., Solidoro, C., Sannino, G., Lazzari, P., Di Biagio, V., and Bolzon, G.: Development of BFMCOUPLER (v1.0), the coupling
scheme that links the MITgcm and BFM models for ocean biogeochemistry
simulations, Geosci. Model Dev., 10, 1423–1445,
https://doi.org/10.5194/gmd-10-1423-2017, 2017.
Cossarini, G., Mariotti, L., Feudale, L., Mignot, A., Salon, S.,
Taillandier, V., Teruzzi, A., and D'Ortenzio, F.: Towards operational 3D-Var
assimilation of chlorophyll Biogeochemical-Argo float data into a
biogeochemical model of the Mediterranean Sea, Ocean Model., 133, 112–128,
https://doi.org/10.1016/j.ocemod.2018.11.005, 2019.
Cullen, J. J.: Subsurface Chlorophyll Maximum Layers: Enduring Enigma or
Mystery Solved?, Annu. Rev. Mar. Sci., 7, 207–239,
https://doi.org/10.1146/annurev-marine-010213-135111, 2015.
Di Biagio, V., Cossarini, G., Salon, S., Lazzari, P., Querin, S., Sannino,
G., and Solidoro, C.: Temporal scales of variability in the Mediterranean
Sea ecosystem: Insight from a coupled model, J. Mar. Syst., 197, 103176,
https://doi.org/10.1016/j.jmarsys.2019.05.002, 2019.
Di Cerbo, P., Pascolo, E., and Bolzon, G.: inogs/3dVarBio: Multivariate version (release-4.0), Zenodo [code], https://doi.org/10.5281/zenodo.5723738, 2021.
Dobricic, S., Wikle, C. K., Milliff, R. F., Pinardi, N., and Berliner, L.
M.: Assimilation of oceanographic observations with estimates of vertical
background-error covariances by a Bayesian hierarchical model, Q. J. Roy.
Meteor. Soc., 141, 182–194, https://doi.org/10.1002/qj.2348, 2015.
Dorofeyev, V. and Sukhikh, L.: A model for monitoring the evolution of the
Black Sea ecosystem on the basis of remote sensing data assimilation, Int.
J. Remote Sens., 39, 9339–9355,
https://doi.org/10.1080/01431161.2018.1523589, 2018.
D'Ortenzio, F., Lavigne, H., Besson, F., Claustre, H., Coppola, L., Garcia,
N., Laës-Huon, A., Reste, S. L., Malardé, D., Migon, C., Morin, P.,
Mortier, L., Poteau, A., Prieur, L., Raimbault, P., and Testor, P.:
Observing mixed layer depth, nitrate and chlorophyll concentrations in the
northwestern Mediterranean: A combined satellite and NO3 profiling floats
experiment, Geophys. Res. Lett., 41, 6443–6451,
https://doi.org/10.1002/2014GL061020, 2014.
D'Ortenzio, F., Taillandier, V., Claustre, H., Prieur, L. M., Leymarie, E.,
Mignot, A., Poteau, A., Penkerc'h, C., and Schmechtig, C. M.: Biogeochemical
Argo: The Test Case of the NAOS Mediterranean Array, Front. Mar. Sci., 7, 120, https://doi.org/10.3389/fmars.2020.00120, 2020.
Dowd, M., Jones, E., and Parslow, J.: A statistical overview and
perspectives on data assimilation for marine biogeochemical models,
Environmetrics, 25, 203–213, https://doi.org/10.1002/env.2264, 2014.
Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C., and
Monier, E.: Ocean colour signature of climate change, Nat. Commun., 10, 578,
https://doi.org/10.1038/s41467-019-08457-x, 2019.
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E., Kim, H.-C., Lamouroux, J., Murtugudde, R., Perruche, C., and the GODAE OceanView Marine Ecosystem Analysis and Prediction Task Team: Advancing Marine Biogeochemical and
Ecosystem Reanalyses and Forecasts as Tools for Monitoring and Managing
Ecosystem Health, Front. Mar. Sci., 6, 89,
https://doi.org/10.3389/fmars.2019.00089, 2019.
Fontana, C., Brasseur, P., and Brankart, J.-M.: Toward a multivariate
reanalysis of the North Atlantic Ocean biogeochemistry during 1998–2006
based on the assimilation of SeaWiFS chlorophyll data, Ocean Sci., 9, 37–56,
https://doi.org/10.5194/os-9-37-2013, 2013.
