Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3505-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3505-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Katherine E. O. Todd-Brown
CORRESPONDING AUTHOR
Department of Environmental Engineering Science, University of Florida, Gainesville, Florida, USA
Rose Z. Abramoff
Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Jeffrey Beem-Miller
Max Planck Institute for Biogeochemistry, Jena, Germany
Hava K. Blair
Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
Stevan Earl
Global Institute of Sustainability and Innovation, Arizona State University, Tempe, AZ, USA
Kristen J. Frederick
Department of Environmental Engineering Science, University of Florida, Gainesville, Florida, USA
Daniel R. Fuka
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Mario Guevara Santamaria
Centro de Geociencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
Jennifer W. Harden
Department of Earth System Science, Stanford University, Stanford, CA, USA
Katherine Heckman
Northern Research Station, USDA Forest Service, Houghton, MI, USA
Lillian J. Heran
Department of Environmental Engineering Science, University of Florida, Gainesville, Florida, USA
James R. Holmquist
Smithsonian Environmental Research Center, Edgewater, Maryland, USA
Alison M. Hoyt
Department of Earth System Science, Stanford University, Stanford, CA, USA
David H. Klinges
School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
David S. LeBauer
Arizona Experiment Station, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
Avni Malhotra
Department of Earth System Science, Stanford University, Stanford, CA, USA
Department of Geography, University of Zürich, Zürich, Switzerland
Shelby C. McClelland
Department of Soil and Crop Sciences, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
Lucas E. Nave
Biological Station and Dept. of Ecology and Evolutionary Biology, University of Michigan, Pellston, MI, USA
Katherine S. Rocci
Natural Resource Ecology Laboratory, Department of Soil and Crop Sciences, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
Sean M. Schaeffer
Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN, USA
Shane Stoner
Max Planck Institute for Biogeochemistry, Jena, Germany
Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
Natasja van Gestel
Department of Biological Sciences & TTU Climate Center, Texas Tech University, Lubbock, Texas, USA
Sophie F. von Fromm
Max Planck Institute for Biogeochemistry, Jena, Germany
Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
Marisa L. Younger
Department of Environmental Engineering Science, University of Florida, Gainesville, Florida, USA
Related authors
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
This article is included in the Encyclopedia of Geosciences
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
This article is included in the Encyclopedia of Geosciences
Viviana Marcela Varón-Ramírez, Douglas Andrés Gómez-Latorre, Carlos Eduardo Arroyo-Cruz, Alberto Gómez-Tagle, Blanca Lucía Prado Pano, Ronald Roger Gutierrez Llantoy, Deyanira Lobo-Luján, and Mario Guevara
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-306, https://doi.org/10.5194/essd-2025-306, 2025
Preprint under review for ESSD
Short summary
Short summary
This research focuses on Mexico's soil water erosion (SWE) using rainfall data to estimate erosivity. A database of daily rainfall series was developed for three climate normals –CNs– (1968–1997, 1978–2007, 1988–2017) with over 5,000 series. We found median erosivity values of 3245, 3070, and 3327 MJ mm ha-1 h-1 yr-1 for the three CNs. The resulting publicly available datasets of rainfall series and erosivity help better understand SWE and rainfall patterns across Mexico.
This article is included in the Encyclopedia of Geosciences
Alexandra Hedgpeth, Alison M. Hoyt, Kyle C. Cavanaugh, Karis J. McFarlane, and Daniela F. Cusack
Biogeosciences, 22, 2667–2690, https://doi.org/10.5194/bg-22-2667-2025, https://doi.org/10.5194/bg-22-2667-2025, 2025
Short summary
Short summary
Tropical peatlands store ancient carbon and have been identified as both being vulnerable to future climate change and taking a long time to recover after a disturbance. It is unknown if these gases are produced from decomposition of 1000-year-old peat. Radiocarbon dating shows emitted gases are young, indicating that surface carbon (rather than old peat) drives emissions. Preserving these ecosystems can trap old carbon, mitigating climate change.
This article is included in the Encyclopedia of Geosciences
Viviana Marcela Varón-Ramírez, Douglas Andrés Gómez-Latorre, Carlos Eduardo Arroyo-Cruz, Alberto Gómez-Tagle, Blanca Lucía Prado Pano, Ronald Roger Gutierrez Llantoy, Deyanira Lobo-Luján, and Mario Antonio Guevara
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-530, https://doi.org/10.5194/essd-2024-530, 2025
Manuscript not accepted for further review
Short summary
Short summary
This research focuses on Mexico's soil water erosion (SWE) using rainfall data to estimate erosivity. A database of daily rainfall series was developed for three climate normals –CNs– (1968–1997, 1978–2007, 1988–2017) with over 5,000 series. We found mean erosivity values of 3600, 3296, and 3461 MJ mm ha-1 h-1 yr-1 for the three CNs. The resulting publicly available datasets of rainfall series and erosivity help better understand SWE and rainfall patterns across Mexico.
