Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1705-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1705-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
Department of Earth, Ocean and Atmospheric Sciences, University of
British Columbia, Vancouver, BC V6T 1Z4, Canada
Philippe D. Tortell
Department of Earth, Ocean and Atmospheric Sciences, University of
British Columbia, Vancouver, BC V6T 1Z4, Canada
Department of Botany, University of British Columbia, Vancouver, BC
V6T 1Z4, Canada
Related authors
Sacchidanandan Viruthasalam Pillai, M. Angelica Peña, Brandon J. McNabb, William J. Burt, and Philippe D. Tortell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2851, https://doi.org/10.5194/egusphere-2023-2851, 2023
Preprint archived
Short summary
Short summary
We investigated how hyperspectral optical data collected in the North Pacific can be used to determine the phytoplankton community composition. We used the optically derived infomation of the phytoplankton community to examine the phytoplankton sizes, oceanographic controls and links to other biogeochemical variables. This work was motivated by the upcoming launch of the PACE satellite by NASA and the increased availability of hyperspectral optical measurements in oceanographic studies.
Yayla Sezginer, Kate Schuler, Emily Speciale, Adrian Marchetti, Claire Till, Ralph Till, and Philippe Tortell
Biogeosciences, 22, 5257–5281, https://doi.org/10.5194/bg-22-5257-2025, https://doi.org/10.5194/bg-22-5257-2025, 2025
Short summary
Short summary
We recorded three metrics of photosynthesis in the California Current. Real-time observations of microalgae physiology and productivity revealed signs of iron limitation where the continental shelf rapidly dropped off. Iron limitation influenced how efficiently light was absorbed and used for carbon fixation but did not appear to affect net photosynthetic oxygen production. Our results offer useful insights into efforts to model carbon fixation rates from microalgae optical properties.
Sacchidanandan Viruthasalam Pillai, M. Angelica Peña, Brandon J. McNabb, William J. Burt, and Philippe D. Tortell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2851, https://doi.org/10.5194/egusphere-2023-2851, 2023
Preprint archived
Short summary
Short summary
We investigated how hyperspectral optical data collected in the North Pacific can be used to determine the phytoplankton community composition. We used the optically derived infomation of the phytoplankton community to examine the phytoplankton sizes, oceanographic controls and links to other biogeochemical variables. This work was motivated by the upcoming launch of the PACE satellite by NASA and the increased availability of hyperspectral optical measurements in oceanographic studies.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Allen, A. E., LaRoche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P.
J., Finazzi, G., Fernie, A. R., and Bowler, C.: Whole-cell response of the
pennate diatom Phaeodactylum tricornutum to iron starvation, P.
Natl. Acad. Sci. USA, 105, 10438–10443,
https://doi.org/10/cs9k8x, 2008.
Archer, S. D., Ragni, M., Webster, R., Airs, R. L., and Geider, R. J.:
Dimethyl sulfoniopropionate and dimethyl sulfide production in response to
photoinhibition in Emiliania huxleyi, Limnol. Oceanogr., 55,
1579–1589, https://doi.org/10/dvpwqb, 2010.
Asher, E. C., Merzouk, A., and Tortell, P. D.: Fine-scale spatial and
temporal variability of surface water dimethylsufide (DMS) concentrations
and sea–air fluxes in the NE Subarctic Pacific, Mar. Chem., 126,
63–75, https://doi.org/10/chmbhk, 2011.
Asher, E. C., Dacey, J. W., Ianson, D., Peña, A., and Tortell, P. D.:
Concentrations and cycling of DMS, DMSP, and DMSO in coastal and offshore
waters of the Subarctic Pacific during summer, 2010-2011, J. Geophys. Res.-Oceans, 122, 3269–3286, https://doi.org/10.1002/2016JC012465, 2017.
Ayers, G. P. and Cainey, J. M.: The CLAW hypothesis: a review of the major
developments, Environ. Chem., 4, 366–374, https://doi.org/10/b7p54b, 2007.
Bailey, K. E., Toole, D. A., Blomquist, B., Najjar, R. G., Huebert, B.,
Kieber, D. J., Kiene, R. P., Matrai, P., Westby, G. R., and del Valle, D.
A.: Dimethylsulfide production in Sargasso Sea eddies, Deep-Sea Res.
Pt. II, 55, 1491–1504,
https://doi.org/10/fnqb6j, 2008.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.:
Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem., 14,
315–337, https://doi.org/10/chmgt6, 1992.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42,
1–20, https://doi.org/10/cg5x4k, 1997.
