Research article
25 May 2022
Research article
| 25 May 2022
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Coraline Leseurre et al.
Related authors
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-402, https://doi.org/10.5194/essd-2022-402, 2022
Preprint under review for ESSD
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper-ocean, each with its own observing capability. The article first describes the data calibration and validation, and second their cross-validation using a hierarchy of instruments, and estimating the uncertainty.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Anastasiia Tarasenko, Alexandre Supply, Nikita Kusse-Tiuz, Vladimir Ivanov, Mikhail Makhotin, Jean Tournadre, Bertrand Chapron, Jacqueline Boutin, Nicolas Kolodziejczyk, and Gilles Reverdin
Ocean Sci., 17, 221–247, https://doi.org/10.5194/os-17-221-2021, https://doi.org/10.5194/os-17-221-2021, 2021
Short summary
Short summary
Data from the ARKTIKA-2018 expedition and new satellite data help us to follow rapid changes in the upper layer of the Laptev and East Siberian seas (LS, ESS) in summer 2018. With satellite-derived surface temperature, an improved SMOS salinity, and wind, we study how the fresh river water is mixed with cold sea water and ice-melted water at small time and spatial scales. The wind pushes fresh water northward and northeastward, close to and under the ice, forcing it into the deep Arctic Ocean.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Manon Tonnard, Hélène Planquette, Andrew R. Bowie, Pier van der Merwe, Morgane Gallinari, Floriane Desprez de Gésincourt, Yoan Germain, Arthur Gourain, Marion Benetti, Gilles Reverdin, Paul Tréguer, Julia Boutorh, Marie Cheize, François Lacan, Jan-Lukas Menzel Barraqueta, Leonardo Pereira-Contreira, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, https://doi.org/10.5194/bg-17-917-2020, 2020
Short summary
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
Tanguy Szekely, Jérôme Gourrion, Sylvie Pouliquen, and Gilles Reverdin
Ocean Sci., 15, 1601–1614, https://doi.org/10.5194/os-15-1601-2019, https://doi.org/10.5194/os-15-1601-2019, 2019
Short summary
Short summary
This study is an attempt to validate the quality of a global temperature and salinity dataset by estimating the effects of measurement errors on the estimated ocean variability. The study shows that the effects of the measurement errors decrease during the quality control process and are almost null for the delayed-time-mode quality-controlled dataset.
Camille Risi, Joseph Galewsky, Gilles Reverdin, and Florent Brient
Atmos. Chem. Phys., 19, 12235–12260, https://doi.org/10.5194/acp-19-12235-2019, https://doi.org/10.5194/acp-19-12235-2019, 2019
Short summary
Short summary
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen atom is replaced by a deuterium atom). These different molecules are called water isotopes. The isotopic composition of water vapor can potentially provide information about physical processes along the water cycle, but the factors controlling it are complex. As a first step, we propose an equation to predict the water vapor isotopic composition near the surface of tropical oceans.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Gilles Reverdin, Hedinn Valdimarsson, Gael Alory, Denis Diverres, Francis Bringas, Gustavo Goni, Lars Heilmann, Leon Chafik, Tanguy Szekely, and Andrew R. Friedman
Earth Syst. Sci. Data, 10, 1403–1415, https://doi.org/10.5194/essd-10-1403-2018, https://doi.org/10.5194/essd-10-1403-2018, 2018
Short summary
Short summary
We report monthly time series of surface temperature, salinity, and density in the North Atlantic subpolar gyre in 1993–2017 from hydrographical data collected in particular from thermosalinographs onboard selected ships of opportunity. Most of the time, this data set reproduces well the large-scale variability, except for a few seasons with limited sampling, in particular in winter along western Greenland or northeast of Newfoundland in the presence of sea ice.
Related subject area
Biogeochemistry: Open Ocean
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Global nutrient cycling by commercially targeted marine fish
Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
The impact of the South-East Madagascar Bloom on the oceanic CO2 sink
Nitrite regeneration in the oligotrophic Atlantic Ocean
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats
Acidification of the Nordic Seas
Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm
Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean
Oxygen export to the deep ocean following Labrador Sea Water formation
N2 fixation in the Mediterranean Sea related to the composition of the diazotrophic community and impact of dust under present and future environmental conditions
Dissolution of a submarine carbonate platform by a submerged lake of acidic seawater
Seasonal flux patterns and carbon transport from low-oxygen eddies at the Cape Verde Ocean Observatory: lessons learned from a time series sediment trap study (2009–2016)
Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition
Long-distance particle transport to the central Ionian Sea
Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment
Phosphorus cycling in the upper waters of the Mediterranean Sea (PEACETIME cruise): relative contribution of external and internal sources
Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea
Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system
Impact of dust addition on the metabolism of Mediterranean plankton communities and carbon export under present and future conditions of pH and temperature
Comparing CLE-AdCSV applications using SA and TAC to determine the Fe-binding characteristics of model ligands in seawater
Impact of dust addition on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview
Reviews and syntheses: Trends in primary production in the Bay of Bengal – is it at a tipping point?