This article is included in the Encyclopedia of Geosciences
Amey Tilak, Alina Premrov, Ruchita Ingle, Nigel Roulet, Benjamin R. K. Runkle, Matthew Saunders, Avni Malhotra, and Kenneth Byrne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3852, https://doi.org/10.5194/egusphere-2024-3852, 2024
Preprint archived
Short summary
Short summary
For the future model users, 16 peatland and wetland models reviewed to identify individual model operational scale (spatial and temporal), stabilization timeframes of different carbon pools, model specific advantages and limitations, common and specific model driving inputs, critical inputs of individual models impacting CH4 plant mediated, CH4 diffusion and CH4 ebullition. Finally, we qualitatively ranked the process representations in each model for CH4 production, oxidation and transport.
This article is included in the Encyclopedia of Geosciences
Pilar Durante, Juan Miguel Requena-Mullor, Rodrigo Vargas, Mario Guevara, Domingo Alcaraz-Segura, and Cecilio Oyonarte
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-431, https://doi.org/10.5194/essd-2024-431, 2024
Manuscript not accepted for further review
Short summary
Short summary
Human activities have disrupted the global carbon cycle, increasing CO2 levels. Soils are the largest carbon stores on land, making it essential to understand how much carbon they hold to fight climate change. Our study improved estimates of soil carbon in peninsular Spain by integrating historical soil data and using machine-learning methods to create detailed maps of carbon content. These maps will help manage soil carbon better and support efforts to track carbon emissions globally.
This article is included in the Encyclopedia of Geosciences
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
This article is included in the Encyclopedia of Geosciences
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary
Short summary
In this work, the Latin America and Caribbean Soil Information System (SISLAC) database (https://54.229.242.119/sislac/es) was revised to generate an improved version of the data. Rules for data enhancement were defined. In addition, other datasets available in the region were included. Subsequently, through a principal component analysis (PCA), the main soil characteristics for the region were analyzed. We hope this dataset can help mitigate problems such as food security and global warming.
This article is included in the Encyclopedia of Geosciences
Sreejata Bandopadhyay, Marie English, Marife B. Anunciado, Mallari Starrett, Jialin Hu, José E. Liquet y González, Douglas G. Hayes, Sean M. Schaeffer, and Jennifer M. DeBruyn
SOIL, 9, 499–516, https://doi.org/10.5194/soil-9-499-2023, https://doi.org/10.5194/soil-9-499-2023, 2023
Short summary
Short summary
We added organic and inorganic nitrogen amendments to two soil types in a laboratory incubation study in order to understand how that would impact biodegradable plastic mulch (BDM) decomposition. We found that nitrogen amendments, particularly urea and inorganic nitrogen, suppressed BDM degradation in both soil types. However, we found limited impact of BDM addition on soil nitrification, suggesting that overall microbial processes were not compromised due to the addition of BDMs.
This article is included in the Encyclopedia of Geosciences
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
This article is included in the Encyclopedia of Geosciences
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
This article is included in the Encyclopedia of Geosciences
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
This article is included in the Encyclopedia of Geosciences
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
This article is included in the Encyclopedia of Geosciences
Viviana Marcela Varón-Ramírez, Gustavo Alfonso Araujo-Carrillo, and Mario Antonio Guevara Santamaría
Earth Syst. Sci. Data, 14, 4719–4741, https://doi.org/10.5194/essd-14-4719-2022, https://doi.org/10.5194/essd-14-4719-2022, 2022
Short summary
Short summary
These are the first national soil texture maps obtained via digital soil mapping. We built clay, sand, and silt maps using spatial assembling with the best possible predictions at different depths. Also, we identified the better model for each pixel. This work was done to address the lack of soil texture maps in Colombia, and it can provide soil information for water-related applications, ecosystem services, and agricultural and crop modeling.