Ford, D.: Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design, Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, 2021.
Ford, D. A.: Assessing the role and consistency of satellite observation
products in global physical–biogeochemical ocean reanalysis, Ocean Sci.,
16, 875–893, https://doi.org/10.5194/os-16-875-2020, 2020.
Ford, D. and Barciela, R.: Global marine biogeochemical reanalyses
assimilating two different sets of merged ocean colour products, Remote
Sens. Environ., 203, 40–54, https://doi.org/10.1016/j.rse.2017.03.040,
2017.
Fourrier, M., Coppola, L., Claustre, H., D'Ortenzio, F., Sauzède, R.,
and Gattuso, J.-P.: A Regional Neural Network Approach to Estimate
Water-Column Nutrient Concentrations and Carbonate System Variables in the
Mediterranean Sea: CANYON-MED, Front. Mar. Sci., 7, 620,
https://doi.org/10.3389/fmars.2020.00620, 2020.
Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M.,
Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P.,
Perruche, C., Samuelsen, A., and Simon, E.: Building the capacity for
forecasting marine biogeochemistry and ecosystems: recent advances and
future developments, J. Oper. Oceanogr., 8, s168–s187,
https://doi.org/10.1080/1755876X.2015.1022350, 2015.
Germineaud, C., Brankart, J.-M., and Brasseur, P.: An Ensemble-Based
Probabilistic Score Approach to Compare Observation Scenarios: An
Application to Biogeochemical-Argo Deployments, J. Atmos. Ocean.
Tech., 36, 2307–2326, https://doi.org/10.1175/JTECH-D-19-0002.1, 2019.
Gong, X., Jiang, W., Wang, L., Gao, H., Boss, E., Yao, X., Kao, S.-J., and Shi, J.: Analytical solution of the nitracline with the evolution of subsurface chlorophyll maximum in stratified water columns, Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, 2017.
Goodliff, M., Bruening, T., Schwichtenberg, F., Li, X., Lindenthal, A.,
Lorkowski, I., and Nerger, L.: Temperature assimilation into a coastal
ocean-biogeochemical model: assessment of weakly and strongly coupled data
assimilation, Ocean Dyn., 69, 1217–1237, https://doi.org/10.1007/s10236-019-01299-7, 2019.
Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V.,
Brockmann, C., Chauhan, P., Choi, J., Chuprin, A., Ciavatta, S., Cipollini,
P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M.,
Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F., Platt, T.,
Santoleri, R., Skakala, J., Schaeffer, B., Smith, M., Steinmetz, F.,
Valente, A., and Wang, M.: Satellite Ocean Colour: Current Status and Future
Perspective, Front. Mar. Sci., 6, 485, https://doi.org/10.3389/fmars.2019.00485,
2019.
Hipsey, M. R., Gal, G., Arhonditsis, G. B., Carey, C. C., Elliott, J. A.,
Frassl, M. A., Janse, J. H., de Mora, L., and Robson, B. J.: A system of
metrics for the assessment and improvement of aquatic ecosystem models,
Environ. Modell. Softw., 128, 104697,
https://doi.org/10.1016/j.envsoft.2020.104697, 2020.
Hu, J., Fennel, K., Mattern, J. P., and Wilkin, J.: Data assimilation with a
local Ensemble Kalman Filter applied to a three-dimensional biological model
of the Middle Atlantic Bight, J. Mar. Syst., 94, 145–156,
https://doi.org/10.1016/j.jmarsys.2011.11.016, 2012.
Johnson, K., Pasqueron De Fommervault, O., Serra, R., D'Ortenzio, F.,
Schmechtig, C., Claustre, H., and Poteau, A.: Processing Bio-Argo nitrate
concentration at the DAC Level, IFREMER for Argo Data Management, https://doi.org/10.13155/46121, 2018.
Jones, E. M., Baird, M. E., Mongin, M., Parslow, J., Skerratt, J., Lovell, J., Margvelashvili, N., Matear, R. J., Wild-Allen, K., Robson, B., Rizwi, F., Oke, P., King, E., Schroeder, T., Steven, A., and Taylor, J.: Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef, Biogeosciences, 13, 6441–6469, https://doi.org/10.5194/bg-13-6441-2016, 2016.