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section
Carbon export and fate beneath a dynamic upwelled filament off the California coast
Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach
On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study
Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean
Oxygen budget of the north-western Mediterranean deep- convection region
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat
A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Darren R. Clark, Andrew P. Rees, Charissa M. Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences, 19, 1355–1376, https://doi.org/10.5194/bg-19-1355-2022, https://doi.org/10.5194/bg-19-1355-2022, 2022
Short summary
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Bo Liu, Katharina D. Six, and Tatiana Ilyina
Biogeosciences, 18, 4389–4429, https://doi.org/10.5194/bg-18-4389-2021, https://doi.org/10.5194/bg-18-4389-2021, 2021
Short summary
Short summary
We incorporate a new representation of the stable carbon isotope 13C in a global ocean biogeochemistry model. The model well reproduces the present-day 13C observations. We find a recent observation-based estimate of the oceanic 13C Suess effect (the decrease in 13C/12C ratio due to uptake of anthropogenic CO2; 13CSE) possibly underestimates 13CSE by 0.1–0.26 per mil. The new model will aid in better understanding the past ocean state via comparison to 13C/12C measurements from sediment cores.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Hannah L. Bourne, James K. B. Bishop, Elizabeth J. Connors, and Todd J. Wood
Biogeosciences, 18, 3053–3086, https://doi.org/10.5194/bg-18-3053-2021, https://doi.org/10.5194/bg-18-3053-2021, 2021
Short summary
Short summary
To learn how the biological carbon pump works in productive coastal upwelling systems, four autonomous carbon flux explorers measured carbon flux through the twilight zone beneath an offshore-flowing filament of biologically productive water. Strikingly different particle classes dominated the carbon fluxes during successive stages of the filament evolution over 30 d. Both flux and transfer efficiency were far greater than expected, suggesting an outsized filament impact in California waters.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Christopher Holder and Anand Gnanadesikan
Biogeosciences, 18, 1941–1970, https://doi.org/10.5194/bg-18-1941-2021, https://doi.org/10.5194/bg-18-1941-2021, 2021
Short summary
Short summary
A challenge for marine ecologists in studying phytoplankton is linking small-scale relationships found in a lab to broader relationships observed on large scales in the environment. We investigated whether machine learning (ML) could help connect these small- and large-scale relationships. ML was able to provide qualitative information about the small-scale processes from large-scale information. This method could help identify important relationships from observations in future research.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021, https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
Mark Hague and Marcello Vichi
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021, https://doi.org/10.5194/bg-18-25-2021, 2021
Short summary
Short summary
This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought.
Arthur Capet, Luc Vandenbulcke, and Marilaure Grégoire
Biogeosciences, 17, 6507–6525, https://doi.org/10.5194/bg-17-6507-2020, https://doi.org/10.5194/bg-17-6507-2020, 2020
Short summary
Short summary
The Black Sea is 2000 m deep, but, due to limited ventilation, only about the upper 100 m contains enough oxygen to support marine life such as fish. This oxygenation depth has been shown to be decreasing (1955–2019). Here, we evidence that atmospheric warming induced a clear shift in an important ventilation mechanism. We highlight the impact of this shift on oxygenation. There are important implications for marine life and carbon and nutrient cycling if this new ventilation regime persists.
Cited articles
Auger, M., Morrow, R., Kestenare, E., Sallée, J.-B., and Cowley, R.:
Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability, Nat. Commun., 12, 514, https://doi.org/10.1038/s41467-020-20781-1, 2021.
Bakker, D. C. E., Nielsdóttir, M. C., Morris, P. J., Venables, H. J., and Watson, A. J.:
The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago, Deep-Sea Res. Pt. II, 54, 2174–2190, https://doi.org/10.1016/j.dsr2.2007.06.009, 2007.
Bakker, D. C. E., Hoppema, M., Schröder, M., Geibert, W., and de Baar, H. J. W.:
A rapid transition from ice covered waters to a biologically mediated CO2 sink in the eastern Weddell Gyre, Biogeosciences, 5, 1373–1386, https://doi.org/10.5194/bg-5-1373-2008, 2008.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.:
A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bakker, D. C. E., Alin, S. R., Bates, N., Becker, M., Castaño-Primo, R., Cosca, C. E., Cronin, M., Kadono, K., Kozyr, A., Lauvset, S. K., Metzl, N., Munro, D. R., Nakaoka, S., O'Brien, K. M., Ólafsson, J., Olsen, A., Pfeil, B., Pierrot, D., Smith, K., Sutton, A. J., Takahashi, T., Tilbrook, B., Wanninkhof, R., Andersson, A., Atamanchuk, D., Benoit-Cattin, A., Bott, R., Burger, E. F., Cai, W.-J., Cantoni, C., Collins, A., Corredor, J. E., Cronin, M. F., Cross, J. N., Currie, K. I., De Carlo, E. H., DeGrandpre, M. D., Dietrich, C., Emerson, S., Enright, M. P., Evans, W., Feely, R. A., García-Ibáñez, M. I., Gkritzalis, T., Glockzin, M., Hales, B., Hartman, S. E., Hashida, G., Herndon, J., Howden, S. D., Humphreys, M. P., Hunt, C. W., Jones, S. D., Kim, S., Kitidis, V., Landa, C. S., Landschützer, P., Lebon, G. T., Lefèvre, N., Lo Monaco, C., Luchetta, A., Maenner Jones, S., Manke, A. B., Manzello, D. P., Mears, P., Mickett, J., Monacci, N. M., Morell, J. M., Musielewicz, S., Newberger, T., Newton, J., Noakes, S., Noh, J.-H., Nojiri, Y., Ohman, M., Ólafsdóttir, S. R., Omar, A. M., Ono, T., Osborne, J., Plueddemann, A. J., Rehder, G., Sabine, C. L., Salisbury, J. E., Schlitzer, R., Send, U., Skjelvan, I., Sparnocchia, S., Steinhoff, T., Sullivan, K. F., Sutherland, S. C., Sweeney, C., Tadokoro, K., Tanhua, T., Telszewski, M., Tomlinson, M., Tribollet, A., Trull, T., Vandemark, D., Wada, C., Wallace, D. W. R., Weller, R. A., and Woosley, R. J.: Surface Ocean CO2 Atlas Database Version 2020 (SOCATv2020) (NCEI Accession 0210711), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/4xkx-ss49, 2020.