This article is included in the Encyclopedia of Geosciences
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
This article is included in the Encyclopedia of Geosciences
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
This article is included in the Encyclopedia of Geosciences
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
This article is included in the Encyclopedia of Geosciences
Yuanyuan Huang, Phillipe Ciais, Maurizio Santoro, David Makowski, Jerome Chave, Dmitry Schepaschenko, Rose Z. Abramoff, Daniel S. Goll, Hui Yang, Ye Chen, Wei Wei, and Shilong Piao
Earth Syst. Sci. Data, 13, 4263–4274, https://doi.org/10.5194/essd-13-4263-2021, https://doi.org/10.5194/essd-13-4263-2021, 2021
Short summary
Short summary
Roots play a key role in our Earth system. Here we combine 10 307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially explicit global high-resolution (~ 1 km) root biomass dataset. In total, 142 ± 25 (95 % CI) Pg of live dry-matter biomass is stored belowground, representing a global average root : shoot biomass ratio of 0.25 ± 0.10.
This article is included in the Encyclopedia of Geosciences
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
This article is included in the Encyclopedia of Geosciences
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
This article is included in the Encyclopedia of Geosciences
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aristarán, M., Tigas, M., Merrill, J. B., and Das, J.: Tabula, Github [code],
https://github.com/tabulapdf/tabula (last access: 1 November 2021), 2012–2020. a
Batjes, N. and Calisto, L.: ISRIC – WoSIS Soil Profile Database,
https://www.isric.org/explore/wosis, last access: 1 November 2021. a
Batjes, N. H., Ribeiro, E., and van Oostrum, A.: Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019), Earth Syst. Sci. Data, 12, 299–320, https://doi.org/10.5194/essd-12-299-2020, 2020. a, b
Beno, M., Figl, K., Umbrich, J., and Polleres, A.: Open Data Hopes and
Fears: Determining the Barriers of Open Data, in: 2017 Conference
for E-Democracy and Open Government (CeDEM), 17–19 May 2017, 69–81,
https://doi.org/10.1109/CeDEM.2017.22, 2017. a
Billings, S. A., Lajtha, K., Malhotra, A., Berhe, A. A., de Graaff, M.-A.,
Earl, S., Fraterrigo, J., Georgiou, K., Grandy, S., Hobbie, S. E., Moore, J.
A. M., Nadelhoffer, K., Pierson, D., Rasmussen, C., Silver, W. L., Sulman,
B. N., Weintraub, S., and Wieder, W.: Soil organic carbon is not just for
soil scientists: measurement recommendations for diverse practitioners,
Ecol. Appl., 31, e02290,
https://doi.org/10.1002/eap.2290, 2021. a
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010. a
Bond-Lamberty, B., Christianson, D. S., Malhotra, A., Pennington, S. C., Sihi,
D., AghaKouchak, A., Anjileli, H., Altaf Arain, M., Armesto, J. J., Ashraf,
S., Ataka, M., Baldocchi, D., Andrew Black, T., Buchmann, N., Carbone, M. S.,
Chang, S.-C., Crill, P., Curtis, P. S., Davidson, E. A., Desai, A. R., Drake,
J. E., El-Madany, T. S., Gavazzi, M., Görres, C.-M., Gough, C. M.,
Goulden, M., Gregg, J., Gutiérrez del Arroyo, O., He, J.-S., Hirano, T.,
Hopple, A., Hughes, H., Järveoja, J., Jassal, R., Jian, J., Kan, H.,
Kaye, J., Kominami, Y., Liang, N., Lipson, D., Macdonald, C. A., Maseyk, K.,
Mathes, K., Mauritz, M., Mayes, M. A., McNulty, S., Miao, G., Migliavacca,
M., Miller, S., Miniat, C. F., Nietz, J. G., Nilsson, M. B., Noormets, A.,
Norouzi, H., O'Connell, C. S., Osborne, B., Oyonarte, C., Pang, Z., Peichl,
M., Pendall, E., Perez-Quezada, J. F., Phillips, C. L., Phillips, R. P.,
Raich, J. W., Renchon, A. A., Ruehr, N. K., Sánchez-Cañete, E. P.,
Saunders, M., Savage, K. E., Schrumpf, M., Scott, R. L., Seibt, U., Silver,
W. L., Sun, W., Szutu, D., Takagi, K., Takagi, M., Teramoto, M., Tjoelker,
M. G., Trumbore, S., Ueyama, M., Vargas, R., Varner, R. K., Verfaillie, J.,
Vogel, C., Wang, J., Winston, G., Wood, T. E., Wu, J., Wutzler, T., Zeng, J.,
Zha, T., Zhang, Q., and Zou, J.: COSORE: A community database for continuous