Behrenfeld, M. J. and Milligan, A. J.: Photophysiological Expressions of
Iron Stress in Phytoplankton, Annu. Rev. Mar. Sci., 5, 217–246,
https://doi.org/10.1146/annurev-marine-121211-172356, 2013.
Behrenfeld, M. J., Westberry, T. K., Boss, E. S., O'Malley, R. T., Siegel, D. A., Wiggert, J. D., Franz, B. A., McClain, C. R., Feldman, G. C., Doney, S. C., Moore, J. K., Dall'Olmo, G., Milligan, A. J., Lima, I., and Mahowald, N.: Satellite-detected fluorescence reveals global physiology of ocean phytoplankton, Biogeosciences, 6, 779–794, https://doi.org/10.5194/bg-6-779-2009, 2009.
Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and Saltzman, E. S.: Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed, Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, 2013.
Belviso, S., Sciandra, A., and Copin-Montégut, C.: Mesoscale features of
surface water DMSP and DMS concentrations in the Atlantic Ocean off Morocco
and in the Mediterranean Sea, Deep-Sea Res. Pt. I, 50, 543–555,
https://doi.org/10.1016/S0967-0637(03)00032-3, 2003.
Blomquist, B. W., Brumer, S. E., Fairall, C. W., Huebert, B. J., Zappa, C.
J., Brooks, I. M., Yang, M., Bariteau, L., Prytherch, J., Hare, J. E.,
Czerski, H., Matei, A., and Pascal, R. W.: Wind Speed and Sea State
Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas
Exchange Study (HiWinGS), J. Geophys. Res.-Oceans, 122, 8034–8062, https://doi.org/10/gcmxd3, 2017.
Bock, J., Michou, M., Nabat, P., Abe, M., Mulcahy, J. P., Olivié, D. J. L., Schwinger, J., Suntharalingam, P., Tjiputra, J., van Hulten, M., Watanabe, M., Yool, A., and Séférian, R.: Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models, Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, 2021.
Bouillon, R.-C. and Miller, W. L.: Determination of apparent quantum yield
spectra of DMS photo-degradation in an in situ iron-induced Northeast
Pacific Ocean bloom: AQY of DMS in an iron-induced bloom, Geophys. Res.
Lett., 31, L06310, https://doi.org/10/d96wkn, 2004.
Bouillon, R.-C. and Miller, W. L.: Photodegradation of Dimethyl Sulfide
(DMS) in Natural Waters: Laboratory Assessment of the
Nitrate-Photolysis-Induced DMS Oxidation, Environ. Sci. Technol., 39,
9471–9477, https://doi.org/10/d2j84c, 2005.
Boyd, P. and Harrison, P. J.: Phytoplankton dynamics in the NE subarctic
Pacific, Deep-Sea Res. Pt. II, 46,
2405–2432, https://doi.org/10/fkg4mz, 1999.
Boyd, P. W., Law, C. S., Wong, C. S., Nojiri, Y., Tsuda, A., Levasseur, M.,
Takeda, S., Rivkin, R., Harrison, P. J., Strzepek, R., Gower, J., McKay, R.
M., Abraham, E., Arychuk, M., Barwell-Clarke, J., Crawford, W., Crawford,
D., Hale, M., Harada, K., Johnson, K., Kiyosawa, H., Kudo, I., Marchetti,
A., Miller, W., Needoba, J., Nishioka, J., Ogawa, H., Page, J., Robert, M.,
Saito, H., Sastri, A., Sherry, N., Soutar, T., Sutherland, N., Taira, Y.,
Whitney, F., Wong, S.-K. E., and Yoshimura, T.: The decline and fate of an
iron-induced subarctic phytoplankton bloom, Nature, 428, 549–553,
https://doi.org/10/fkgnf4, 2004.
Brieman, L.: Random Forests, Mach. Learn. 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brimblecombe, P. and Shooter, D.: Photo-oxidation of dimethylsulphide in
aqueous solution, Mar. Chem., 19, 343–353, https://doi.org/10/bqwpc9,
1986.
Bucciarelli, E., Ridame, C., Sunda, W. G., Dimier-Hugueney, C., Cheize, M.,
and Belviso, S.: Increased intracellular concentrations of DMSP and DMSO in
iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium
erythraeum, Limnol. Oceanogr., 58, 1667–1679,
https://doi.org/10.4319/lo.2013.58.5.1667, 2013.