Bakker, D. C. E., Alin, S. R., Castaño-Primo, R., Cronin, M., Gkritzalis, T., Kozyr, A., Lauvset, S. K., Metzl, N., Munro, D. R., Nakaoka, S., O'Brien, K. M., Olsen, A., Omar, A. M., Pfeil, B., Pierrot, D., Rodriguez, C., Steinhoff, T., Sutton, A. J., Tilbrook, B., Wanninkhof, R., Willstrand Wranne, A., Ahmed, M., Andersson, A., Apelthun, L. B., Bates, N., Battisti, R., Beaumont, L., Becker, M., Benoit-Cattin, A., Berghoff, C. F., Boutin, J., Burger, E. F., Burgers, T. M., Cantoni, C., Cattrijsse, A., Chierici, M., Cross, J. N., Coppola, L., Cosca, C. E., Currie, K. I., De Carlo, E. H., Else, B., Enright, M. P., Ericson, Y., Evans, W., Feely, R. A., Fiedler, B., Fransson, A., García-Ibáñez, M. I., Gehrung, M., Glockzin, M., González-Dávila, M., Gutekunst, S., Hermes, R., Humphreys, M. P., Hunt, C. W., Ibánhez, J. S. P., Jones, S. D., Kitidis, V., Körtzinger, A., Kosugi, N., Landa, C. S., Landschützer, P., Lefèvre, N., Lo Monaco, C., Luchetta, A., Lutz, V. A., Macovei, V. A., Manke, A. B., Merlivat, L., Millero, F. J., Monacci, N. M., Negri, R. M., Newberger, T., Newton, J., Nickford, S. E., Nojiri, Y., Ohman, M., Ólafsdóttir, S. R., Sweeney, C., Ono, T., Palter, J. B., Papakyriakou, T., Peterson, W. T., Plueddemann, A. J., Qi, D., Rehder, G., Ritschel, M., Rutgersson, A., Sabine, C. L., Salisbury, J. E., Santana-Casiano, J. M., Schlitzer, R., Send, U., Skjelvan, I., Smith, K., Sparnocchia, S., Sullivan, K. F., Sutherland, S. C., Szuts, Z. B., Tadokoro, K., Tanhua, T., Telszewski, Ma., Theetaert, H., Vandemark, D., Voynova, Y. G., Wada, C., Weller, R. A., and Woosley, R. J.: Surface Ocean CO2 Atlas Database Version 2021 (SOCATv2021) (NCEI Accesion 0235360), NOAA National Centers for Envrionmental Information [data set], https://doi.org/10.25921/yg69-jd96, 2021.
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z., Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C., and Rauschenberg, S.:
Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance, Global. Biogeochem. Cy., 30, 1124–1144, https://doi.org/10.1002/2016GB005414, 2016.
Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santa-Casiano, M.:
A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014.
Benson, B. B. and Krause, D.:
The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen, Limnol. Oceanogr., 25, 662–671, https://doi.org/10.4319/lo.1980.25.4.0662, 1980.
Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefèvre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y.-H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L., and Wagener, T.:
Effect of natural iron fertilization on carbon sequestration in the Southern Ocean, Nature, 446, 1070–1074, https://doi.org/10.1038/nature05700, 2007.
Blain, S., Quéguiner, B., and Trull, T.:
The natural iron fertilization experiment KEOPS (KErguelen Ocean and Plateau compared Study): An overview, Deep-Sea Res. Pt. II, 55, 559–565, https://doi.org/10.1016/j.dsr2.2008.01.002, 2008.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.:
Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Borrione, I. and Schlitzer, R.:
Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean, Biogeosciences, 10, 217–231, https://doi.org/10.5194/bg-10-217-2013, 2013.
Brewer, P. G.:
Direct observation of the oceanic CO2 increase, Geophys. Res. Lett., 5, 997–1000, https://doi.org/10.1029/GL005i012p00997, 1978.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., Santana-Casiano, J. M., and Kozyr, A.:
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach, Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, 2020.
Brown, M. S., Munro, D. R., Feehan, C. J., Sweeney, C., Ducklow, H. W., and Schofield, O. M.:
Enhanced oceanic CO2 uptake along the rapidly changing West Antarctic Peninsula, Nat. Clim. Change, 9, 678–683, https://doi.org/10.1038/s41558-019-0552-3, 2019.
Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R., Resplandy, L., Johnson, K. S., and Sarmiento, J. L.:
Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the Addition of Biogeochemical Float Observations, Global. Biogeochem. Cy., 33, 1370–1388, https://doi.org/10.1029/2019GB006176, 2019.
Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S.,
Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and
other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 673–816, 2021.
Carpenter, J. H.:
The Accuracy of the Winkler Method for Dissolved Oxygen Analysis, Limnol. Oceanogr., 10, 135–140, https://doi.org/10.4319/lo.1965.10.1.0135, 1965.