soil respiration and other soil-atmosphere greenhouse gas flux data, Global Change Biol., 26, 7268–7283, https://doi.org/10.1111/gcb.15353,
2020. a
Bond-Lamberty, B., Christianson, D. S., Crystal-Ornelas, R., Mathes, K., and
Pennington, S. C.: A reporting format for field measurements of soil
respiration, Ecol. Info., 62, 101280,
https://doi.org/10.1016/j.ecoinf.2021.101280, 2021. a
Buttigieg, P. L., Pafilis, E., Lewis, S. E., Schildhauer, M. P., Walls, R. L.,
and Mungall, C. J.: The environment ontology in 2016: bridging domains with
increased scope, semantic density, and interoperation, J. Biomed. Semant., 7, 57, https://doi.org/10.1186/s13326-016-0097-6, 2016. a
Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J.,
Lovett, R., Materechera, S., Parsons, M., Raseroka, K., Rodriguez-Lonebear,
D., Rowe, R., Sara, R., Walker, J. D., Anderson, J., and Hudson, M.: The CARE
Principles for Indigenous Data Governance, Data Sci. J., 19, 43,
https://doi.org/10.5334/dsj-2020-043, 2020. a
Cheah, Y., Christianson, D., Chu, H., Pastorello, G., O'Brien, F., Ong, Y.,
Ingen, C., Torn, M., and Agarwal, D.: AmeriFlux BADM: Implementing lessons
from 12 years of long-tail data management into next generation earth science
systems, in: AGU Fall Meeting Abstracts, Vol. 2018, IN34A–03, 2018. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra,
A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myneny, R. B., Piao, S., and Thornton, P.: Carbon
and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical
Science Basis, Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., D.,
Q., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P., chap. Carbon and, Cambridge
University Press, Cambridge, UK, and New York, NY, USA,
465–570, https://doi.org/10.1017/CBO9781107415324.014, 2013. a
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D.,
Riley, W. J., Mu, M., and Randerson, J. T.: The International Land Model
Benchmarking (ILAMB) System: Design, Theory, and Implementation, J. Adv. Model. Earth Sy., 10, 2731–2754,
https://doi.org/10.1029/2018MS001354, 2018. a
Cooke, N. J. and Hilton, M. L. (Eds.): Enhancing the Effectiveness of Team
Science, The National Academies Press, Washington, DC, https://doi.org/10.17226/19007,
2015. a, b
Couture, J. L., Blake, R. E., McDonald, G., and Ward, C. L.:
A funder-imposed data publication requirement seldom inspired data sharing,
PLoS ONE, 13, e0199789, https://doi.org/10.1371/journal.pone.0199789, 2018. a
Crowther, T., Todd-Brown, K., Rowe, C., Wieder, W., Carey, J., Machmuller, M.,
Snoek, B., Fang, S., Zhou, G., Allison, S., Blair, J., Bridgham, S., Burton,
A., Carrillo, Y., Reich, P., Clark, J., Classen, A., Dijkstra, F., Elberling,
B., Emmett, B., Estiarte, M., Frey, S., Guo, J., Harte, J., Jiang, L.,
Johnson, B., Kröel-Dulay, G., Larsen, K., Laudon, H., Lavallee, J., Luo,
Y., Lupascu, M., Ma, L., Marhan, S., Michelsen, A., Mohan, J., Niu, S.,
Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S.,
Reynolds, L., Schmidt, I., Sistla, S., Sokol, N., Templer, P., Treseder, K.,
Welker, J., and Bradford, M.: Quantifying global soil carbon losses in
response to warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, 2016. a, b, c, d
Crystal-Ornelas, R., Varadharajan, C., Bond-Lamberty, B., Boye, K., Burrus, M.,
Cholia, S., Crow, M., Damerow, J., Devarakonda, R., Ely, K. S., Goldman, A.,
Heinz, S., Hendrix, V., Kakalia, Z., Pennington, S. C., Robles, E., Rogers,
A., Simmonds, M., Velliquette, T., Weierbach, H., Weisenhorn, P., Welch,
J. N., and Agarwal, D. A.: A Guide to Using GitHub for Developing and
Versioning Data Standards and Reporting Formats, Earth Space Sci., 8,
e2021EA001797, https://doi.org/10.1029/2021EA001797, 2021. a
CSDMS: CSN Searchable List – Community Surface Dynamics Modeling System (vs
0.8.3), wiki,
https://csdms.colorado.edu/mediawiki/index.php?title=CSN_Searchable_List&oldid=227158,
(last access: 6 October 2021), 2019. a
Ellis, E.: Anthropogenic transformation of the terrestrial biosphere,