Lavigne, H., D'Ortenzio, F., Migon, C., Claustre, H., Testor, P.,
d'Alcalà, M. R., Lavezza, R., Houpert, L., and Prieur, L.: Enhancing the
comprehension of mixed layer depth control on the Mediterranean
phytoplankton phenology, J. Geophys. Res.-Oceans, 118, 3416–3430,
https://doi.org/10.1002/jgrc.20251, 2013.
Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella,
S., Tonani, M., and Crise, A.: Pre-operational short-term forecasts for
Mediterranean Sea biogeochemistry, Ocean Sci., 6, 25–39,
https://doi.org/10.5194/os-6-25-2010, 2010.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli,
M., Oddo, P., and Vichi, M.: The impacts of climate change and environmental
management policies on the trophic regimes in the Mediterranean Sea:
Scenario analyses, J. Mar. Syst., 135, 137–149,
https://doi.org/10.1016/j.jmarsys.2013.06.005, 2014.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability of
phosphate and nitrate in the Mediterranean Sea: A modeling approach, Deep Sea Res. Part I Oceanogr. Res. Pap., 108, 39–52,
https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Lazzari, P., Álvarez, E., Terzić, E., Cossarini, G., Chernov, I.,
D'Ortenzio, F., and Organelli, E.: CDOM Spatiotemporal Variability in the
Mediterranean Sea: A Modelling Study, J. Mar. Sci.-Eng., 9, 176,
https://doi.org/10.3390/jmse9020176, 2021.
Lorenc, A. C.: Analysis methods for numerical weather prediction, Q. J. Roy. Meteor. Soc., 112, 1177–1194, https://doi.org/10.1002/qj.49711247414,
1986.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S.,
Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M.,
Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y.,
Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F.,
Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire,
M., Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E.,
Kroskos, G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual,
A., Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou,
J., Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou,
G.: Physical forcing and physical/biochemical variability of the
Mediterranean Sea: a review of unresolved issues and directions for future
research, Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014,
2014.
Mattern, J. P., Song, H., Edwards, C. A., Moore, A. M., and Fiechter, J.:
Data assimilation of physical and chlorophyll a observations in the
California Current System using two biogeochemical models, Ocean Model.,
109, 55–71, https://doi.org/10.1016/j.ocemod.2016.12.002, 2017.
Mayot, N., D'Ortenzio, F., Taillandier, V., Prieur, L., de Fommervault, O. P., Claustre, H., Bosse, A., Testor, P., and Conan, P.: Physical and
Biogeochemical Controls of the Phytoplankton Blooms in North Western
Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle
(2012–2013 DEWEX Experiment), J. Geophys. Res.-Oceans, 122, 9999–10019,
https://doi.org/10.1002/2016JC012052, 2017.
Melaku Canu, D., Ghermandi, A., Nunes, P. A. L. D., Lazzari, P., Cossarini,
G., and Solidoro, C.: Estimating the value of carbon sequestration ecosystem
services in the Mediterranean Sea: An ecological economics approach, Global
Environ. Chang., 32, 87–95,
https://doi.org/10.1016/j.gloenvcha.2015.02.008, 2015.
Mellard, J. P., Yoshiyama, K., Litchman, E., and Klausmeier, C. A.: The
vertical distribution of phytoplankton in stratified water columns, J.
Theor. Biol., 269, 16–30, https://doi.org/10.1016/j.jtbi.2010.09.041, 2011.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing,
X.: Understanding the seasonal dynamics of phytoplankton biomass and the
deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation, Global Biogeochem. Cy., 28, 856–876,
https://doi.org/10.1002/2013GB004781, 2014.
Mignot, A., D'Ortenzio, F., Taillandier, V., Cossarini, G., and Salon, S.:
Quantifying Observational Errors in Biogeochemical-Argo Oxygen, Nitrate, and
Chlorophyll a Concentrations, Geophys. Res. Lett., 46, 4330–4337,
https://doi.org/10.1029/2018GL080541, 2019.
Moore, A. M., Martin, M. J., Akella, S., Arango, H. G., Balmaseda, M.,
Bertino, L., Ciavatta, S., Cornuelle, B., Cummings, J., Frolov, S.,
Lermusiaux, P., Oddo, P., Oke, P. R., Storto, A., Teruzzi, A., Vidard, A.,
and Weaver, A. T.: Synthesis of Ocean Observations Using Data Assimilation
for Operational, Real-Time and Reanalysis Systems: A More Complete Picture
of the State of the Ocean, Front. Mar. Sci., 6, 90,
https://doi.org/10.3389/fmars.2019.00090, 2019.