Chau, T. T. T., Gehlen, M., and Chevallier, F.:
QUALITY INFORMATION DOCUMENT for Global Ocean Surface Carbon Product MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008, Res. Rap. Lab. Sci. Clim. Environ., 25, https://hal.archives-ouvertes.fr/hal-02957656 (last access: 27 January 2022), 2020.
Chau, T. T. T., Gehlen, M., and Chevallier, F.:
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans, Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, 2022.
Chen, G.-T. and Millero, F. J.:
Gradual increase of oceanic CO2, Nature, 277, 205, https://doi.org/10.1038/277205a0, 1979.
Copin-Montegut, C.:
A new formula for the effect of temperature on the partial pressure of CO2 in seawater, Mar. Chem., 25, 29–37, https://doi.org/10.1016/0304-4203(88)90012-6, 1988.
Copin-Montegut, C.:
A new formula for the effect of temperature on the partial pressure of CO2 in seawater, Corrigendum, Mar. Chem., 27, 143–144, https://doi.org/10.1016/0304-4203(89)90034-0, 1989.
Coverly, S. C., Aminot, A., and Kérouel, R.:
Nutrients in Seawater Using Segmented Flow Analysis, in: Practical Guidelines for the Analysis of Seawater, 1st Edn., CRC Press, 143–178, 2009.
de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A., Assmy, P., Bakker, D. C. E., Bozec, Y., Barber, R. T., Brzezinski, M. A., Buesseler, K. O., Boyé, M., Croot, P. L., Gervais, F., Gorbunov, M. Y., Harrison, P. J., Hiscock, W. T., Laan, P., Lancelot, C., Law, C. S., Levasseur, M., Marchetti, A., Millero, F. J., Nishioka, J., Nojiri, Y., Oijen, T. van, Riebesell, U., Rijkenberg, M. J. A., Saito, H., Takeda, S., Timmermans, K. R., Veldhuis, M. J. W., Waite, A. M., and Wong, C.-S.:
Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment, J. Geophys. Res.-Oceans, 110, C09S16, https://doi.org/10.1029/2004JC002601, 2005.
Dickson, A. G.:
Standard potential of the reaction: AgCl(s) + H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, A. G. and Millero, F. J.:
A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.:
Ocean Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Edmond, J. M.:
High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration, Deep Sea Res. Oceanogr. Abstr., 17, 737–750, https://doi.org/10.1016/0011-7471(70)90038-0, 1970.
Fay, A. R. and McKinley, G. A.:
Global trends in surface ocean pCO2 from in situ data, Global. Biogeochem. Cy., 27, 541–557, https://doi.org/10.1002/gbc.20051, 2013.
Fay, A. R. and McKinley, G. A.:
Global open-ocean biomes: mean and temporal variability, Earth Syst. Sci. Data, 6, 273–284, https://doi.org/10.5194/essd-6-273-2014, 2014.
Fay, A. R., Lovenduski, N. S., McKinley, G. A., Munro, D. R., Sweeney, C., Gray, A. R., Landschützer, P., Stephens, B. B., Takahashi, T., and Williams, N.:
Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2, Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, 2018.
Freeman, N. M. and Lovenduski, N. S.:
Decreased calcification in the Southern Ocean over the satellite record, Geophys. Res. Lett., 42, 1834–1840, https://doi.org/10.1002/2014GL062769, 2015.
Friis, K., Körtzinger, A., and Wallace, D. W. R.:
The salinity normalization of marine inorganic carbon chemistry data, Geophys. Res. Lett., 30, 1085, https://doi.org/10.1029/2002GL015898, 2003.
GLODAP: Global Ocean Data Analysis Project, http://www.glodap.info, last access: 23 March 2022.
Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D., Wanninkhof, R., Williams, N. L., and Sarmiento, J. L.:
Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the High-Latitude Southern Ocean, Geophys. Res. Lett., 45, 9049–9057, https://doi.org/10.1029/2018GL078013, 2018.
Gregg, W. W. and Rousseaux, C. S.:
Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models, J. Geophys. Res.-Oceans, 119, 5921–5933, https://doi.org/10.1002/2014JC010158, 2014.
Gregor, L. and Gruber, N.:
OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification, Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, 2021.
Gregor, L., Kok, S., and Monteiro, P. M. S.:
Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean, Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, 2018.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Heuven, S. van, Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R.:
The oceanic sink for anthropogenic CO2 from 1994 to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019a.
Gruber, N., Landschützer, P., and Lovenduski, N. S.:
The Variable Southern Ocean Carbon Sink, Annu. Rev. Mar. Sci., 11, 159–186, https://doi.org/10.1146/annurev-marine-121916-063407, 2019b.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai, P. M.:
Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 159–254, https://doi.org/10.1017/CBO9781107415324.008, 2013.
Hauck, J., Völker, C., Wang, T., Hoppema, M., Losch, M., and Wolf-Gladrow, D. A.:
Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode, Global. Biogeochem. Cy., 27, 1236–1245, https://doi.org/10.1002/2013GB004600, 2013.
Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E., Bopp, L., Chau, T. T. T., Gürses, Ö., Ilyina, T., Landschützer, P., Lenton, A., Resplandy, L., Rödenbeck, C., Schwinger, J., and Séférian, R.:
Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget, Front. Mar. Sci., 7, 852, https://doi.org/10.3389/fmars.2020.571720, 2020.
Hauri, C., Friedrich, T., and Timmermann, A.:
Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean, Nat. Clim. Change, 6, 172–176, https://doi.org/10.1038/nclimate2844, 2016.