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm
for Bound Constrained Optimization, SIAM J. Sci. Comput., 16, 1190–1208,
https://doi.org/10/bpjm24, 1995.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Cullen, J. T., Chong, M., and Ianson, D.: British Columbian continental
shelf as a source of dissolved iron to the subarctic northeast Pacific
Ocean, Global Biogeochem. Cy., 23, GB4012, https://doi.org/10/b489x8, 2009.
Dacey, J. W. H. and Wakeham, S. G.: Oceanic Dimethylsulfide: Production
During Zooplankton Grazing on Phytoplankton, Science, 233, 1314–1316,
https://doi.org/10.1126/science.233.4770.1314, 1986.
del Valle, D. A., Kieber, D. J., Bisgrove, J., and Kiene, R. P.:
Light-Stimulated Production of Dissolved DMSO by a Particle-Associated
Process in the Ross Sea, Antarctica, Limnol. Oceanogr., 52,
2456–2466, https://doi.org/10.4319/lo.2007.52.6.2456, 2007.
Dickson, D. M. J. and Kirst, G. O.: Osmotic Adjustment in Marine Eukaryotic
Algae: The Role of Inorganic Ions, Quaternary Ammonium, Tertiary Sulphonium
and Carbohydrate Solutes, New Phytol., 106, 645–655,
https://doi.org/10.1111/j.1469-8137.1987.tb00165.x, 1987.
Fiechter, J. and Moore, A. M.: Iron limitation impact on eddy-induced
ecosystem variability in the coastal Gulf of Alaska, J. Marine
Syst., 92, 1–15, https://doi.org/10/bvqv4d, 2012.
Franklin, D., Steinke, M., Young, J., Probert, I., and Malin, G.:
Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and
dimethylsulphide (DMS) in 10 species of coccolithophore, Mar. Ecol.-Prog.
Ser., 410, 13–23, https://doi.org/10/fk7hmj, 2010.
Freeland, H. J., Crawford, W. R., and Thomson, R. E.: Currents along the
pacific coast of Canada, Atmosphere-Ocean, 22, 151–172,
https://doi.org/10.1080/07055900.1984.9649191, 1984.
Galí, M., Simó, R., Vila-Costa, M., Ruiz-González, C., Gasol,
J. M., and Matrai, P.: Diel patterns of oceanic dimethylsulfide (DMS)
cycling: Microbial and physical drivers, Global Biogeochem. Cy., 27,
620–636, https://doi.org/10.1002/gbc.20047, 2013.
Galí, M., Kieber, D. J., Romera-Castillo, C., Kinsey, J. D., Devred,
E., Pérez, G. L., Westby, G. R., Marrasé, C., Babin, M., Levasseur,
M., Duarte, C. M., Agustí, S., and Simó, R.: CDOM Sources and
Photobleaching Control Quantum Yields for Oceanic DMS Photolysis, Environ.
Sci. Technol., 50, 13361–13370, https://doi.org/10/f9jg2w, 2016.
Galí, M., Levasseur, M., Devred, E., Simó, R., and Babin, M.: Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales, Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, 2018.
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, M. M., Zweng, M. M., Mishonov, A. V., Baranova, O. K., and
Seidov, D.: World Ocean Atlas 2018, Vol. 4, Dissolved Inorganic Nutrients
(phosphate, nitrate and nitrate + nitrite, silicate), edited by: Mishonov, A., NOAA Atlas NESDIS 84, 35 pp., 2019.
Gardner, M. W. and Dorling, S. R.: Artificial neural networks (the
multilayer perceptron) – a review of applications in the atmospheric
sciences, Atmos. Environ., 32, 2627–2636,
https://doi.org/10/ft4hjb, 1998.
Goddijn-Murphy, L., Woolf, D. K., and Marandino, C.: Space-based retrievals
of air-sea gas transfer velocities using altimeters: Calibration for
dimethyl sulfide, J. Geophys. Res.-Oceans, 117, C08028, https://doi.org/10/gm8ngj, 2012.
Green, D. H., Shenoy, D. M., Hart, M. C., and Hatton, A. D.: Coupling of
Dimethylsulfide Oxidation to Biomass Production by a Marine Flavobacterium,
Appl. Environ. Microb., 77, 3137–3140, https://doi.org/10/cp6r33, 2011.
