Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1–3, 08034 Barcelona, Catalonia, Spain
Marcus Falls
Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1–3, 08034 Barcelona, Catalonia, Spain
Hervé Claustre
CNRS & Sorbonne Université, Laboratoire d'Océanographie de Villefranche (LOV), 06230 Villefranche-sur-Mer, France
Olivier Aumont
IPSL-LOCEAN, IRD/Sorbonne Université/CNRS/MNHN, Paris, France
Raffaele Bernardello
Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1–3, 08034 Barcelona, Catalonia, Spain
Related authors
M. Andrea Orihuela-García, Yohan Ruprich-Robert, Vladimir Lapin, Saskia Loosveldt Tomas, Raffaele Bernardello, Margarida Samsó-Cabré, Pierre-Antoine Bretonnière, Miguel Castrillo, and Marti Gali
EGUsphere, https://doi.org/10.22541/essoar.174481514.42345660/v1, https://doi.org/10.22541/essoar.174481514.42345660/v1, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tiny oceanic algae absorb carbon using sunlight. When they die, some sink as "detritus" that oceanic creatures eat or bacteria decompose. This "biological carbon pump" stores carbon in the deep ocean. Our study found that in warm southern waters, particles decompose quickly but more survive deeper trips. In cold northern waters, creatures eat more particles. Winter water mixing moves carbon down before spring algae bloom. Understanding these processes helps predict future ocean carbon storage.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Quentin Hyvernat, Alexandre Mignot, Elodie Gutknecht, Giovanni Ruggiero, Coralie Perruche, Guillaume Samson, Raphaëlle Sauzède, Olivier Aumont, Hervé Claustre, and Fabrizio D'Ortenzio
EGUsphere, https://doi.org/10.5194/egusphere-2025-4369, https://doi.org/10.5194/egusphere-2025-4369, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We introduce an iterative Importance Sampling (iIS) framework to optimize the PISCES model using BGC-Argo data. Using these data, 20 metrics are applied to better constrain parameter values. Three parameter selection strategies are compared: 29 main effects parameters, 66 parameters including interaction effects, and all 95 parameters. All yield statistically indistinguishable but significant skill gains, reducing NRMSE by 54–56% in median across assimilated metrics in the productive layer.
M. Andrea Orihuela-García, Yohan Ruprich-Robert, Vladimir Lapin, Saskia Loosveldt Tomas, Raffaele Bernardello, Margarida Samsó-Cabré, Pierre-Antoine Bretonnière, Miguel Castrillo, and Marti Gali
EGUsphere, https://doi.org/10.22541/essoar.174481514.42345660/v1, https://doi.org/10.22541/essoar.174481514.42345660/v1, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tiny oceanic algae absorb carbon using sunlight. When they die, some sink as "detritus" that oceanic creatures eat or bacteria decompose. This "biological carbon pump" stores carbon in the deep ocean. Our study found that in warm southern waters, particles decompose quickly but more survive deeper trips. In cold northern waters, creatures eat more particles. Winter water mixing moves carbon down before spring algae bloom. Understanding these processes helps predict future ocean carbon storage.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025, https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Short summary
We assessed how well climate models replicate sub-seasonal changes in ocean chlorophyll observed by satellites. Models struggle to capture these variations accurately. Some overestimate fluctuations and their impact on annual chlorophyll variability, while others underestimate them. The underestimation is likely due to limited model resolution, while the overestimation may come from internal model oscillations.
Lisa Di Matteo, Fabio Benedetti, Sakina-Dorothée Ayata, and Olivier Aumont
EGUsphere, https://doi.org/10.5194/egusphere-2025-1465, https://doi.org/10.5194/egusphere-2025-1465, 2025
Short summary
Short summary
Mesozooplankton gather small current-drifting animals. They are very diverse and play key roles in the functioning of marine ecosystem and ocean carbon cycle, especially through the production of rapidly sinking particles. Usually under-represented in marine biogeochemical models, we add 3 feeding strategies in the PISCES model and investigate their impact on carbon cycle at global scale. We find distinct distributions between mesozooplankton types with different contributions to carbon export.
Pedro José Roldán-Gómez, Paolo De Luca, Raffaele Bernardello, and Markus G. Donat
Earth Syst. Dynam., 16, 1–27, https://doi.org/10.5194/esd-16-1-2025, https://doi.org/10.5194/esd-16-1-2025, 2025
Short summary
Short summary
Current trends in CO2 emissions increase the probability of an overshoot scenario in which temperatures exceed the targets of the Paris Agreement and are brought back afterwards with a net-negative emission strategy. This work analyses how the climate after the overshoot would differ from the climate before, linking large scale non-reversibility mechanisms to changes in regional climates and identifying those regions more impacted by changes in temperature and precipitation extremes.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Raffaele Bernardello, Valentina Sicardi, Vladimir Lapin, Pablo Ortega, Yohan Ruprich-Robert, Etienne Tourigny, and Eric Ferrer
Earth Syst. Dynam., 15, 1255–1275, https://doi.org/10.5194/esd-15-1255-2024, https://doi.org/10.5194/esd-15-1255-2024, 2024
Short summary
Short summary
The ocean mitigates climate change by absorbing about 25 % of the carbon that is emitted to the atmosphere. However, ocean CO2 uptake is not constant in time, and improving our understanding of the mechanisms regulating this variability can potentially lead to a better predictive capability of its future behavior. In this study, we compare two ocean modeling practices that are used to reconstruct the historical ocean carbon uptake, demonstrating the abilities of one over the other.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Cited articles
Alonso-González, I. J., Arístegui, J., Vilas, J. C., and
Hernández-Guerra, A.: Lateral POC transport and consumption in surface
and deep waters of the Canary Current region: A box model study, Global
Biogeochem. Cy., 23, 1–12, https://doi.org/10.1029/2008GB003185, 2009.
Alonso-Gonzalez, I. J., Aristegui, J., Lee, C., Sanchez-Vidal, A., Calafat,
A., Fabres, J., Sangra, P., Masque, P., Hernandez-Guerra, A., and
Benitez-Barrios, V.: Role of slowly settling particles in the ocean carbon
cycle, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043827, 2010.