Philos. T. Roy. Soc. A, 369, 1010–1035, https://doi.org/10.1098/rsta.2010.0331, 2011. a
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Clim.,
37, 4302–4315, 2017. a
Fox, P., Erdmann, C., Stall, S., Griffies, S. M., Beal, L. M., Pinardi, N.,
Hanson, B., Friedrichs, M. A. M., Feakins, S., Bracco, A., Pirenne, B., and
Legg, S.: Data and Software Sharing Guidance for Authors Submitting to AGU
Journals, Zenodo, https://doi.org/10.5281/zenodo.5124741, 2021. a
Furche, T., Gottlob, G., Libkin, L., Orsi, G., and Paton, N.: Data Wrangling
for Big Data: Challenges and Opportunities, in: Advances in Database
Technology – EDBT 2016, Advances in Database Technology,
University of Konstanz, 19th International
Conference on Extending Database Technology, EDBT 2016; Conference date:
15-03-2016 Through 18-03-2016, 473–478, https://doi.org/10.5441/002/edbt.2016.44, 2016. a
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T.,
Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G.,
Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. L. V., Wilcox, J., del Mar
Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part
2: Costs, potentials and side effects, Environ. Res. Lett., 13,
063002, https://doi.org/10.1088/1748-9326/aabf9f, 2018. a
Gustafson, A., Erdmann, J., Milligan, M., Onsongo, G., Pardey, P., Prather, T.,
Silverstein, K., Wilgenbusch, J., and Zhang, Y.: A platform for
computationally advanced collaborative agroinformatics data discovery and
analysis, in: Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact, Association
for Computing Machinery, New York, NY, United States, 1–4, 2017. a
Harden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C.,
Bond-Lamberty, B., Lawrence, C. R., Loisel, J., Malhotra, A., Jackson, R. B.,
Ogle, S., Phillips, C., Ryals, R., Todd-Brown, K., Vargas, R., Vergara,
S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K. A., Crow, S. E., Silver,
W. L., DeLonge, M., and Nave, L. E.: Networking our science to characterize
the state, vulnerabilities, and management opportunities of soil organic
matter, Glob. Change Biol., 24, 705–718,
https://doi.org/10.1111/gcb.13896, 2018. a, b
Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and Taylor, K. E.: A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1), Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, 2017. a
Hawkins, S. J., Firth, L. B., McHugh, M., Poloczanska, E. S., Herbert, R.
J. H., Burrows, M. T., Kendall, M. A., Moore, P. J., Thompson, R. C.,
Jenkins, S. R., Sims, D. W., Genner, M. J., and Mieszkowska, N.: Data rescue
and re-use: Recycling old information to address new policy concerns,
Mar. Pol., 42, 91–98, https://doi.org/10.1016/j.marpol.2013.02.001, 2013. a
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based on
Automated Mapping, PLOS ONE, 9, 1–17, https://doi.org/10.1371/journal.pone.0105992,
2014. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez,
M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N.,
Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R.,
MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E.,
Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded
soil information based on machine learning, PLoS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017. a, b, c
ISCN: Data, https://iscn.fluxdata.org/data/ (last access: 1 November 2021), 2020. a
ISRaD: International Soil Radiocarbon Database: project webpage, https://soilradiocarbon.org (last access: 1 November 2021), 2018–2021. a
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet,
G. T., Kattge, J., Roumet, C., Stover, D. B., Soudzilovskaia, N. A.,
Valverde-Barrantes, O. J., van Bodegom, P. M., and Violle, C.: A global
Fine-Root Ecology Database to address below-ground challenges in plant
ecology, New Phytol., 215, 15–26,
https://doi.org/10.1111/nph.14486, 2017. a
Jian, J., Du, X., and Stewart, R. D.: A database for global soil health
assessment, Sci. Data, 7, 16, https://doi.org/10.1038/s41597-020-0356-3, 2020a. a
Jian, J., Stewart, R. D., and Du, X.: SoilHealthDB,