Hatton, A. D. and Wilson, S. T.: Particulate dimethylsulphoxide and
dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal
waters, Aquat. Sci., 69, 330–340, https://doi.org/10/dbxk6n, 2007.
Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A., and Green, D. H.:
Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community
associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea,
Biogeochemistry, 110, 131–146, https://doi.org/10/ggnh23, 2012.
Hegg, D. A., Radke, L. F., and Hobbs, P. V.: Measurements of Aitken nuclei
and cloud condensation nuclei in the marine atmosphere and their relation to
the DMS-Cloud-climate hypothesis, J. Geophys. Res.-Atmos., 96, 18727–18733,
https://doi.org/10/d6fwx9, 1991.
Herr, A. E., Kiene, R. P., Dacey, J. W. H., and Tortell, P. D.: Patterns and drivers of dimethylsulfide concentration in the northeast subarctic Pacific across multiple spatial and temporal scales, Biogeosciences, 16, 1729–1754, https://doi.org/10.5194/bg-16-1729-2019, 2019.
Herr, A. E., Dacey, J. W. H., Kiene, R. P., McCulloch, R. D., Schuback, N.,
and Tortell, P. D.: Potential roles of dimethysulfoxide in regional sulfur
cycling and phytoplankton physiological ecology in the NE Subarctic Pacific,
Limnol. Oceanogr., 66, 76–94, https://doi.org/10/ghfstm, 2020.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Humphries, G. R. W., Deal, C. J., Elliott, S., and Huettmann, F.: Spatial
predictions of sea surface dimethylsulfide concentrations in the high
arctic, Biogeochemistry, 110, 287–301, https://doi.org/10/fx778z, 2012.
Kiene, R. P. and Linn, L. J.: The fate of dissolved
dimethylsulfoniopropionate (DMSP) in seawater: Tracer studies using
35S-DMSP, Geochim. Cosmochim. Ac., 64, 2797–2810,
https://doi.org/10.1016/S0016-7037(00)00399-9, 2000.
Kinsey, J. D., Kieber, D. J., and Neale, P. J.: Effects of iron limitation
and UV radiation on Phaeocystis antarctica growth and
dimethylsulfoniopropionate, dimethylsulfoxide and acrylate concentrations,
Environ. Chem., 13, 195–211, https://doi.org/10.1071/EN14275, 2016.
Kirst, G. O., Thiel, C., Wolff, H., Nothnagel, J., Wanzek, M., and Ulmke,
R.: Dimethylsulfoniopropionate (DMSP) in icealgae and its possible
biological role, Mar. Chem., 35, 381–388,
https://doi.org/10.1016/S0304-4203(09)90030-5, 1991.
Korhonen, H., Carslaw, K. S., Spracklen, D. V., Mann, G. W., and Woodhouse,
M. T.: Influence of oceanic dimethyl sulfide emissions on cloud condensation
nuclei concentrations and seasonality over the remote Southern Hemisphere
oceans: A global model study, J. Geophys. Res.-Atmos., 113, D15204,
https://doi.org/10/cfrz46, 2008.
Ksionzek, K. B., Lechtenfeld, O. J., McCallister, S. L., Schmitt-Kopplin,
P., Geuer, J. K., Geibert, W., and Koch, B. P.: Dissolved organic sulfur in
the ocean: Biogeochemistry of a petagram inventory, Science, 354, 456–459,
https://doi.org/10.1126/science.aaf7796, 2016.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem.
Cy., 25, GB1004, https://doi.org/10/dbqjrm, 2011 (data available at: https://www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/, last access: 14 March 2022).
Levasseur, M., Scarratt, M. G., Michaud, S., Merzouk, A., Wong, C. S.,
Arychuk, M., Richardson, W., Rivkin, R. B., Hale, M., Wong, E., Marchetti,
A., and Kiyosawa, H.: DMSP and DMS dynamics during a mesoscale iron
fertilization experiment in the Northeast Pacific-Part I: Temporal and
vertical distributions, Deep-Sea Res. Pt. II, 53, 2353–2369, https://doi.org/10.1016/j.dsr2.2006.05.023,
2006.
Li, Z. and Cassar, N.: Satellite estimates of net community production based
on observations and comparison to other estimates, Global
Biogeochem. Cy., 30, 735–752, https://doi.org/10/f8v6bh, 2016.