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC), SEANOE [Data set], https://doi.org/10.17882/42182, 2000.
Arístegui, J., Gasol, J. M., Duarte, C. M., and Herndl, G. J.: Microbial
oceanography of the dark ocean's pelagic realm, Limnol. Oceanogr., 54,
1501–1529, https://doi.org/10.4319/lo.2009.54.5.1501, 2009.
Arnosti, C., Fuchs, B. M., Amann, R., and Passow, U.: Contrasting
extracellular enzyme activities of particle-associated bacteria from
distinct provinces of the north Atlantic Ocean, Front. Microbiol., 3,
1–9, https://doi.org/10.3389/fmicb.2012.00425, 2012.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2:
An ocean biogeochemical model for carbon and ecosystem studies, Geosci.
Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Aumont, O., van Hulten, M., Roy-Barman, M., Dutay, J.-C., Éthé, C., and Gehlen, M.: Variable reactivity of particulate organic matter in a global ocean biogeochemical model, Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, 2017.
Babin, M., Morel, A., Fournier-sicre, V., Fell, F., Stramski, D., Mar, N.,
Villefranche, D., Cedex, V., and Morel, A.: Light Scattering Properties of
Marine Particles in Coastal and Open Ocean Waters as Related to the Particle
Mass Concentration Light scattering properties of marine particles in
coastal and open ocean waters as related to the particle mass concentration,
Limnology, 48, 843–859, 2003.
Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S. L. C., and Sanders,
R.: Slow-sinking particulate organic carbon in the Atlantic Ocean:
Magnitude, flux, and potential controls, Global Biogeochem. Cy., 31,
1051–1065, https://doi.org/10.1002/2017GB005638, 2017.
Balch, W. M., Bowler, B. C., Drapeau, D. T., Poulton, A. J., and Holligan, P.
M.: Biominerals and the vertical flux of particulate organic carbon from the
surface ocean, Geophys. Res. Lett., 37, 1–6, https://doi.org/10.1029/2010GL044640, 2010.
Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., Van Aken, H. M.,
and Herndl, G. J.: High dissolved extracellular enzymatic activity in the
deep central Atlantic ocean, Aquat. Microb. Ecol., 58, 287–302,
https://doi.org/10.3354/ame01377, 2010a.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J. M., Reinthaler, T., and
Herndl, G. J.: Significance of non-sinking particulate organic carbon and
dark CO2 fixation to heterotrophic carbon demand in the mesopelagic
northeast Atlantic, Geophys. Res. Lett., 37, 1–6,
https://doi.org/10.1029/2010GL043105, 2010b.
Baumas, C. M., Le Moigne, F. A., Garel, M., Bhairy, N., Guasco, S., Riou,
V., Armougom, F., Grossart, H. P., and Tamburini, C.: Mesopelagic microbial
carbon production correlates with diversity across different marine particle
fractions, ISME J., 15, 1695–1708, https://doi.org/10.1038/s41396-020-00880-z, 2021.
Belcher, A., Iversen, M., Giering, S., Riou, V., Henson, S. A., Berline, L.,
Guilloux, L., and Sanders, R.: Depth-resolved particle-associated microbial
respiration in the northeast Atlantic, Biogeosciences, 13, 4927–4963,
https://doi.org/10.5194/bg-13-4927-2016, 2016.
Bellacicco, M., Cornec, M., Organelli, E., Brewin, R. J. W., Neukermans, G.,
Volpe, G., Barbieux, M., Poteau, A., Schmechtig, C., D'Ortenzio, F.,
Marullo, S., Claustre, H., and Pitarch, J.: Global Variability of Optical
Backscattering by Non-algal particles From a Biogeochemical-Argo Data Set,
Geophys. Res. Lett., 46, 9767–9776, https://doi.org/10.1029/2019GL084078, 2019.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat.
Geosci., 11, 263–268, https://doi.org/10.1038/s41561-018-0081-0,
2018.
Bishop, J. K. B.: Transmissometer measurement of POC, Deep-Sea Res. Pt.
I, 46, 353–369, https://doi.org/10.1016/S0967-0637(98)00069-7, 1999.
Bishop, J. K. and Wood, T. J.: Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites, Deep-Sea Res. Pt. I, 55, 1684–1706, https://doi.org/10.1016/j.dsr.2008.07.012, 2008.
Bishop, J. K. B. and Wood, T. J.: Year-round observations of carbon biomass
and flux variability in the Southern Ocean, Global Biogeochem. Cy.,
23, GB2019, https://doi.org/10.1029/2008GB003206, 2009.
Bishop, J. K. B., Collier, R. W., Kettens, D. R., and Edmond, J. M.: The
chemistry, biology, and vertical flux of particulate matter from the upper
1500 m of the Panama Basin, Deep-Sea Res. Pt. A, 27, 615–640, https://doi.org/10.1016/0198-0149(80)90077-1,
1980.
Bishop, J. K. B., Conte, M. H., Wiebe, P. H., Roman, M. R., and Langdon, C.:
Particulate matter production and consumption in deep mixed layers:
observations in a warm-core ring, Deep-Sea Res. Pt. A,
33, 1813–1841, https://doi.org/10.1016/0198-0149(86)90081-6, 1986.
Bishop, J. K. B., Calvert, S. E., and Soon, M. Y. S.: Spatial and temporal
variability of POC in the northeast subarctic Pacific, Deep-Res. Pt. II, 46, 2699–2733,
https://doi.org/10.1016/S0967-0645(99)00081-8, 1999.
Bishop, J. K. B., Wood, T. J., Davis, R. E., and Sherman, J. T.: Robotic
Observations of Enhanced Carbon Biomass and Export at 55∘ S during
SOFeX, Science, 304, 417–420, https://doi.org/10.1126/science.1087717, 2004.
