Articles | Volume 19, issue 8
Biogeosciences, 19, 2211–2234, 2022
https://doi.org/10.5194/bg-19-2211-2022
Biogeosciences, 19, 2211–2234, 2022
https://doi.org/10.5194/bg-19-2211-2022
Research article
25 Apr 2022
Research article | 25 Apr 2022

Modelling submerged biofouled microplastics and their vertical trajectories

Reint Fischer et al.

Related authors

Detecting most effective cleanup locations using network theory to reduce marine plastic debris: A case study in the Galapagos Marine Reserve
Stefanie Leonore Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2022-426,https://doi.org/10.5194/egusphere-2022-426, 2022
Short summary
Contrasting projection of the ENSO-driven CO2 flux variability in the Equatorial Pacific under high warming scenario
Pradeebane Vaittinada Ayar, Jerry Tjiputra, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, and Andrew Yool
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-12,https://doi.org/10.5194/esd-2022-12, 2022
Revised manuscript under review for ESD
Short summary
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Stephanie Woodward, Alistair Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-228,https://doi.org/10.5194/acp-2022-228, 2022
Preprint under review for ACP
Short summary
Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022,https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Using machine learning and beach cleanup data to explain litter quantities along the Dutch North Sea coast
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022,https://doi.org/10.5194/os-18-269-2022, 2022
Short summary

Related subject area

Biogeophysics: Physical - Biological Coupling
A Bayesian sequential updating approach to predict phenology of silage maize
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022,https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Using an oceanographic model to investigate the mystery of the missing puerulus
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022,https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Climate pathways behind phytoplankton-induced atmospheric warming
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022,https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021,https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Johannes Vogel, Eva Paton, and Valentin Aich
Biogeosciences, 18, 5903–5927, https://doi.org/10.5194/bg-18-5903-2021,https://doi.org/10.5194/bg-18-5903-2021, 2021
Short summary

Cited articles

Amaral-Zettler, L. A., Zettler, E. R., Slikas, B., Boyd, G. D., Melvin, D. W., Morrall, C. E., Proskurowski, G., and Mincer, T. J.: The biogeography of the Plastisphere: Implications for policy, Front. Ecol. Environ., 13, 541–546, https://doi.org/10.1890/150017, 2015. a
Amaral-Zettler, L. A., Zettler, E. R., and Mincer, T. J.: Ecology of the plastisphere, Nat. Rev. Microbiol., 18, 139–151, https://doi.org/10.1038/s41579-019-0308-0, 2020. a, b
Amaral-Zettler, L. A., Ballerini, T., Zettler, E. R., Asbun, A. A., Adame, A., Casotti, R., Dumontet, B., Donnarumma, V., Engelmann, J. C., Frère, L., Mansui, J., Philippon, M., Pietrelli, L., and Sighicelli, M.: Diversity and predicted inter- and intra-domain interactions in the Mediterranean Plastisphere, Environ. Pollut., 286, 117439, https://doi.org/10.1016/j.envpol.2021.117439, 2021a. a, b
Amaral-Zettler, L. A., Zettler, E. R., Mincer, T. J., Klaassen, M. A., and Gallager, S. M.: Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point?, Water Res., 201, 117289, https://doi.org/10.1016/j.watres.2021.117289, 2021b. a, b, c, d, e, f
Bernard, O. and Rémond, B.: Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresour. Technol., 123, 520–527, https://doi.org/10.1016/j.biortech.2012.07.022, 2012. a
Download
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Altmetrics
Final-revised paper
Preprint