Lidbury, I., Kröber, E., Zhang, Z., Zhu, Y., Murrell, J. C., Chen, Y.,
and Schäfer, H.: A mechanism for bacterial transformation of
dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic
sulfur cycle, Environ. Microbiol., 18, 2754–2766,
https://doi.org/10.1111/1462-2920.13354, 2016.
Lizotte, M., Levasseur, M., Michaud, S., Scarratt, M. G., Merzouk, A.,
Gosselin, M., Pommier, J., Rivkin, R. B., and Kiene, R. P.: Macroscale
patterns of the biological cycling of dimethylsulfoniopropionate (DMSP) and
dimethylsulfide (DMS) in the Northwest Atlantic, Biogeochemistry, 110,
183–200, https://doi.org/10/fx9svt, 2012.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P.,
Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D.,
Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W.,
Paytan, A., Prospero, J. M., Shank, L. M., and Siefert, R. L.: Atmospheric
Iron Deposition: Global Distribution, Variability, and Human Perturbations,
Annu. Rev. Mar. Sci., 1, 245–278, https://doi.org/10/fsn8tj, 2009.
Malin, G., Wilson, W. H., Bratbak, G., Liss, P. S., and Mann, N. H.:
Elevated production of dimethylsulfide resulting from viral infection of
cultures of Phaeocystis pouchetii, Limnol. Oceanogr., 43,
1389–1393, https://doi.org/10/bw7vjf, 1998.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10/bvtg6v, 1988.
McNabb, B.: bjmcnabb/DMS_Climatology: DMS_Climatology publication (v1.0.0), Zenodo [code, data set], https://doi.org/10.5281/zenodo.6354169, 2022.
Merzouk, A., Levasseur, M., Scarratt, M. G., Michaud, S., Rivkin, R. B.,
Hale, M. S., Kiene, R. P., Price, N. M., and Li, W. K. W.: DMSP and DMS
dynamics during a mesoscale iron fertilization experiment in the Northeast
Pacific-Part II: Biological cycling, Deep-Sea Res. Pt. II, 53, 2370–2383,
https://doi.org/10.1016/j.dsr2.2006.05.022, 2006.
Nelson, N. B. and Siegel, D. A.: The Global Distribution and Dynamics of
Chromophoric Dissolved Organic Matter, Annu. Rev. Mar. Sci., 5, 447–476,
https://doi.org/10/dcwcbk, 2013.
Nemcek, N., Ianson, D., and Tortell, P. D.: A high-resolution survey of DMS,
CO2, and distributions in productive coastal waters, Global
Biogeochem. Cy., 22, 1–13, https://doi.org/10.1029/2006gb002879, 2008.
Nevitt, G. A.: Sensory ecology on the high seas: the odor world of the
procellariiform seabirds, J. Exp. Biol., 211, 1706–1713,
https://doi.org/10/d2rdz3, 2008.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387,
https://doi.org/10/d9dztz, 2000.
Okkonen, S. R., Jacobs, G. A., Joseph Metzger, E., Hurlburt, H. E., and
Shriver, J. F.: Mesoscale variability in the boundary currents of the Alaska
Gyre, Cont. Shelf Res., 21, 1219–1236, https://doi.org/10/dc2n79,
2001.
Roshan, S. and DeVries, T.: Efficient dissolved organic carbon production
and export in the oligotrophic ocean, Nat. Commun., 8, 2036,
https://doi.org/10/gcrfdg, 2017.
Royer, S.-J., Levasseur, M., Lizotte, M., Arychuk, M., Scarratt, M. G.,
Wong, C. S., Lovejoy, C., Robert, M., Johnson, K., Peña, A., Michaud,
S., and Kiene, R. P.: Microbial dimethylsulfoniopropionate (DMSP) dynamics
along a natural iron gradient in the northeast subarctic Pacific, Limnol. Oceanogr., 55,
1614–1626, https://doi.org/10/ch6cqb, 2010.
Royer, S.-J., Galí Tàpias, M., Saltzman, E., Mccormick, C., Bell,
T., and Simó, R.: Development and validation of a shipboard system for
measuring high-resolution vertical profiles of aqueous dimethylsulfide
concentrations using chemical ionisation mass spectrometry, Environ.
Chem., 11, 309–317, https://doi.org/10/f6c3qp, 2014.