Bisson, K., Siegel, D. A., DeVries, T., Cael, B. B., and Buesseler, K. O.:
How data set characteristics influence ocean carbon export models, Global
Biogeochem. Cy., 32, 1312–1328, https://doi.org/10.1029/2018GB005934, 2019.
Bode, A., Olivar, M. P., and Hernández-León, S.: Trophic indices for
micronektonic fishes reveal their dependence on the microbial system in the
North Atlantic, Sci. Rep., 11, 8488, https://doi.org/10.1038/s41598-021-87767-x, 2021.
Bol, R., Henson, S. A., Rumyantseva, A., and Briggs, N.: High-Frequency
Variability of Small-Particle Carbon Export Flux in the Northeast Atlantic,
Global Biogeochem. Cy., 32, 1803–1814, https://doi.org/10.1029/2018GB005963,
2018.
Boss, E., Guidi, L., Richardson, M. J., Stemmann, L., Gardner, W., Bishop, J. K. B., Anderson, R. F., and Sherrell, R. M.: Optical techniques for remote and in-situ characterization of particles pertinent to GEOTRACES, Prog. Oceanogr., 133, 43–54, https://doi.org/10.1016/j.pocean.2014.09.007, 2015.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Briggs, N., Perry, M. J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A. M.,
and Rehm, E.: High-resolution observations of aggregate flux during a
sub-polar North Atlantic spring bloom, Deep-Res. Pt. I, 58, 1031–1039, https://doi.org/10.1016/j.dsr.2011.07.007, 2011.
Briggs, N., Olmo, G. D., and Claustre, H.: Major role of particle
fragmentation in regulating the biological sequestration of CO2 by the
oceans, Science, 793, 791–793, 2020.
Bourne, H. L., Bishop, J. K., Connors, E. J., and Wood, T. J.: Carbon export
and fate beneath a dynamic upwelled filament off the California coast,
Biogeosciences, 18, 3053–3086, https://doi.org/10.5194/bg-18-3053-2021, 2021.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability
of phytoplanktonic absorption in oceanic waters: Influence of the size
structure of algal populations, J. Geophys. Res.-Ocean.,
109, C11010, https://doi.org/10.1029/2004JC002419, 2004.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Buesseler, K. O., Boyd, P. W., Black, E. E., and Siegel, D. A.: Metrics that
matter for assessing the ocean biological carbon pump, P. Natl. Acad.
Sci. USA, 117, 9679–9687, https://doi.org/10.1073/pnas.1918114117, 2020.
Cael, B. B., Cavan, E. L., and Britten, G. L.: Reconciling the
size-dependence of marine particle sinking speed, Geophys. Res. Lett., 48, e2020GL091771, https://doi.org/10.1029/2020GL091771,
2021.
Calbet, A.: The trophic roles of microzooplankton in marine systems, ICES
J. Mar. Sci., 65, 325–331, https://doi.org/10.1093/icesjms/fsn013, 2008.
Cetinić, I., Perry, M. J., Briggs, N. T., Kallin, E., D'Asaro, E. A., and
Lee, C. M.: Particulate organic carbon and inherent optical properties
during 2008 North Atlantic bloom experiment, J. Geophys. Res.-Ocean.,
117, C06028,
https://doi.org/10.1029/2011JC007771, 2012.
Ciotti, A. M., Lewis, M. R., and Cullen, J. J.: Assessment of the
relationships between dominant cell size in natural phytoplankton
communities and the spectral shape of the absorption coefficient, Limnol.
Oceanogr., 47, 404–417, https://doi.org/10.4319/lo.2002.47.2.0404, 2002.
Claustre, H.: Is desert dust making oligotrophic waters greener?, Geophys.
Res. Lett., 29, 10–13, https://doi.org/10.1029/2001GL014056, 2002.
Claustre, H., Morel, A., Babin, M., Cailliau, C., Marie, D., Marty, J. C.,
Tailliez, D., and Vaulot, D.: Variability in particle attenuation and
chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and
biogeochemical implications, J. Geophys. Res.-Ocean., 104, 3401–3422,
https://doi.org/10.1029/98jc01334, 1999.
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the Global Ocean
with Biogeochemical-Argo, Ann. Rev. Mar. Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-010956,
2020.
Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A.,
D'Ortenzio, F., Gentili, B., and Schmechtig, C.: Deep Chlorophyll Maxima in
the Global Ocean: Occurrences, Drivers and Characteristics, Global
Biogeochem. Cy., 35, 1–30, https://doi.org/10.1029/2020gb006759, 2021.
Dall'Olmo, G. and Mork, K. A.: Carbon export by small particles in the
Norwegian Sea, Geophys. Res. Lett., 41, 2921–2927,
https://doi.org/10.1002/2014GL059244, 2014.
Dall'Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and Slade, W.
H.: Significant contribution of large particles to optical backscattering in
the open ocean, Biogeosciences, 6, 947–967, https://doi.org/10.5194/bg-6-947-2009,
2009.
Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H., Dutay,
J. C., Follows, M., Gao, Y., Gnanadesikan, A., Gruber, N., Ishida, A., Joos,
F., Madec, G., Maier-Reimer, E., Marshall, J. C., Matear, R. J., Monfray,
P., Mouchet, A., Najjar, R., Orr, J. C., Plattner, G. K., Sarmiento, J.,
Schlitzer, R., Slater, R., Totterdell, I. J., Weirig, M. F., Yamanaka, Y.,
and Yool, A.: Evaluating global ocean carbon models: The importance of
realistic physics, Global Biogeochem. Cy., 18, GB3017,
https://doi.org/10.1029/2003GB002150, 2004.
Druffel, E. R., Williams, P. M., Bauer, J. E., and Ertel, J. R.: Cycling of dissolved and particulate organic matter in the open ocean, J. Geophys. Res.-Ocean., 97, 15639–15659, https://doi.org/10.1029/92JC01511, 1992.
Duret, M. T., Lampitt, R. S., and Lam, P.: Prokaryotic niche partitioning
between suspended and sinking marine particles, Env. Microbiol.