Iida, Y., Takatani, Y., Kojima, A., and Ishii, M.:
Global trends of ocean CO2 sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables, J. Oceanogr., 77, 323–358, https://doi.org/10.1007/s10872-020-00571-5, 2021.
Ishii, M., Inoue, H. Y., Matsueda, H., and Tanoue, E.:
Close coupling between seasonal biological production and dynamics of dissolved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Antarctic Ocean, Deep-Sea Res., 45, 1187–1209, https://doi.org/10.1016/S0967-0637(98)00010-7, 1998.
Jabaud-Jan, A., Metzl, N., Brunet, C., Poisson, A., and Schauer, B.:
Interannual variability of the carbon dioxide system in the southern Indian Ocean (20∘ S–60∘ S): The impact of a warm anomaly in austral summer 1998, Global. Biogeochem. Cy., 18, https://doi.org/10.1029/2002GB002017, 2004.
Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A.:
Surface ocean pH and buffer capacity: past, present and future, Sci. Rep.-UK, 9, 1–11, https://doi.org/10.1038/s41598-019-55039-4, 2019.
Jones, E. M., Bakker, D. C. E., Venables, H. J., and Watson, A. J.:
Dynamic seasonal cycling of inorganic carbon downstream of South Georgia, Southern Ocean, Deep-Sea Res. Pt. II, 59–60, 25–35, https://doi.org/10.1016/j.dsr2.2011.08.001, 2012.
Jouandet, M. P., Blain, S., Metzl, N., Brunet, C., Trull, T. W., and Obernosterer, I.:
A seasonal carbon budget for a naturally iron-fertilized bloom over the Kerguelen Plateau in the Southern Ocean, Deep-Sea Res. Pt. II, 55, 856–867, https://doi.org/10.1016/j.dsr2.2007.12.037, 2008.
Keeling, C. D., Brix, H., and Gruber, N.:
Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii, Global. Biogeochem. Cy., 18, GB4006, https://doi.org/10.1029/2004GB002227, 2004.
Keppler, L. and Landschützer, P.:
Regional Wind Variability Modulates the Southern Ocean Carbon Sink, Sci. Rep.-UK, 9, 7384, https://doi.org/10.1038/s41598-019-43826-y, 2019.
Kessler, A. and Tjiputra, J.:
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks, Earth Syst. Dynam., 7, 295–312, https://doi.org/10.5194/esd-7-295-2016, 2016.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.: Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2015.
Khatiwala, S., Primeau, F., and Hall, T.:
Reconstruction of the history of anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349, https://doi.org/10.1038/nature08526, 2009.
Körtzinger, A., Mintrop, L., and Duinker, J. C.:
On the penetration of anthropogenic CO2 into the North Atlantic Ocean, J. Geophys. Res.-Oceans, 103, 18681–18689, https://doi.org/10.1029/98JC01737, 1998.
Körtzinger, A., Hedges, J. I., and Quay, P. D.:
Redfield ratios revisited: Removing the biasing effect of anthropogenic CO2, Limnol. Oceanogr., 46, 964–970, https://doi.org/10.4319/lo.2001.46.4.0964, 2001.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.:
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., Heuven, S. van, Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.:
The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620, 2015.
Landschützer, P., Gruber, N., and Bakker, D. C. E.:
Decadal variations and trends of the global ocean carbon sink, Global. Biogeochem. Cy., 30, 1396–1417, https://doi.org/10.1002/2015GB005359, 2016.
Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra, J.:
Trends and drivers in global surface ocean pH over the past 3 decades, Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, 2015.
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T., Metzl, N., Gillett, N., and Heimann, M.:
Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change, Science, 316, 1735–1738, https://doi.org/10.1126/science.1136188, 2007.
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R. A., and Key, R. M.:
Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans, Geophys. Res. Lett., 33, L19605, https://doi.org/10.1029/2006GL027207, 2006.
Lenton, A. and Matear, R. J.:
Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake, Global. Biogeochem. Cy., 21, GB2016, https://doi.org/10.1029/2006GB002714, 2007.
Lenton, A., Codron, F., Bopp, L., Metzl, N., Cadule, P., Tagliabue, A., and Le Sommer, J.:
Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification, Geophys. Res. Lett., 36, L12606, https://doi.org/10.1029/2009GL038227, 2009.
Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T., Sutherland, S. C., Sweeney, C., and Tilbrook, B.:
The observed evolution of oceanic pCO2 and its drivers over the last two decades, Global. Biogeochem. Cy., 26, GB2021, https://doi.org/10.1029/2011GB004095, 2012.
Lenton, A., Tilbrook, B., Law, R. M., Bakker, D., Doney, S. C., Gruber, N., Ishii, M., Hoppema, M., Lovenduski, N. S., Matear, R. J., McNeil, B. I., Metzl, N., Mikaloff Fletcher, S. E., Monteiro, P. M. S., Rödenbeck, C., Sweeney, C., and Takahashi, T.:
Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009, Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, 2013.
Leseurre, C., Lo Monaco, C., Reverdin, G., Metzl, N., Fin, J., Olafsdottir, S., and Racapé, V.:
Ocean carbonate system variability in the North Atlantic Subpolar surface water (1993–2017), Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, 2020.
Lewis, E., Wallace, D., and Allison, L. J.:
Program developed for CO2 system calculations, Brookhaven National Lab., Dept. of Applied Science, Upton, NY (USA), Oak Ridge National Lab., Carbon Dioxide Information Analysis Center, TN (USA), https://doi.org/10.2172/639712, 1998.