Royer, S.-J., Mahajan, A. S., Galí, M., Saltzman, E., and Simó, R.:
Small-scale variability patterns of DMS and phytoplankton in surface waters
of the tropical and subtropical Atlantic, Indian, and Pacific Oceans,
Geophys. Res. Lett., 42, 475–483, https://doi.org/10/gkxzf6, 2015.
Royer, S.-J., Galí, M., Mahajan, A. S., Ross, O. N., Pérez, G. L.,
Saltzman, E. S., and Simó, R.: A high-resolution time-depth view of
dimethylsulphide cycling in the surface sea, Sci. Rep.-UK, 6, 32325,
https://doi.org/10.1038/srep32325, 2016.
Saltzman, E. S., De Bruyn, W. J., Lawler, M. J., Marandino, C. A., and McCormick, C. A.: A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater, Ocean Sci., 5, 537–546, https://doi.org/10.5194/os-5-537-2009, 2009.
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly
isopycnal upper-ocean climatology with mixed layers, J. Geophys. Res.-Oceans, 118, 1658–1672, https://doi.org/10/ggqp4h, 2013.
Sheehan, C. E. and Petrou, K.: Dimethylated sulfur production in batch
cultures of Southern Ocean phytoplankton, Biogeochemistry, 147, 53–69,
https://doi.org/10/ghjqgm, 2020.
Simó, R. and Dachs, J.: Global ocean emission of dimethylsulfide
predicted from biogeophysical data, Global Biogeochem. Cy., 16,
26-1–26-10, https://doi.org/10/cmqkh2, 2002.
Simó, R. and Vila-Costa, M.: Ubiquity of algal dimethylsulfoxide in the
surface ocean: Geographic and temporal distribution patterns, Mar.
Chem., 100, 136–146, https://doi.org/10/bg5bph, 2006.
Slezak, D., Brugge, A., and Herndl, G.: Impact of solar radiation on the
biological removal of dimethylsulfoniopropionate and dimethylsulfide in
marine surface waters, Aquat. Microb. Ecol., 25, 87–97,
https://doi.org/10/ftjwjd, 2001.
Spiese, C. and Tatarkov, E.: Dimethylsulfoxide reduction activity is linked
to nutrient stress in Thalassiosira pseudonana NCMA 1335, Mar. Ecol.-Prog.
Ser., 507, 31–38, https://doi.org/10.3354/meps10842, 2014.
Spiese, C. E., Kieber, D. J., Nomura, C. T., and Kiene, R. P.: Reduction of
dimethylsulfoxide to dimethylsulfide by marine phytoplankton, Limnol.
Oceanogr., 54, 560–570, https://doi.org/10.4319/lo.2009.54.2.0560, 2009.
Stefels, J.: Physiological aspects of the production and conversion of DMSP
in marine algae and higher plants, J. Sea Res., 43, 183–197,
https://doi.org/10.1016/S1385-1101(00)00030-7, 2000.
Steiner, N. S., Robert, M., Arychuk, M., Levasseur, M. L., Merzouk, A.,
Peña, M. A., Richardson, W. A., and Tortell, P. D.: Evaluating DMS
measurements and model results in the Northeast subarctic Pacific from
1996–2010, Biogeochemistry, 110, 269–285, https://doi.org/10/b99pfb, 2012.
Strzepek, R. F. and Harrison, P. J.: Photosynthetic architecture differs in
coastal and oceanic diatoms, Nature, 431, 689–692,
https://doi.org/10/fk2fs7, 2004.
Sunda, W. G., Kieber, D., and Kiene, R. P.: An antioxidant function of DMSP
and DMS in marine algae Oceanic dimethylsulfide (DMS) photolysis, Nature,
418, 317–320, https://doi.org/10.1038/nature00851, 2002.
Taalba, A., Xie, H., Scarratt, M. G., Bélanger, S., and Levasseur, M.: Photooxidation of dimethylsulfide (DMS) in the Canadian Arctic, Biogeosciences, 10, 6793–6806, https://doi.org/10.5194/bg-10-6793-2013, 2013.
Toole, D. A., Slezak, D., Kiene, R. P., Kieber, D. J., and Siegel, D. A.:
Effects of solar radiation on dimethylsulfide cycling in the western
Atlantic Ocean, Deep-Sea Res. Pt. I, 53,
136–153, https://doi.org/10/brct7m, 2006.
Tortell, P. D.: Dissolved gas measurements in oceanic waters made by
membrane inlet mass spectrometry, Limnol. Oceanogr.-Meth., 3,
24–37, https://doi.org/10/drmjv5, 2005a.