Rep., 11, 386–400, https://doi.org/10.1111/1758-2229.12692, 2019.
Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L.,
Galbraith, E., Matear, R., Moore, J. K., Sarmiento, J. L., and Segschneider,
J.: Preformed and regenerated phosphate in ocean general circulation models:
Can right total concentrations be wrong?, Biogeosciences, 9, 1797–1807,
https://doi.org/10.5194/bg-9-1797-2012, 2012.
Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C., and
Monier, E.: Ocean colour signature of climate change, Nat. Commun., 10, 578,
https://doi.org/10.1038/s41467-019-08457-x, 2019.
Evers-King, H., Martinez-Vicente, V., Brewin, R. J. W., Dall'Olmo, G.,
Hickman, A. E., Jackson, T., Kostadinov, T. S., Krasemann, H., Loisel, H.,
Röttgers, R., Roy, S., Stramski, D., Thomalla, S., Platt, T., and
Sathyendranath, S.: Validation and intercomparison of ocean color algorithms
for estimating particulate organic carbon in the oceans, Front. Mar. Sci.,
4, 1–20, https://doi.org/10.3389/fmars.2017.00251, 2017.
Falls, M., Bernardello, R., Castrillo, M., Acosta, M., Llort, J., and Galí, M.: Use of Genetic Algorithms for Ocean Model Parameter Optimisation, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-222, in review, 2021.
Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: Mean and temporal
variability, Earth Syst. Sci. Data, 6, 273–284,
https://doi.org/10.5194/essd-6-273-2014, 2014.
Flament, P.: A state variable for characterizing water masses and their
diffusive stability: Spiciness, Prog. Oceanogr., 54, 493–501,
https://doi.org/10.1016/S0079-6611(02)00065-4, 2002.
François, R., Honjo, S., Krishfield, R., and Manganini, S.: Factors
controlling the flux of organic carbon to the bathypelagic zone of the
ocean, Global Biogeochem. Cy., 16, 1087,
https://doi.org/10.1029/2001gb001722, 2002.
Galí, M., Benardello, R., Falls, M., Claustre, H., and Aumont, O.:
PISCES-v2 1D configuration used to study POC dynamics as observed by BGC-Argo floats, Zenodo [code], https://doi.org/10.5281/zenodo.5243343, 2021a.
Galí, M., Benardello, R., Falls, M., Claustre, H., and Aumont, O.:
Datasets for the comparison between POC estimated from BGC-Argo floats and PISCES model simulations, Zenodo [data set], https://doi.org/10.5281/zenodo.5139602, 2021b.
García‐Martín, E. E., Davidson, K., Davis, C. E., Mahaffey, C., Mcneill, S., Purdie, D. A., and Robinson, C.: Low contribution of the fast‐sinking particle fraction to total plankton metabolism in a temperate shelf sea, Global Biogeochem. Cy., 35, e2021GB007015, https://doi.org/10.1029/2021GB007015, 2021.
Gardner, W. D., Richardson, M. J., and Smith Jr., W. O.: Seasonal patterns of
water column particulate organic carbon and fluxes in the Ross Sea,
Antarctica, Deep-Sea Res. Pt. II,
47, 3423–3449, https://doi.org/10.1016/S0967-0645(00)00074-6, 2000.
Gardner, W. D., Mishonov, A. V., and Richardson, M. J.: Global POC
concentrations from in-situ and satellite data, Deep-Res. Pt. II, 53, 718–740, https://doi.org/10.1016/j.dsr2.2006.01.029, 2006.
Gasol, J. M., del Giorgio, P. A., and Duarte, C. M.: Biomass distribution in
marine planktonic communities, Limnol. Oceanogr., 42, 1353–1363, 1997.
Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini,
C., Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson, S. A., Saw, K., Cook,
K., and Mayor, D. J.: Reconciliation of the carbon budget in the ocean's
twilight zone, Nature, 507, 480–483, https://doi.org/10.1038/nature13123, 2014.
Goldthwait, S., Yen, J., Brown, J., and Alldredge, A.: Quantification of
marine snow fragmentation by swimming euphausiids, Limnol. Oceanogr., 49, 940–952, https://doi.org/10.4319/lo.2004.49.4.0940, 2004.
Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo,
G., van Dongen-Vogels, V., Reifel, K. M., and Behrenfeld, M. J.: Analytical
phytoplankton carbon measurements spanning diverse ecosystems, Deep-Sea Res.
Pt. I, 102, 16–25, https://doi.org/10.1016/j.dsr.2015.04.006,
2015.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Guidi, L., Legendre, L., Reygondeau, G., Uitz, J., Stemmann, L., and Henson, S. A.: A new look at ocean carbon remineralization for estimating deepwater sequestration, Global Biogeochem. Cy., 29, 1044–1059, https://doi.org/10.1002/2014GB005063, 2015.
Haëntjens, N., Della Penna, A., Briggs, N., Karp-Boss, L., Gaube, P.,
Claustre, H., and Boss, E.: Detecting Mesopelagic Organisms Using
Biogeochemical-Argo Floats, Geophys. Res. Lett., 47, e2019GL08608,
https://doi.org/10.1029/2019GL086088, 2020.
Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Huang, K. F., Robinson, L.
F., Lu, Y., Cheng, H., Edwards, R. L., and Moran, S. B.: 230Th and 231Pa on
GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications
for modern and paleoceanographic chemical fluxes, Deep-Res. Pt. II, 116, 29–41, https://doi.org/10.1016/j.dsr2.2014.07.007, 2015.
Henson, S. A., Yool, A., and Sanders, R.: Variability in efficiency of
particulate organic carbon export: A model study, Global Biogeochem. Cy., 29,
33–45, https://doi.org/10.1002/2014GB004965, 2015.
Hernández-León, S., Koppelmann, R., Fraile-Nuez, E., Bode, A.,
Mompeán, C., Irigoien, X., Olivar, M. P., Echevarría, F.,
Fernández de Puelles, M. L., González-Gordillo, J. I., Cózar,
A., Acuña, J. L., Agustí, S., and Duarte, C. M.: Large deep-sea
zooplankton biomass mirrors primary production in the global ocean, Nat.