Muller-Karger, F. E., Miloslavich, P., Bax, N. J., Simmons, S., Costello, M.
J., Sousa Pinto, I., Canonico, G., Turner, W., Gill, M., Montes, E., Best,
B. D., Pearlman, J., Halpin, P., Dunn, D., Benson, A., Martin, C. S.,
Weatherdon, L. V., Appeltans, W., Provoost, P., Klein, E., Kelble, C. R.,
Miller, R. J., Chavez, F. P., Iken, K., Chiba, S., Obura, D., Navarro, L.
M., Pereira, H. M., Allain, V., Batten, S., Benedetti-Checchi, L., Duffy, J.
E., Kudela, R. M., Rebelo, L.-M., Shin, Y., and Geller, G.: Advancing Marine
Biological Observations and Data Requirements of the Complementary Essential
Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs)
Frameworks, Front. Mar. Sci., 5, 211, https://doi.org/10.3389/fmars.2018.00211,
2018.
Navarro, G. and Ruiz, J.: Hysteresis conditions the vertical position of
deep chlorophyll maximum in the temperate ocean, Global Biogeochem. Cy.,
27, 1013–1022, https://doi.org/10.1002/gbc.20093, 2013.
Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., and Pettenuzzo,
D.: A nested Atlantic-Mediterranean Sea general circulation model for
operational forecasting, Ocean Sci., 5, 461–473,
https://doi.org/10.5194/os-5-461-2009, 2009.
Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A.: Sensitivity of the
Mediterranean sea level to atmospheric pressure and free surface elevation
numerical formulation in NEMO, Geosci. Model Dev., 7, 3001–3015,
https://doi.org/10.5194/gmd-7-3001-2014, 2014.
Organelli, E., Barbieux, M., Claustre, H., Schmechtig, C., Poteau, A.,
Bricaud, A., Boss, E., Briggs, N., Dall'Olmo, G., D'Ortenzio, F., Leymarie,
E., Mangin, A., Obolensky, G., Penkerc'h, C., Prieur, L., Roesler, C.,
Serra, R., Uitz, J., and Xing, X.: Two databases derived from BGC-Argo float
measurements for marine biogeochemical and bio-optical applications, Earth
Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, 2017.
Pasqueron de Fommervault, O. P., D'Ortenzio, F., Mangin, A., Serra, R., Migon, C.,
Claustre, H., Lavigne, H., d'Alcalà, M. R., Prieur, L., Taillandier, V.,
Schmechtig, C., Poteau, A., Leymarie, E., Dufour, A., Besson, F., and
Obolensky, G.: Seasonal variability of nutrient concentrations in the
Mediterranean Sea: Contribution of Bio-Argo floats, J. Geophys. Res.-Oceans,
120, 8528–8550, https://doi.org/10.1002/2015JC011103, 2015.
Pradhan, H. K., Völker, C., Losa, S. N., Bracher, A., and Nerger, L.:
Assimilation of Global Total Chlorophyll OC-CCI Data and Its Impact on
Individual Phytoplankton Fields, J. Geophys. Res.-Oceans, 124, 470–490,
https://doi.org/10.1029/2018JC014329, 2019.
Pradhan, H. K., Völker, C., Losa, S. N., Bracher, A., and Nerger, L.:
Global Assimilation of Ocean-Color Data of Phytoplankton Functional Types:
Impact of Different Data Sets, J. Geophys. Res.-Oceans, 125, e2019JC015586,
https://doi.org/10.1029/2019JC015586, 2020.
Raicich, F. and Rampazzo, A.: Observing System Simulation Experiments for
the assessment of temperature sampling strategies in the Mediterranean Sea,
Ann. Geophys., 21, 151–165, https://doi.org/10.5194/angeo-21-151-2003,
2003.
Ratheesh, S., Chakraborty, A., Sharma, R., and Basu, S.: Assimilation of
satellite chlorophyll measurements into a coupled biophysical model of the
Indian Ocean with a guided particle filter, Remote Sens. Lett., 7, 446–455,
https://doi.org/10.1080/2150704X.2016.1143985, 2016.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.:
Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean
Sea, J. Geophys. Res.-Oceans, 108, 8106,
https://doi.org/10.1029/2002JC001650, 2003.