Tortell, P. D.: Small-scale heterogeneity of dissolved gas concentrations in
marine continental shelf waters, Geochem. Geophy. Geosy., 6, Q11M04,
https://doi.org/10/bgqvs9, 2005b.
Vallina, S. M. and Simó, R.: Strong relationship between DMS and the
solar radiation dose over the global surface ocean, Science, 315, 506–508,
https://doi.org/10.1126/science.1133680, 2007.
Vance, T., Davidson, A., Thomson, P., Levasseur, M., Lizotte, M., Curran,
M., and Jones, G.: Rapid DMSP production by an Antarctic phytoplankton
community exposed to natural surface irradiances in late spring, Aquat.
Microb. Ecol., 71, 117–129, https://doi.org/10/gmw5hv, 2013.
Vila-Costa, M., Valle, D. A. D., González, J. M., Slezak, D., Kiene, R.
P., Sánchez, O., and Simó, R.: Phylogenetic identification and
metabolism of marine dimethylsulfide-consuming bacteria, Environ. Microbiol., 8, 2189–2200,
https://doi.org/10.1111/j.1462-2920.2006.01102.x, 2006.
Wang, W.-L., Song, G., Primeau, F., Saltzman, E. S., Bell, T. G., and Moore, J. K.: Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network, Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, 2020.
Watanabe, Y. W., Yoshinari, H., Sakamoto, A., Nakano, Y., Kasamatsu, N.,
Midorikawa, T., and Ono, T.: Reconstruction of sea surface dimethylsulfide
in the North Pacific during 1970s to 2000s, Mar. Chem., 103, 347–358,
https://doi.org/10/bzz33z, 2007.
Webb, A. L., van Leeuwe, M. A., den Os, D., Meredith, M. P., Venables,
H. J., and Stefels, J.: Extreme spikes in DMS flux double estimates of biogenic
sulfur export from the Antarctic coastal zone to the atmosphere, Sci. Rep.-UK,
9, 2233, https://doi.org/10/ghjqgc, 2019.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 4584,
https://doi.org/10/gf9pc7, 2019.
Westberry, T. K., Behrenfeld, M. J., Milligan, A. J., and Doney, S. C.:
Retrospective satellite ocean color analysis of purposeful and natural ocean
iron fertilization, Deep-Sea Res. Pt. I,
73, 1–16, https://doi.org/10/f4rcbn, 2013.
Westberry, T. K., Shi, Y. R., Yu, H., Behrenfeld, M. J., and Remer, L. A.:
Satellite-Detected Ocean Ecosystem Response to Volcanic Eruptions in the
Subarctic Northeast Pacific Ocean, Geophys. Res. Lett., 46, 11270–11280,
https://doi.org/10/ggr9ms, 2019.
Whitney, F. A., Crawford, W. R., and Harrison, P. J.: Physical processes
that enhance nutrient transport and primary productivity in the coastal and
open ocean of the subarctic NE Pacific, Deep-Sea Res. Pt. II, 52, 681–706, https://doi.org/10/dkn9sn, 2005.
Yang, S., Chang, B. X., Warner, M. J., Weber, T. S., Bourbonnais, A. M.,
Santoro, A. E., Kock, A., Sonnerup, R. E., Bullister, J. L., Wilson, S. T.,
and Bianchi, D.: Global reconstruction reduces the uncertainty of oceanic
nitrous oxide emissions and reveals a vigorous seasonal cycle, P. Natl.
Acad. Sci. USA, 117, 11954–11960, https://doi.org/10/ghc3hw, 2020.
Zavarsky, A., Goddijn-Murphy, L., Steinhoff, T., and Marandino, C. A.:
Bubble-Mediated Gas Transfer and Gas Transfer Suppression of DMS and CO2, J. Geophys. Res.-Atmos.,
123, 6624–6647, https://doi.org/10.1029/2017JD028071, 2018.
Zeng, C., Rosengard, S. Z., Burt, W., Peña, M. A., Nemcek, N., Zeng, T.,
Arrigo, K. R., and Tortell, P. D.: Optically-derived estimates of
phytoplankton size class and taxonomic group biomass in the Eastern
Subarctic Pacific Ocean, Deep-Sea Res. Pt. I, 136, 107–118, https://doi.org/10.1016/j.dsr.2018.04.001, 2018.
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can...
Altmetrics
Final-revised paper
Preprint