https://github.com/jinshijian/SoilHealthDB (last access: 1 November 2021), 2020b. a
Karasti, H., Baker, K. S., and Halkola, E.: Enriching the Notion of Data
Curation in E-Science: Data Managing and Information
Infrastructuring in the Long Term Ecological Research (LTER)
Network, Comp. Support. Coop. W., 15, 321–358,
https://doi.org/10.1007/s10606-006-9023-2, 2006. a
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020. a, b, c, d, e, f, g
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., and Rillig, M. C.: The
concept and future prospects of soil health, Nat. Rev. Earth Environ., 1, 544–553, https://doi.org/10.1038/s43017-020-0080-8, 2020. a
Lembrechts, J. J., Aalto, J., Ashcroft, M. B., Frenne, P. D., Kopecký, M.,
Lenoir, J., Luoto, M., Maclean, I. M. D., Roupsard, O., Fuentes‐Lillo, E.,
García, R. A., Pellissier, L., Pitteloud, C., Alatalo, J. M., Smith,
S. W., Björk, R. G., Muffler, L., Cesarz, S., Gottschall, F., Backes,
A. R., Okello, J., Urban, J., Plichta, R., Svátek, M., Phartyal, S. S.,
Wipf, S., Eisenhauer, N., Pușcaș, M., Turtureanu, P. D., Varlagin, A.,
Dimarco, R. D., Jump, A. S., Randall, K., Dorrepaal, E., Larson, K., Walz,
J., Vitale, L., Svoboda, M., Higgens, R. F., Halbritter, A. H., Curasi,
S. R., Klupar, I., Koontz, A., Pearse, W. D., Simpson, E., Stemkovski, M.,
Graae, B. J., Sørensen, M. V., Høye, T. T., Calzado, M. R. F., Lorite,
J., Carbognani, M., Tomaselli, M., Forte, T. G. W., Petraglia, A., Haesen,
S., Somers, B., Meerbeek, K. V., Björkman, M. P., Hylander, K., Merinero,
S., Gharun, M., Buchmann, N., Dolezal, J., Matula, R., Thomas, A. D., Bailey,
J. J., Ghosn, D., Kazakis, G., Pablo, M. A. d., Kemppinen, J., Niittynen, P.,
Rew, L., Seipel, T., Larson, C., Speed, J. D. M., Ardö, J., Cannone, N.,
Guglielmin, M., Malfasi, F., Bader, M. Y., Canessa, R., Stanisci, A.,
Kreyling, J., Schmeddes, J., Teuber, L., Aschero, V., Čiliak, M.,
Máliš, F., Smedt, P. D., Govaert, S., Meeussen, C., Vangansbeke, P.,
Gigauri, K., Lamprecht, A., Pauli, H., Steinbauer, K., Winkler, M., Ueyama,
M., Nuñez, M. A., Ursu, T.-M., Haider, S., Wedegärtner, R. E. M.,
Smiljanic, M., Trouillier, M., Wilmking, M., Altman, J., Brůna, J.,
Hederová, L., Macek, M., Man, M., Wild, J., Vittoz, P., Pärtel, M.,
Barančok, P., Kanka, R., Kollár, J., Palaj, A., Barros, A.,
Mazzolari, A. C., Bauters, M., Boeckx, P., Alonso, J. L. B., Zong, S., Cecco,
V. D., Sitková, Z., Tielbörger, K., Brink, L. v. d., Weigel, R.,
Homeier, J., Dahlberg, C. J., Medinets, S., Medinets, V., Boeck, H. J. D.,
Portillo‐Estrada, M., Verryckt, L. T., Milbau, A., Daskalova, G. N.,
Thomas, H. J. D., Myers‐Smith, I. H., Blonder, B., Stephan, J. G.,
Descombes, P., Zellweger, F., Frei, E. R., Heinesch, B., Andrews, C., Dick,
J., Siebicke, L., Rocha, A., Senior, R. A., Rixen, C., Jimenez, J. J., Boike,
J., Pauchard, A., Scholten, T., Scheffers, B., Klinges, D., Basham, E. W.,
Zhang, J., Zhang, Z., Géron, C., Fazlioglu, F., Candan, O., Bravo, J. S.,
Hrbacek, F., Laska, K., Cremonese, E., Haase, P., Moyano, F. E., Rossi, C.,
and Nijs, I.: SoilTemp: a global database of near-surface temperature,
Glob. Change Biol., 26, 6616–6629, https://doi.org/10.1111/gcb.15123, 2020. a
Lin, D., Crabtree, J., Dillo, I., Downs, R. R., Edmunds, R., Giaretta, D.,
De Giusti, M., L'Hours, H., Hugo, W., Jenkyns, R., V. Khodiyar, M. E. Martone, M. Mokrane, V. Navale, J. Petters, B. Sierman, D. V. Sokolova, M. Stockhause and J. Westbrook: The TRUST
Principles for digital repositories, Sci. Data, 7, 1–5, 2020. a
Löffler, F., Wesp, V., König-Ries, B., and Klan, F.: Dataset search in
biodiversity research: Do metadata in data repositories reflect scholarly
information needs?, PLOS ONE, 16, e0246099,
https://doi.org/10.1371/journal.pone.0246099, 2021. a, b
Lohr, S.: For Big-Data Scientists, “Janitor Work” Is Key Hurdle to Insights,
New York Times,
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html (last access: 1 November 2022),
2014. a
Longo, D. L. and Drazen, J. M.: Data Sharing, New Engl. J. Med.,