Ricour, F., Capet, A., D'Ortenzio, F., Delille, B., and Grégoire, M.: Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats, Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, 2021.
Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J.,
Oke, P., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T.,
Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig,
H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D.
Ó., d'Ortenzio, F., Dall'Olmo, G., Desbruyeres, D., Fennel, K., Fer, I.,
Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B.,
Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C.,
Kang, K., Kolodziejczyk, N., Körtzinger, A., Traon, P.-Y. L., Lenn,
Y.-D., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A.
N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C.,
Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T.,
Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J.,
Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse,
A. F., Waterman, S., Watson, A., Wilson, C., Wong, A. P. S., Xu, J., and
Yasuda, I.: On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary
Array, Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439, 2019.
Salon, S., Cossarini, G., Bolzon, G., Feudale, L., Lazzari, P., Teruzzi, A.,
Solidoro, C., and Crise, A.: Novel metrics based on Biogeochemical Argo data
to improve the model uncertainty evaluation of the CMEMS Mediterranean
marine ecosystem forecasts, Ocean Sci., 15, 997–1022,
https://doi.org/10.5194/os-15-997-2019, 2019.
Santana-Falcón, Y., Brasseur, P., Brankart, J. M., and Garnier, F.:
Assimilation of chlorophyll data into a stochastic ensemble simulation for
the North Atlantic Ocean, Ocean Sci., 16, 1297–1315,
https://doi.org/10.5194/os-16-1297-2020, 2020.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., and Boss, E.:
Processing bio-Argo chlorophyll-A concentration at the DAC level, IFREMER for Argo Data Management, https://doi.org/10.13155/39468, 2015.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., Dall'Olmo, G., and
Boss, E.: Processing Bio-Argo particle backscattering at the DAC level, IFREMER for Argo Data Management, https://doi.org/10.13155/39459,
2018.
Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M., and Ben Ismail,
S.: Abrupt climate shift in the Western Mediterranean Sea, Sci. Rep., 6,
23009, https://doi.org/10.1038/srep23009, 2016.
Shulman, I., Frolov, S., Anderson, S., Penta, B., Gould, R., Sakalaukus, P.,
and Ladner, S.: Impact of bio-optical data assimilation on short-term
coupled physical, bio-optical model predictions, J. Geophys. Res.-Oceans,
118, 2215–2230, https://doi.org/10.1002/jgrc.20177, 2013.
Simon, E., Samuelsen, A., Bertino, L., and Mouysset, S.: Experiences in
multiyear combined state–parameter estimation with an ecosystem model of
the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter, J.
Mar. Syst., 152, 1–17, https://doi.org/10.1016/j.jmarsys.2015.07.004, 2015.
Skákala, J., Ford, D., Brewin, R. J. W., McEwan, R., Kay, S., Taylor,
B., de Mora, L., and Ciavatta, S.: The Assimilation of Phytoplankton
Functional Types for Operational Forecasting in the Northwest European
Shelf, J. Geophys. Res.-Oceans, 123, 5230–5247,
https://doi.org/10.1029/2018JC014153, 2018.
Skákala, J., Ford, D., Bruggeman, J., Hull, T., Kaiser, J., King, R. R.,
Loveday, B., Palmer, M. R., Smyth, T., Williams, C. A. J., and Ciavatta, S.:
Towards a Multi-Platform Assimilative System for North Sea Biogeochemistry,
J. Geophys. Res.-Oceans, 126, e2020JC016649,
https://doi.org/10.1029/2020JC016649, 2021.
Song, H., Edwards, C. A., Moore, A. M., and Fiechter, J.: Data assimilation
in a coupled physical-biogeochemical model of the California current system
using an incremental lognormal 4-dimensional variational approach: Part
3–Assimilation in a realistic context using satellite and in situ
observations, Ocean Model., 106, 159–172,
https://doi.org/10.1016/j.ocemod.2016.06.005, 2016.
Storto, A. and Oddo, P.: Optimal Assimilation of Daytime SST Retrievals from
SEVIRI in a Regional Ocean Prediction System, Remote Sens., 11, 2776,
https://doi.org/10.3390/rs11232776, 2019.