Lo Monaco, C., Metzl, N., Poisson, A., Brunet, C., and Schauer, B.:
Anthropogenic CO2 in the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment line I6), J. Geophys. Res.-Oceans, 110, 1–18, https://doi.org/10.1029/2004JC002643, 2005a.
Lo Monaco, C., Goyet, C., Metzl, N., Poisson, A., and Touratier, F.:
Distribution and inventory of anthropogenic CO2 in the Southern Ocean: Comparison of three data-based methods, J. Geophys. Res.-Oceans, 110, C09S02, https://doi.org/10.1029/2004JC002571, 2005b.
Lo Monaco, C., Álvarez, M., Key, R. M., Lin, X., Tanhua, T., Tilbrook, B., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Ríos, A. F., Sabine, C. L., and Velo, A.:
Assessing the internal consistency of the CARINA database in the Indian sector of the Southern Ocean, Earth Syst. Sci. Data, 2, 51–70, https://doi.org/10.5194/essd-2-51-2010, 2010.
Lo Monaco, C., Metzl, N., D'Ovidio, F., Llort, J., and Ridame, C.:
Rapid establishment of the CO2 sink associated with Kerguelen's bloom observed during the KEOPS2/OISO20 cruise, Biogeosciences Discuss., 11, 17543–17578, https://doi.org/10.5194/bgd-11-17543-2014, 2014.
Lo Monaco, C., Metzl, N., Fin, J., Mignon, C., Cuet, P., Douville, E., Gehlen, M., Chau, T. T. T., and Tribollet, A.:
Distribution and long-term change of the sea surface carbonate system in the Mozambique Channel (1963–2019), Deep-Sea Res. Pt. II, 186–188, 104936, https://doi.org/10.1016/j.dsr2.2021.104936, 2021.
Long, M. C., Stephens, B. B., McKain, K., Sweeney, C., Keeling, R. F., Kort, E. A., Morgan, E. J., Bent, J. D., Chandra, N., Chevallier, F., Commane, R., Daube, B. C., Krummel, P. B., Loh, Z., Luijkx, I. T., Munro, D., Patra, P., Peters, W., Ramonet, M., Rödenbeck, C., Stavert, A., Tans, P., and Wofsy, S. C.:
Strong Southern Ocean carbon uptake evident in airborne observations, Science, 374, 1275–1280, https://doi.org/10.1126/science.abi4355, 2021.
Lourantou, A. and Metzl, N.:
Decadal evolution of carbon sink within a strong bloom area in the subantarctic zone, Geophys. Res. Lett., 38, 1–7, https://doi.org/10.1029/2011GL049614, 2011.
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.:
Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode, Global. Biogeochem. Cy., 21, GB2026, https://doi.org/10.1029/2006GB002900, 2007.
Mackay, N. and Watson, A.:
Winter Air–Sea CO2 Fluxes Constructed From Summer Observations of the Polar Southern Ocean Suggest Weak Outgassing, J. Geophys. Res.-Oceans, 126, e2020JC016600, https://doi.org/10.1029/2020JC016600, 2021.
Mahieu, L., Lo Monaco, C., Metzl, N., Fin, J., and Mignon, C.:
Variability and stability of anthropogenic CO2 in Antarctic Bottom Water observed in the Indian sector of the Southern Ocean, 1978–2018, Ocean Sci., 16, 1559–1576, https://doi.org/10.5194/os-16-1559-2020, 2020.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.:
Iron deficiency limits phytoplankton growth in Antarctic waters, Global. Biogeochem. Cy., 4, 5–12, https://doi.org/10.1029/GB004i001p00005, 1990.
McNeil, B. I. and Matear, R. J.:
Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2, P. Natl. Acad. Sci. USA, 105, 18860–18864, https://doi.org/10.1073/pnas.0806318105, 2008.
McNeil, B. I., Tilbrook, B., and Matear, R. J.:
Accumulation and uptake of anthropogenic CO2 in the Southern Ocean, south of Australia between 1968 and 1996, J. Geophys. Res.-Oceans, 106, 31431–31445, https://doi.org/10.1029/2000JC000331, 2001.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric Pressure1, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Metzl, N.:
Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007), Deep-Sea Res. Pt. II, 56, 607–619, https://doi.org/10.1016/j.dsr2.2008.12.007, 2009.
Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A., and Schauer, B.:
Summer and winter air–sea CO2 fluxes in the Southern Ocean, Deep-Sea Res., 53, 1548–1563, https://doi.org/10.1016/j.dsr.2006.07.006, 2006.
Midorikawa, T., Ishii, M., Saito, S., Sasano, D., Kosugi, N., Motoi, T., Kamiya, H., Nakadate, A., Nemoto, K., and Inoue, H. Y.:
Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific, Tellus B, 62, 649–659, https://doi.org/10.1111/j.1600-0889.2010.00474.x, 2010.
Midorikawa, T., Inoue, H. Y., Ishii, M., Sasano, D., Kosugi, N., Hashida, G., Nakaoka, S., and Suzuki, T.:
Decreasing pH trend estimated from 35-year time series of carbonate parameters in the Pacific sector of the Southern Ocean in summer, Deep-Sea Res., 61, 131–139, https://doi.org/10.1016/j.dsr.2011.12.003, 2012.
Millero, F. J., Lee, K., and Roche, M.:
Distribution of alkalinity in the surface waters of the major oceans, Mar. Chem., 60, 111–130, https://doi.org/10.1016/S0304-4203(97)00084-4, 1998.