Commun., 11, 6048, https://doi.org/10.1038/s41467-020-19875-7, 2020.
Herndl, G. J. and Reinthaler, T.: Microbial control of the dark end of the biological pump, Nat. Geosci., 6, 718–724, https://doi.org/10.1038/ngeo1921, 2013.
Holte, J. and Talley, L.: A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation, J. Atmos. Ocean. Technol., 26, 1920–1939, https://doi.org/10.1175/2009JTECHO543.1, 2009.
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.: Particulate
organic carbon fluxes to the ocean interior and factors controlling the
biological pump: A synthesis of global sediment trap programs since 1983,
Prog. Oceanogr., 76, 217–285, https://doi.org/10.1016/j.pocean.2007.11.003, 2008.
Ikenoue, T., Kimoto, K., Okazaki, Y., Sato, M., Honda, M. C., Takahashi, K.,
Harada, N., and Fujiki, T.: Phaeodaria: An Important Carrier of Particulate
Organic Carbon in the Mesopelagic Twilight Zone of the North Pacific Ocean,
Global Biogeochem. Cy., 33, 1146–1160, https://doi.org/10.1029/2019GB006258,
2019.
Jiao, N., Herndl, G. J., Hansell, D. a, Benner, R., Kattner, G., Wilhelm, S.
W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.:
Microbial production of recalcitrant dissolved organic matter: long-term
carbon storage in the global ocean, Nat. Rev. Microbiol., 8, 593–599,
https://doi.org/10.1038/nrmicro2386, 2010.
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C.
M., Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens,
N., Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in
the SOCCOM profiling float array, J. Geophys. Res.-Ocean., 122, 6416–6436,
https://doi.org/10.1002/2017JC012838, 2017.
Karthäuser, C., Ahmerkamp, S., Marchant, H. K., Bristow, L. A., Hauss,
H., Iversen, M. H., Kiko, R., Maerz, J., Lavik, G., and Kuypers, M. M. M.:
Small sinking particles control anammox rates in the Peruvian oxygen minimum
zone, Nat. Commun., 12, 3235, https://doi.org/10.1038/s41467-021-23340-4, 2021.
Kelley, D.: Package “oce”: Analysis of Oceanographic data, R Package,
available at: https://dankelley.github.io/oce/ (last access: 27 November 2018), 2011.
Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg,
R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Böttcher, B.,
Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., and Mohr, W.:
Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition
of Particulate Organic Carbon in the Ocean, Front. Mar. Sci., 7, 518,
https://doi.org/10.3389/fmars.2020.00518, 2020.
Kiørboe, T.: How zooplankton feed: Mechanisms, traits and trade-offs,
Biol. Rev., 86, 311–339, https://doi.org/10.1111/j.1469-185X.2010.00148.x, 2011.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Global Biogeochem. Cy., 16, 1116,
https://doi.org/10.1029/2001gb001765, 2002.
Kriest, I., Kähler, P., Koeve, W., Kvale, K., Sauerland, V., and
Oschlies, A.: One size fits all? Calibrating an ocean biogeochemistry model
for different circulations, Biogeosciences, 17, 3057–3082,
https://doi.org/10.5194/bg-17-3057-2020, 2020.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of
remineralization depth on the air-sea carbon balance, Nat. Geosci., 2,
630–635, https://doi.org/10.1038/ngeo612, 2009.
Lacour, L., Briggs, N., Claustre, H., Ardyna, M., and Dall'Olmo, G.: The
Intraseasonal Dynamics of the Mixed Layer Pump in the Subpolar North
Atlantic Ocean: A Biogeochemical-Argo Float Approach, Global Biogeochem.
Cy., 33, 266–281, https://doi.org/10.1029/2018GB005997, 2019.
Lam, P. J., Doney, S. C., and Bishop, J. K. B.: The dynamic ocean biological
pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic, Global Biogeochem.
Cy., 25, 1–14, https://doi.org/10.1029/2010GB003868, 2011.
Lam, P. J., Ohnemus, D. C., and Auro, M. E.: Size-fractionated major particle
composition and concentrations from the US GEOTRACES North Atlantic Zonal
Transect, Deep-Res. Pt. II, 116, 303–320,
https://doi.org/10.1016/j.dsr2.2014.11.020, 2015.
Lampitt, R. S., Wishner, K. F., Turley, C. M., and Angel, M. V.: Marine snow
studies in the Northeast Atlantic Ocean: distribution, composition and role
as a food source for migrating plankton, Mar. Biol. Int. J. Life Ocean.
Coast. Waters, 116, 689–702, https://doi.org/10.1007/BF00355486, 1993.
Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S.
C., Dunne, J. P., Hauck, J., John, J. G., Lima, I. D., Seferian, R., and
Völker, C.: Projected decreases in future marine export production: The
role of the carbon flux through the upper ocean ecosystem, Biogeosciences,
13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, 2016.
Laurenceau-Cornec, E. C., Le Moigne, F. A., Gallinari, M., Moriceau, B.,
Toullec, J., Iversen, M. H., Engel, A., and De La Rocha, C. L.: New
guidelines for the application of Stokes' models to the sinking velocity of
marine aggregates, Limnol. Oceanogr., 65, 1264–1285, https://doi.org/10.1002/lno.11388, 2020.
Lebeaupin Brossier, C., Béranger, K., Deltel, C., and Drobinski, P.: The
Mediterranean response to different space–time resolution atmospheric
forcings using perpetual mode sensitivity simulations, Ocean Model.,
36, 1–25, https://doi.org/10.1016/j.ocemod.2010.10.008, 2011.
Lee, S., Kang, Y. C., and Fuhrman, J. A.: Imperfect retention of natural
bacterioplankton cells by glass fiber filters, Mar. Ecol. Prog. Ser.,
119, 285–290, https://doi.org/10.3354/meps119285, 1995.
Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L., and Uitz, J.: The
microbial carbon pump concept: Potential biogeochemical significance in the
globally changing ocean, Prog. Oceanogr., 134, 432–450,
https://doi.org/10.1016/j.pocean.2015.01.008, 2015.
Llort, J., Lévy, M., Sallée, J.-B., and Tagliabue, A.: Onset,
intensification, and decline of phytoplankton blooms in the Southern Ocean,
ICES J. Mar. Sci., 72, 1971–1984, https://doi.org/10.1093/icesjms/fst176, 2015.
Llort, J., Langlais, C., Matear, R., Moreau, S., Lenton, A., and Strutton, P.
G.: Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical Argo
Floats, J. Geophys. Res.-Ocean., 123, 971–984, https://doi.org/10.1002/2017JC012861, 2018.
Loisel, H. and Morel, A.: Light Scattering and Chlorophyll Concentration in
Case 1 Waters: A Reexamination, Limnol. Oceanogr., 43, 847–858,
https://doi.org/10.4319/lo.1998.43.5.0847, 1998.
Loisel, H., Vantrepotte, V., Norkvist, K., Mriaux, X., Kheireddine, M., Ras,
J., Pujo-Pay, M., Combet, Y., Leblanc, K., Dall'Olmo, G., Mauriac, R.,
Dessailly, D., and Moutin, T.: Characterization of the bio-optical anomaly
and diurnal variability of particulate matter, as seen from scattering and
backscattering coefficients, in ultra-oligotrophic eddies of the
Mediterranean Sea, Biogeosciences, 8, 3295–3317,
https://doi.org/10.5194/bg-8-3295-2011, 2011.
Löptien, U. and Dietze, H.: Reciprocal bias compensation and ensuing
uncertainties in model-based climate projections: Pelagic biogeochemistry
versus ocean mixing, Biogeosciences, 16, 1865–1881,
https://doi.org/10.5194/bg-16-1865-2019, 2019.
Madec, G. and NEMO System Team: NEMO ocean engine,
Scientific Notes of Climate Modelling Center (27), ISSN 1288-1619,
Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.1464816, 2019.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg, E.
P., and Lampitt, R. S.: Attenuation of sinking particulate organic carbon
flux through the mesopelagic ocean, P. Natl. Acad. Sci. USA, 112,
1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon cycling in the northeast Pacific, Deep. Res., 34, 267–285, 1987.
Mayor, D. J., Gentleman, W. C., and Anderson, T. R.: Ocean carbon
sequestration: Particle fragmentation by copepods as a significant
unrecognised factor?, BioEssays, 42, 2000149,
https://doi.org/10.1002/bies.202000149, 2020.
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr.,
45, 569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000.
McDonnell, A. M. and Buesseler, K. O.: Variability in the average sinking
velocity of marine particles, Limnol. Oceanogr., 55, 2085–2096,
https://doi.org/10.4319/lo.2010.55.5.2085, 2010.
Mestre, M., Ruiz-González, C., Logares, R., Duarte, C. M., Gasol, J. M.,
and Sala, M. M.: Sinking particles promote vertical connectivity in the
ocean microbiome, P. Natl. Acad. Sci. USA, 115,
E6799–E6807, https://doi.org/10.1073/pnas.1802470115, 2018.
Moore, T. S., Dowell, M. D., and Franz, B. A.: Detection of coccolithophore
blooms in ocean color satellite imagery: A generalized approach for use with
multiple sensors, Remote Sens. Environ., 117, 249–263,
https://doi.org/10.1016/j.rse.2011.10.001, 2012.
Morán, X. A. G., Gasol, J. M., Arin, L., and Estrada, M.: A comparison
between glass fiber and membrane filters for the estimation of phytoplankton
POC and DOC production, Mar. Ecol. Prog. Ser., 187, 31–41, 1999.
Morel, A. and Ahn, Y. H.: Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters, J. Mar. Res., 48, 145–175, https://doi.org/10.1357/002224090784984632, 1990.
Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L., and Pilcher, D.:
Global ocean particulate organic carbon flux merged with satellite
parameters, Earth Syst. Sci. Data, 8, 531–541, https://doi.org/10.5194/essd-8-531-2016, 2016.
Mullin, M. M.: Size fractionation of particulate organic carbon in the
surface waters of the western Indian Ocean, Limnol. Oceanogr., 10,
459–462, https://doi.org/10.4319/lo.1965.10.3.0459, 1965.
NEMO TOP Working Group: Tracer in Ocean Paradigm (TOP) – The NEMO passive tracer engine,
Scientific Notes of Climate Modelling Center (28) [data set], ISSN 1288-1619,
Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.1471700, 2019.
Nencioli, F., Chang, G., Twardowski, M., and Dickey, T. D.: Optical
characterization of an eddy-induced diatom bloom west of the island of
Hawaii, Biogeosciences, 7, 151–162, https://doi.org/10.5194/bg-7-151-2010, 2010.
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetini,
I., and Mahadevan, A.: Eddy-driven subduction exports particulate organic
carbon from the spring bloom, Science, 348, 222–225,
https://doi.org/10.1126/science.1260062, 2015.
Organelli, E., Dall'Olmo, G., Brewin, R. J. W., Tarran, G. A., Boss, E., and
Bricaud, A.: The open-ocean missing backscattering is in the structural
complexity of particles, Nat. Commun., 9, 5439, https://doi.org/10.1038/s41467-018-07814-6,
2018.
Organelli, E., Dall'Olmo, G., Brewin, R. J. W., Nencioli, F., and Tarran, G.
A.: Drivers of spectral optical scattering by particles in the upper 500 m
of the Atlantic Ocean, Opt. Exp., 28, 34147, https://doi.org/10.1364/oe.408439,
2020.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Oubelkheir, K., Claustre, H., Sciandra, A., and Babin, M.: Bio-optical and
biogeochemical properties of different trophic regimes in oceanic waters,
Limnol. Oceanogr., 50, 1795–1809, https://doi.org/10.4319/lo.2005.50.6.1795, 2005.
Pachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record, N. R.,
Swan, B. K., Mathyer, M. E., Hallam, S. J., Lopez-Garcia, P., Takaki, Y.,
Nunoura, T., Woyke, T., Herndl, G. J., and Stepanauskas, R.: Major role of
nitrite-oxidizing bacteria in dark ocean carbon fixation, Science,
358, 1046–1051, https://doi.org/10.1126/science.aan8260, 2017.
Palevsky, H. I. and Doney, S. C.: How Choice of Depth Horizon Influences the
Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux,
Geophys. Res. Lett., 45, 4171–4179, https://doi.org/10.1029/2017GL076498, 2018.
Passow, U.: Switching perspectives: Do mineral fluxes determine particulate
organic carbon fluxes or vice versa?, Geochem. Geophy. Geosy.,
5, Q04002, https://doi.org/10.1029/2003GC000670, 2004.
Passow, U. and Carlson, C. A.: The biological pump in a high CO2 world,
Mar. Ecol. Prog. Ser., 470, 249–271, https://doi.org/10.3354/meps09985, 2012.
Poteau, A., Boss, E., and Claustre, H.: Particulate concentration and
seasonal dynamics in the mesopelagic ocean based on the backscattering
coefficient measured with Biogeochemical-Argo floats, Geophys. Res. Lett.,
44, 6933–6939, https://doi.org/10.1002/2017GL073949, 2017.
Resplandy, L., Lévy, M., and McGillicuddy, D. J.: Effects of Eddy-Driven
Subduction on Ocean Biological Carbon Pump, Global Biogeochem. Cy.,
33, 1071–1084, https://doi.org/10.1029/2018GB006125, 2019.
Roemmich, D., Alford, M. H., Claustre, H., Johnson, K. S., King, B., Moum,
J., Oke, P. R., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M.,
Suga, T., Wijffels, S. E., Zilberman, N., Bakker, D., Baringer, M. O.,
Belbeoch, M., Bittig, H. C., Boss, E., Calil, P., Carse, F., Carval, T.,
Chai, F., Conchubhair, D. O., D'Ortenzio, F., Dall'Olmo, G.,
Desbruyères, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland,
H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda,
S., Jayne, S., Jochum, M., Johnson, G. C., Kang, K. R., Kolodziejczyk, N.,
Koertzinger, A., Le Traon, P. Y., Lenn, Y. D., Maze, G., Mork, K. A.,
Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R.
R., Prakash, S., Riser, S., Schmechtig, C., Shroyer, E., Sterl, A., Sutton,
P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi,
A., Trull, T., Turton, J. D., Velez-Belchi, P. J., Walczowski, W., Wang, H.,
Wanninkhof, R., Waterhouse, A., Watson, A., Wilson, C., Wong, A. P., Xu, J.,
and Yasuda, I.: On the future of Argo: A global, full-depth,
multi-disciplinary array, Front. Mar. Sci., 6, 439,
https://doi.org/10.3389/fmars.2019.00439, 2019.
Sallée, J. B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vignes, L., Schmidtko, S., Naveira Garabato, A., Sutherland, P., and Kuusela, M.: Summertime increases in upper-ocean stratification and mixed-layer depth, Nature, 591, 592–598, https://doi.org/10.1038/s41586-021-03303-x, 2021.
Sarmiento, J. and Gruber, N.: Organic Matter Export and Remineralization, in:
Ocean Biogeochemical Dynamics, Princeton University Press,
Princeton, New Jersey, 173–226, https://doi.org/10.2307/j.ctt3fgxqx.8, 2006.
Sauzède, R., Johnson, J. E., Claustre, H., Camps-Valls, G., and Ruescas,
A. B.: Estimation of Oceanic Particulate Organic Carbon with Machine
Learning, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., 5,
949–956, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, 2020.
Sauzède, R., Johnson, J., Claustre, H., Camps-Valls, G., and Ruescas, A.:
MULTIOBS_GLO_BIO_BGC_3D_REP_015_010, Copernicus Monitoring Environment Marine Service (CMEMS) [Data set], https://marine.copernicus.eu/node/18802 (last access: 1 July 2021), 2021.
Schmechtig, C., Thierry, V., and Bio Argo Team: Argo Quality Control Manual for Biogeochemical Data, Version 1, 1st March 2016, Villefranche-sur-Mer, France, CNRS, UMR 7093, LOV, Observatoire Océanologique, Bio-Argo Group, 36 pp., https://doi.org/10.13155/40879, 2016.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., Dall@Olmo, G., and Boss, E.: Processing BGC–Argo particle backscattering at the DAC level, IFREMER for Argo Data Management, 15 pp., https://doi.org/10.13155/39459, 2018.
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly isopycnal upper‐ocean climatology with mixed layers, J. Geophys. Res.-Ocean., 118, 1658–1672, https://doi.org/10.1002/jgrc.20122, 2013.
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J.,
Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y.,
Nakano, H., Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y.,
Takano, Y., Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and
Yamamoto, A.: Tracking Improvement in Simulated Marine Biogeochemistry
Between CMIP5 and CMIP6, Curr. Clim. Chang. Rep., 6, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020.
Siegel, D. A. and Deuser, W. G.: Trajectories of sinking particles in the
Sargasso Sea: Modeling of statistical funnels above deep-ocean sediment
traps, Deep-Res. Pt. I, 44, 1519–1541,
https://doi.org/10.1016/S0967-0637(97)00028-9, 1997.
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld,
M. J., and Boyd, P. W.: Global assessment of ocean carbon export by combining
satellite observations and food-web model, Global Biogeochem. Cy., 28,
181–196, https://doi.org/10.1002/2013GB004743.Received, 2014.
Snoejis, P., Busse, S., and Potapova, M.: The importance of diatom cell size
in community analysis, J. Phycol., 38, 265–281, https://doi.org/10.1046/j.1529-8817.2002.01105.x, 2002.