374, 276–277, https://doi.org/10.1056/nejme1516564, 2016. a
LTER Soil Orgnaic matter Working Group: soilHarmonization: Homogenize LTER Soil
Organic Matter Working Group data and notes,
https://github.com/lter/soilHarmonization (last access: 1 November 2021),
2018. a
LTER Soil Orgnaic matter Working Group: Advancing soil organic matter research:
Synthesizing multi-scale observations, Manipulations and Models,
https://lternet.edu/working-groups/soil-organic-matter/ last access: 1 November 2021),
2019. a
Luque, C.: Open Data and FAIR Data: differences and similarities,
https://www.ogoov.com/en/blog/open-data-and-fair-data-differences-and-similarities/ (last access: 1 November 2022),
2019. a
Lyons, S. E., Osmond, D. L., Slaton, N. A., Spargo, J. T., Kleinman, P. J.,
Arthur, D. K., and McGrath, J. M.: FRST: A national soil testing database to
improve fertility recommendations, Agr. Environ. Lett., 5,
e20008, https://doi.org/10.1002/ael2.20008, 2020. a
Malhotra, A., Todd-Brown, K., Nave, L., Batjes, N., Holmquist, J., Hoyt, A.,
Iversen, C., Jackson, R. B., Lajtha, K., Lawrence, C., Vindušková,
O., Wieder, W., Williams, M., Hugelius, G., and Harden, J.: The landscape of
soil carbon data: Emerging questions, synergies and databases, Prog. Phys. Geog., 43, 707–719, 2019. a
Onerhime, E.: Data Standards for Soil: Why aren't they taking root? version 1, not peer reviewed, document 5:74, Gates Open Research, https://doi.org/10.21955/gatesopenres.1116780.1, 2021. a
Ooms, J.: pdftools: Text Extraction, Rendering and Converting of PDF
Documents, https://CRAN.R-project.org/package=pdftools (last access: 1 November 2022), R
package version 3.0.1, 2021. a
Palma, R., Janiak, B., Reznik, T., Schleidt, K., Kozel, J., Sousa, L. D.,
Egmond, F., Mouazen, A. M., and Moshou, D.: Global Soil Information System
(GloSIS) Ontology, Tech. Rep., SIEUSOIL project,
http://w3id.org/glosis/model (last access: 1 November 2022), 2020. a
Pampel, H., Vierkant, P., Scholze, F., Bertelmann, R., Kindling, M., Klump, J.,
Goebelbecker, H.-J., Gundlach, J., Schirmbacher, P., and Dierolf, U.: Making
Research Data Repositories Visible: The re3data.org Registry, PLoS ONE,
8, e78080, https://doi.org/10.1371/journal.pone.0078080, 2013. a
Pick, J. L., Nakagawa, S., and Noble, D. W.: Reproducible, flexible and
high-throughput data extraction from primary literature: The metaDigitise R
package, bioRxiv, https://doi.org/10.1101/247775, 2018. a
Richardson, D. B., Kwan, M.-P., Alter, G., and McKendry, J. E.: Replication of
scientific research: addressing geoprivacy, confidentiality, and data sharing
challenges in geospatial research, Annals GIS, 21, 101–110, 2015. a
Richter, D. d., Bacon, A. R., Mobley, M. L., Richardson, C. J., Andrews, S. S.,
West, L., Wills, S., Billings, S., Cambardella, C. A., Cavallaro, N.,
DeMeester, J. E., Franzluebbers, A. J., Grandy, A. S., Grunwald, S., Gruver,
J., Hartshorn, A. S., Janzen, H., Kramer, M. G., Ladha, J. K., Lajtha, K.,
Liles, G. C., Markewitz, D., Megonigal, P. J., Mermut, A. R., Rasmussen, C.,
Robinson, D. A., Smith, P., Stiles, C. A., Tate III, R. L., Thompson, A.,
Tugel, A. J., van Es, H., Yaalon, D., and Zobeck, T. M.: Human–Soil
Relations are Changing Rapidly: Proposals from SSSA's Cross-Divisional Soil
Change Working Group, Soil Sci. Soc. Am. J., 75,
2079–2084, https://doi.org/10.2136/sssaj2011.0124, 2011. a
Rohatgi, A.: Webplotdigitizer: Version 4.5,
https://automeris.io/WebPlotDigitizer (last access: 1 November 2022), 2021. a
Rüegg, J., Gries, C., Bond-Lamberty, B., Bowen, G. J., Felzer, B. S.,
McIntyre, N. E., Soranno, P. A., Vanderbilt, K. L., and Weathers, K. C.:
Completing the data life cycle: using information management in macrosystems
ecology research, Front. Ecol. Environ., 12, 24–30,
https://doi.org/10.1890/120375, 2014. a
Savage, C. J. and Vickers, A. J.: Empirical Study of Data Sharing by Authors
Publishing in PLoS Journals, PLoS ONE, 4, e7078,
https://doi.org/10.1371/journal.pone.0007078, 2009. a
Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., and Sierra, C. A.: Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures, Earth Syst. Sci. Data, 12, 1511–1524, https://doi.org/10.5194/essd-12-1511-2020, 2020. a, b
Sierra, C. A.: SIDB, https://soilbgc-datashare.github.io/sidb/ (last access: 1 November 2022), 2018. a
Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P.,
Batjes, N. H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C.,
Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes,
J., Sanz-Cobena, A., and Klumpp, K.: How to measure, report and verify soil
carbon change to realize the potential of soil carbon sequestration for
atmospheric greenhouse gas removal, Glob. Change Biol., 26, 219–241,
https://doi.org/10.1111/gcb.14815, 2020. a
SOILTEMP: Towards a global database of microclimate,
https://soiltemp.weebly.com/ (last access: 1 November 2022), 2020. a
Tugel, A., Herrick, J., Brown, J., Mausbach, M., Puckett, W., and Hipple, K.:
Soil Change, Soil Survey, and Natural Resources Decision Making, Soil Sci. Soc. Am. J., 69, 738–747, https://doi.org/10.2136/sssaj2004.0163, 2005. a
Tummers, B.: DataThief software, version 3.0,
https://datathief.org/ (last access: 1 November 2022), 2006. a
van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen,
L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E.,
Reich, P. B., Schuur, E. A. G., and Hungate, B. A.: Predicting soil carbon
loss with warming, Nature, 554, 4–5, https://doi.org/10.1038/nature25745, 2018. a
Vines, T. H., Albert, A. Y., Andrew, R. L., Débarre, F., Bock, D. G.,
Franklin, M. T., Gilbert, K. J., Moore, J.-S., Renaut, S., and Rennison,
D. J.: The Availability of Research Data Declines Rapidly with Article Age,
Current Biol., 24, 94–97, https://doi.org/10.1016/j.cub.2013.11.014,
2014. a
Weintraub, S. R., Flores, A. N., Wieder, W. R., Sihi, D., Cagnarini, C., Gonçalves, D. R. P., Young, M. H., Li, L., Olshansky, Y., Baatz, R., Sullivan,
P. L., and Groffman, P. M.: Leveraging Environmental Research and Observation
Networks to Advance Soil Carbon Science, J. Geophys. Res.-Biogeo., 124, 1047–1055, https://doi.org/10.1029/2018JG004956,
2019. a
Wieder, W., Earl, S., and Pierson, D.: SoDaH: Database,
https://lter.github.io/som-website/database.html (last access: 1 November 2022),
2021a. a
Wieder, W. R., Pierson, D., Earl, S., Lajtha, K., Baer, S. G., Ballantyne, F., Berhe, A. A., Billings, S. A., Brigham, L. M., Chacon, S. S., Fraterrigo, J., Frey, S. D., Georgiou, K., de Graaff, M.-A., Grandy, A. S., Hartman, M. D., Hobbie, S. E., Johnson, C., Kaye, J., Kyker-Snowman, E., Litvak, M. E., Mack, M. C., Malhotra, A., Moore, J. A. M., Nadelhoffer, K., Rasmussen, C., Silver, W. L., Sulman, B. N., Walker, X., and Weintraub, S.: SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0, Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, 2021b. a, b, c, d
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J.,
Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A., Hooft, R.,
Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer,
A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone,
S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A.,
Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester,
A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR
Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a
Wolkovich, E. M., Regetz, J., and O'Connor, M. I.: Advances in global change
research require open science by individual researchers, Glob. Change
Biol., 18, 2102–2110,
https://doi.org/10.1111/j.1365-2486.2012.02693.x, 2012. a
Yost, J. L. and Hartemink, A. E.: How deep is the soil studied–an analysis of
four soil science journals, Plant Soil, 452, 5–18, 2020. a
Zinke, P., Stangenberger, A., Post, W., Emanuel, W., and Olson, J.: Global
Organic Soil Carbon and Nitrogen (Zinke et al.), https://doi.org/10.3334/ORNLDAAC/221,
1998. a
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Research data are becoming increasingly available online with tantalizing possibilities for...
Altmetrics
Final-revised paper
Preprint