Minas, H. and Minas, M.:
Net community production in high nutrient-low chlorophyll waters of the tropical and antarctic oceans – grazing vs iron hypothesis, Oceanol. Acta, 15, 145–162, 1992.
Mongwe, N. P., Vichi, M., and Monteiro, P. M. S.:
The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models, Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, 2018.
Moore, J. K. and Abbott, M. R.:
Phytoplankton chlorophyll distributions and primary production in the Southern Ocean, J. Geophys. Res.-Oceans, 105, 28709–28722, https://doi.org/10.1029/1999JC000043, 2000.
Munro, D. R., Lovenduski, N. S., Takahashi, T., Stephens, B. B., Newberger, T., and Sweeney, C.:
Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015), Geophys. Res. Lett., 42, 7623–7630, https://doi.org/10.1002/2015GL065194, 2015.
Murphy, J. and Riley, J. P.:
A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 27, 31–36, https://doi.org/10.1016/S0003-2670(00)88444-5, 1962.
NOAA: The OISO Lines, NOAA [data set], https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/OISO.html, last access: 30 April 2020.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.:
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.:
GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.:
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686, https://doi.org/10.1038/nature04095, 2005.
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.:
Routine uncertainty propagation for the marine carbon dioxide system, Mar. Chem., 207, 84–107, https://doi.org/10.1016/j.marchem.2018.10.006, 2018.
Pardo, P. C., Pérez, F. F., Khatiwala, S., and Ríos, A. F.:
Anthropogenic CO2 estimates in the Southern Ocean: Storage partitioning in the different water masses, Prog. Oceanogr., 120, 230–242, https://doi.org/10.1016/j.pocean.2013.09.005, 2014.
Pardo, P. C., Tilbrook, B., Langlais, C., Trull, T. W., and Rintoul, S. R.:
Carbon uptake and biogeochemical change in the Southern Ocean, south of Tasmania, Biogeosciences, 14, 5217–5237, https://doi.org/10.5194/bg-14-5217-2017, 2017.
Park, Y.-H., Gamberoni, L., and Charriaud, E.:
Frontal structure, water masses, and circulation in the Crozet Basin, J. Geophys. Res.-Oceans, 98, 12361–12385, https://doi.org/10.1029/93JC00938, 1993.
Pauthenet, E., Roquet, F., Madec, G., Guinet, C., Hindell, M., McMahon, C. R., Harcourt, R., and Nerini, D.:
Seasonal Meandering of the Polar Front Upstream of the Kerguelen Plateau, Geophys. Res. Lett., 45, 9774–9781, https://doi.org/10.1029/2018GL079614, 2018.
Pellichero, V., Boutin, J., Claustre, H., Merlivat, L., Sallée, J.-B., and Blain, S.:
Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen Bloom: A Multisensor Approach, Geophys. Res. Lett., 47, e2019GL085992, https://doi.org/10.1029/2019GL085992, 2020.
Pérez, F. F., Olafsson, J., Ólafsdóttir, S. R., Fontela, M., and Takahashi, T.:
Contrasting drivers and trends of ocean acidification in the subarctic Atlantic, Sci. Rep.-UK, 11, 13991, https://doi.org/10.1038/s41598-021-93324-3, 2021.
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.:
A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, 2013.
Planquette, H., Statham, P. J., Fones, G. R., Charette, M. A., Moore, C. M., Salter, I., Nédélec, F. H., Taylor, S. L., French, M., Baker, A. R., Mahowald, N., and Jickells, T. D.:
Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean, Deep-Sea Res. Pt. II, 54, 1999–2019, https://doi.org/10.1016/j.dsr2.2007.06.019, 2007.
Poisson, A. and Chen, C.-T. A.:
Why is there little anthropogenic CO2 in the Antarttic bottom water?, Deep-Sea Res., 34, 1255–1275, https://doi.org/10.1016/0198-0149(87)90075-6, 1987.
Poisson, A., Metzl, N., Brunet, C., Schauer, B., Bres, B., Ruiz-Pino, D., and Louanchi, F.:
Variability of sources and sinks of CO2 in the western Indian and southern oceans during the year 1991, J. Geophys. Res.-Oceans, 98, 22759–22778, https://doi.org/10.1029/93JC02501, 1993.
Pollard, R., Sanders, R., Lucas, M., and Statham, P.:
The Crozet Natural Iron Bloom and Export Experiment (CROZEX), Deep-Sea Res. Pt. II, 54, 1905–1914, https://doi.org/10.1016/j.dsr2.2007.07.023, 2007.
Ritter, R., Landschützer, P., Gruber, N., Fay, A. R., Iida, Y., Jones, S., Nakaoka, S., Park, G.-H., Peylin, P., Rödenbeck, C., Rodgers, K. B., Shutler, J. D., and Zeng, J.:
Observation-Based Trends of the Southern Ocean Carbon Sink, Geophys. Res. Lett., 44, 12,339-12,348, https://doi.org/10.1002/2017GL074837, 2017.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.:
The Oceanic Sink for Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Sabine, C. L., Feely, R. A., Millero, F. J., Dickson, A. G., Langdon, C., Mecking, S., and Greeley, D.:
Decadal changes in Pacific carbon, J. Geophys. Res.-Oceans, 113, C07021, https://doi.org/10.1029/2007JC004577, 2008.