Stemmann, L. and Boss, E.: Plankton and Particle Size and Packaging: From
Determining Optical Properties to Driving the Biological Pump, Ann. Rev.
Mar. Sci., 4, 263–290, https://doi.org/10.1146/annurev-marine-120710-100853, 2012.
Stemmann, L., Jackson, G. A., and Ianson, D.: A vertical model of particle
size distributions and fluxes in the midwater column that includes
biological and physical processes – Part I: Model formulation, Deep-Res.
Pt. I., 51, 865–884, https://doi.org/10.1016/j.dsr.2004.03.001,
2004a.
Stemmann, L., Jackson, G. A., and Gorsky, G.: A vertical model of particle
size distributions and fluxes in the midwater column that includes
biological and physical processes – Part II: Application to a three year
survey in the NW Mediterranean Sea, Deep-Res. Pt. I,
51, 885–908, https://doi.org/10.1016/j.dsr.2004.03.002, 2004b.
Stemmann, L., Prieur, L., Legendre, L., Taupier-Letage, I., Picheral, M.,
Guidi, L., and Gorsky, G.: Effects of frontal processes on marine aggregate
dynamics and fluxes: An interannual study in a permanent geostrophic front
(NW Mediterranean), J. Mar. Syst., 70, 1–20,
https://doi.org/10.1016/j.jmarsys.2007.02.014, 2008.
Stramska, M.: Particulate organic carbon in the global ocean derived from SeaWiFS ocean color, Deep-Sea Res. Pt. I, 56, 1459–1470, https://doi.org/10.1016/j.dsr.2009.04.009, 2009.
Stramski, D. and Kiefer, D.: Light scattering by microorganisms in the open
ocean, Prog. Oceanogr., 28, 343–383, https://doi.org/10.1016/0079-6611(91)90032-H,
1991.
Stramski, D., Reynolds, R. A., Kahru, M., and Mitchell, B. G.: Estimation of
particulate organic carbon in the ocean from satellite remote sensing,
Science, 285, 239–242, https://doi.org/10.1126/science.285.5425.239, 1999.
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R.,
Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., and
Claustre, H.: Relationships between the surface concentration of particulate
organic carbon and optical properties in the eastern South Pacific and
eastern Atlantic Oceans, Biogeosciences, 5, 171–201,
https://doi.org/10.5194/bg-5-171-2008, 2008.
Strubinger Sandoval, P., Dall'Olmo, G., Rasse, R., Ross, J., and Haines, K.:
Uncertainties of particulate organic carbon concentrations in the
mesopelagic zone of the Atlantic ocean, Open Res. Eur., 1, 43, https://doi.org/10.12688/openreseurope.13395.2, 2021.
Stukel, M. R., Ohman, M. D., Kelly, T. B., and Biard, T.: The roles of
suspension-feeding and flux-feeding zooplankton as gatekeepers of particle
flux into the mesopelagic ocean in the Northeast Pacific, Front. Mar. Sci.,
6, 1–16, https://doi.org/10.3389/fmars.2019.00397, 2019.
Takeuchi, M., Doubell, M. J., Jackson, G. A., Yukawa, M., Sagara, Y., and
Yamazaki, H.: Turbulence mediates marine aggregate formation and destruction
in the upper ocean, Sci. Rep., 9, 1–8, https://doi.org/10.1038/s41598-019-52470-5, 2019.
Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S., D'Ortenzio, F., and Conan, P.: Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry, Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, 2019.
Tonani, M., Pinardi, N., Dobricic, S., Pujol, I., and Fratianni, C.: A high-resolution free-surface model of the Mediterranean Sea, Ocean Sci., 4, 1–14, https://doi.org/10.5194/os-4-1-2008, 2008.
Trudnowska, E., Lacour, L., Ardyna, M., Rogge, A., Irisson, J. O., Waite, A.
M., Babin, M., and Stemmann, L.: Marine snow morphology illuminates the
evolution of phytoplankton blooms and determines their subsequent vertical
export, Nat. Commun., 12, 2816, https://doi.org/10.1038/s41467-021-22994-4, 2021.
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020.
Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H.,
and Zaneveld, J. R. V: A model for estimating bulk refractive index from the
optical backscattering ratio and the implications for understanding particle
composition in case I and case II waters, J. Geophys. Res., 106,
14129–14142, https://doi.org/10.1029/2000JC000404, 2001.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution
of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res., 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Ulloa, O., Sathyendranath, S., and Platt, T.: Effect of the particle-size
distribution on the backscattering ratio in seawater, Appl. Opt., 33,
7070, https://doi.org/10.1364/ao.33.007070, 1994.
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S.
F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.
A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121,
49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
Vaulot, D., Eikrem, W., Viprey, M., and Moreau, H.: The diversity of small
eukaryotic phytoplankton (≤ 3 µm) in marine ecosystems, FEMS
Microbiol. Rev., 32, 795–820, https://doi.org/10.1111/j.1574-6976.2008.00121.x,
2008.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean‐driven atmospheric CO2 changes, The carbon cycle and atmospheric CO2: natural variations Archean to present, Geophysical Monograph Series, edited by: Sundquist, E. T. and Broecker, W. S., 32, 99–110, https://doi.org/10.1029/GM032p0099, 1985.
Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.: Deep
ocean nutrients imply large latitudinal variation in particle transfer
efficiency, P. Natl. Acad. Sci. USA, 113, 8606–8611, https://doi.org/10.1073/pnas.1604414113,
2016.
Wong, A., Keeley, R., Carval, T., and Argo Data Management Team: Argo Quality
Control Manual for CTD and Trajectory Data, https://doi.org/10.13155/33951, 2021.
Woodstock, M. S., Sutton, T. T., Frank, T., and Zhang, Y.: An early warning
sign: trophic structure changes in the oceanic Gulf of Mexico from
2011–2018, Ecol. Model., 445, 109509, https://doi.org/10.1016/j.ecolmodel.2021.109509, 2021.
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Part of the organic matter produced by plankton in the upper ocean is exported to the deep...
Altmetrics
Final-revised paper
Preprint