Storto, A., Oddo, P., Cipollone, A., Mirouze, I., and Lemieux-Dudon, B.:
Extending an oceanographic variational scheme to allow for affordable hybrid
and four-dimensional data assimilation, Ocean Model., 128, 67–86,
https://doi.org/10.1016/j.ocemod.2018.06.005, 2018.
Teruzzi, A., Dobricic, S., Solidoro, C., and Cossarini, G.: A 3-D
variational assimilation scheme in coupled transport-biogeochemical models:
Forecast of Mediterranean biogeochemical properties, J. Geophys. Res.-Oceans, 119, 200–217, https://doi.org/10.1002/2013JC009277, 2014.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and
Cossarini, G.: Assimilation of coastal and open sea biogeochemical data to
improve phytoplankton simulation in the Mediterranean Sea, Ocean Model.,
132, 46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018.
Teruzzi, A., Di Cerbo, P., Cossarini, G., Pascolo, E., and Salon, S.:
Parallel implementation of a data assimilation scheme for operational
oceanography: The case of the MedBFM model system, Comput. Geosci., 124,
103–114, https://doi.org/10.1016/j.cageo.2019.01.003, 2019.
Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S., D'Ortenzio, F., and Conan, P.: Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry, Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, 2019.
Terzić, E., Salon, S., Cossarini, G., Solidoro, C., Teruzzi, A.,
Miró, A., and Lazzari, P.: Impact of interannually variable diffuse
attenuation coefficients for downwelling irradiance on biogeochemical
modelling, Ocean Model., 161, 101793,
https://doi.org/10.1016/j.ocemod.2021.101793, 2021.
Thierry, V., Bittig, H., Gilbert, D., Kobayashi, T., Kanako, S., and Schmid,
C.: Processing Argo oxygen data at the DAC level,IFREMER for Argo Data Management, https://doi.org/10.13155/39795, 2018.
Thingstad, T. F. and Rassoulzadegan, F.: Nutrient limitations, microbial
food webs and “biological C-pumps”: suggested interactions in a P-limited
Mediterranean, Mar. Ecol. Prog. Ser., 117, 299–306, 1995.
Tsiaras, K. P., Hoteit, I., Kalaroni, S., Petihakis, G., and Triantafyllou,
G.: A hybrid ensemble-OI Kalman filter for efficient data assimilation into
a 3-D biogeochemical model of the Mediterranean, Ocean Dyn., 67, 673–690,
https://doi.org/10.1007/s10236-017-1050-7, 2017.
Verdy, A. and Mazloff, M. R.: A data assimilating model for estimating
Southern Ocean biogeochemistry, J. Geophys. Res.-Oceans, 122, 6968–6988,
https://doi.org/10.1002/2016JC012650, 2017.
Vichi, M., Lovato, T., Lazzari, P., Cossarini, G., Gutierrez Mlot, E., Mattia, G., Masina, S., McKiver, W. J., Pinardi, N., Solidoro, C., Tedesco, L., and Zavatarelli, M.: The BiogeochemicalFlux Model (BFM): Equation Description and User Manual. BFMversion 5.1, BFM Reportseries N. 1, Release 1.1 [code], Bologna, Italy, 104 pp., available at: http://bfm-community.eu (last access: 17 November 2021), 2015.
Wang, B., Fennel, K., Yu, L., and Gordon, C.: Assessing the value of biogeochemical Argo profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico, Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, 2020.
Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-derived
data into a one-dimensional lower trophic level marine ecosystem model, J. Geophys. Res.-Oceans, 119, 2691–2712, https://doi.org/10.1002/2013JC009433,
2014.
Xing, X., Boss, E., Zhang, J., and Chai, F.: Evaluation of Ocean Color
Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical
Depths with Data Collected on BGC-Argo Floats, Remote Sens., 12, 2367,
https://doi.org/10.3390/rs12152367, 2020.
Yu, L., Fennel, K., Bertino, L., Gharamti, M. E., and Thompson, K. R.:
Insights on multivariate updates of physical and biogeochemical ocean
variables using an Ensemble Kalman Filter and an idealized model of
upwelling, Ocean Model., 126, 13–28,
https://doi.org/10.1016/j.ocemod.2018.04.005, 2018.
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface...
Altmetrics
Final-revised paper
Preprint