Sanial, V., van Beek, P., Lansard, B., d'Ovidio, F., Kestenare, E., Souhaut, M., Zhou, M., and Blain, S.:
Study of the phytoplankton plume dynamics off the Crozet Islands (Southern Ocean): A geochemical-physical coupled approach, J. Geophys. Res.-Oceans, 119, 2227–2237, https://doi.org/10.1002/2013JC009305, 2014.
Sasse, T. P., McNeil, B. I., Matear, R. J., and Lenton, A.:
Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset, Biogeosciences, 12, 6017–6031, https://doi.org/10.5194/bg-12-6017-2015, 2015.
Schlitzer, R.:
Ocean Data View, AWI, http://odv.awi.de, last access: 6 January 2021.
Strickland, J. D. H. and Parsons, T. R.:
A Practical Hand Book of Seawater Analysis. Ficheries Research Board of Canada Bulletin, 2nd edn., 310 pp., Ottawa, 1972.
Sutton, A. J., Williams, N. L., and Tilbrook, B.:
Constraining Southern Ocean CO2 Flux Uncertainty Using Uncrewed Surface Vehicle Observations, Geophys. Res. Lett., 48, e2020GL091748, https://doi.org/10.1029/2020GL091748, 2021.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.:
Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, Global. Biogeochem. Cy., 7, 843–878, https://doi.org/10.1029/93GB02263, 1993.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Takahashi, T., Sweeney, C., Hales, B., Chipman, D., Newberger, T., Goddard, J., Iannuzzi, R., and Sutherland, S.:
The Changing Carbon Cycle in the Southern Ocean, Oceanography, 25, 26–37, https://doi.org/10.5670/oceanog.2012.71, 2012.
Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T., Sweeney, C., and Munro, D. R.:
Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations, Mar. Chem., 164, 95–125, https://doi.org/10.1016/j.marchem.2014.06.004, 2014.
Tanhua, T., Hoppema, M., Jones, E. M., Stöven, T., Hauck, J., Dávila, M. G., Santana-Casiano, M., Álvarez, M., and Strass, V. H.:
Temporal changes in ventilation and the carbonate system in the Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. II, 138, 26–38, https://doi.org/10.1016/j.dsr2.2016.10.004, 2017.
Terrats, L., Claustre, H., Cornec, M., Mangin, A., and Neukermans, G.:
Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats, Geophys. Res. Lett., 47, e2020GL090559, https://doi.org/10.1029/2020GL090559, 2020.
Tjiputra, J. F., Olsen, A., Bopp, L., Lenton, A., Pfeil, B., Roy, T., Segschneider, J., Totterdell, I., and Heinze, C.:
Long-term surface pCO2 trends from observations and models, Tellus B, 66, 23083, https://doi.org/10.3402/tellusb.v66.23083, 2014.
Touratier, F. and Goyet, C.:
Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean, J. Marine Syst.. 46, 181–197, https://doi.org/10.1016/j.jmarsys.2003.11.020, 2004.
Touratier, F., Azouzi, L., and Goyet, C.:
CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean, Tellus B, 59, 318–325, https://doi.org/10.1111/j.1600-0889.2006.00247.x, 2007.
Tréguer, P. and Le Corre, P.:
Manuel d'analyse des sels nutritifs dans l'eau de mer (utilisation de l'autoanalyzer II Technicon R), UBO, Brest, France, 109 pp., 1975.
Tyrrell, T., Merico, A., Waniek, J. J., Wong, C. S., Metzl, N., and Whitney, F.:
Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions, J. Geophys. Res.-Biogeo., 110, G02007, https://doi.org/10.1029/2005JG000041, 2005.
Uppström, L. R.:
The boron/chlorinity ratio of deep-sea water from the Pacific Ocean, Deep Sea Res. Oceanogr. Abstr., 21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R.:
MATLAB Program Developed for CO2 System Calculations, ORNL/CDIAC-105b, Oak Ridge National Laboratory, Oak Ridge, Tennesee, 2011.
Venables, H. J., Pollard, R. T., and Popova, E. E.:
Physical conditions controlling the development of a regular phytoplankton bloom north of the Crozet Plateau, Southern Ocean, Deep-Sea Res. Pt. II, 54, 1949–1965, https://doi.org/10.1016/j.dsr2.2007.06.014, 2007.
Wanninkhof, R. and Triñanes, J.:
The impact of changing wind speeds on gas transfer and its effect on global air–sea CO2 fluxes, Global. Biogeochem. Cy., 31, 961–974, https://doi.org/10.1002/2016GB005592, 2017.
Weiss, R. F. and Price, B. A.:
Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
World Meteorological Organization (WMO): The Global Climate Observing System (GCOS), Chairperson, Publications Board, https://gcos.wmo.int/en/global-climate-indicators (last access: 14 September 2020), 2018.
Xue, L., Gao, L., Cai, W.-J., Yu, W., and Wei, M.:
Response of sea surface fugacity of CO2 to the SAM shift south of Tasmania: Regional differences, Geophys. Res. Lett., 42, 3973–3979, https://doi.org/10.1002/2015GL063926, 2015.
Xue, L., Cai, W.-J., Takahashi, T., Gao, L., Wanninkhof, R., Wei, M., Li, K., Feng, L., and Yu, W.:
Climatic modulation of surface acidification rates through summertime wind forcing in the Southern Ocean, Nat. Commun., 9, 3240, https://doi.org/10.1038/s41467-018-05443-7, 2018.
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in...
Altmetrics
Final-revised paper
Preprint