Articles | Volume 19, issue 20
https://doi.org/10.5194/bg-19-4903-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4903-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upper-ocean flux of biogenic calcite produced by the Arctic planktonic foraminifera Neogloboquadrina pachyderma
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Leobener Straße 8, Bremen 28359,
Germany
Lukas Jonkers
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Leobener Straße 8, Bremen 28359,
Germany
Julie Meilland
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Leobener Straße 8, Bremen 28359,
Germany
Michal Kucera
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Leobener Straße 8, Bremen 28359,
Germany
Related authors
No articles found.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
Clim. Past, 21, 381–403, https://doi.org/10.5194/cp-21-381-2025, https://doi.org/10.5194/cp-21-381-2025, 2025
Short summary
Short summary
Earth's past temperature reconstructions are critical for understanding climate change. We test the ability of these reconstructions using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhance accuracy for long-term trends, high-quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009.
Anglada-Ortiz, G., Zamelczyk, K., Meilland, J., Ziveri, P., Chierici, M.,
Fransson, A., and Rasmussen, T. L.: Planktic Foraminiferal and Pteropod
Contributions to Carbon Dynamics in the Arctic Ocean (North Svalbard
Margin), Front. Mar. Sci., 8, 661158,
https://doi.org/10.3389/fmars.2021.661158, 2021.
Arikawa, R.: Distribution and taxonomy of globigerina pachyderma (Ehrenberg)
off the Sanriku coast, northeast Honshu, Japan, Tohoku Uiv., Sci. Rep.,
2nd series (Geol.), 53, 103–157, 1983.
Bauch, D., Carstens, J., and Wefer, G.: Oxygen isotope composition of living
Neogloboquadrina pachyderma (sin.) in the Arctic Ocean, Earth Planet.
Sc. Lett., 146, 47–58, https://doi.org/10.1016/S0012-821X(96)00211-7,
1997.
Bauerfeind, E., Nöthig, E.-M., Beszczynska, A., Fahl, K., Kaleschke, L.,
Kreker, K., Klages, M., Soltwedel, T., Lorenzen, C., and Wegner, J.:
Particle sedimentation patterns in the eastern Fram Strait during
2000–2005: Results from the Arctic long-term observatory HAUSGARTEN, Deep-Sea Res. Pt. I, 56, 1471–1487,
https://doi.org/10.1016/j.dsr.2009.04.011, 2009.
Bauerfeind, E., Nöthig, E.-M., Pauls, B., Kraft, A., and
Beszczynska-Möller, A.: Variability in pteropod sedimentation and
corresponding aragonite flux at the Arctic deep-sea long-term observatory
HAUSGARTEN in the eastern Fram Strait from 2000 to 2009, J. Mar.
Syst., 132, 95–105, https://doi.org/10.1016/j.jmarsys.2013.12.006, 2014.
Baumann, K.-H., Andruleit, H., and Samtleben, C.: Coccolithophores in the
Nordic Seas: comparison of living communities with surface sediment
assemblages, Deep-Sea Res. Pt. II, 47,
1743–1772, https://doi.org/10.1016/S0967-0645(00)00005-9, 2000.
Bé, A. W.: Some observations on Arctic planktonic foraminifera, Contrib. Cushman Found, Foraminiferal Res., 11, 64–68, 1960.
Beaugrand, G., McQuatters-Gollop, A., Edwards, M., and Goberville, E.:
Long-term responses of North Atlantic calcifying plankton to climate change,
Nat. Clim. Change, 3, 263–267, https://doi.org/10.1038/nclimate1753,
2013.
Busch, K., Bauerfeind, E., and Nöthig, E.-M.: Pteropod sedimentation
patterns in different water depths observed with moored sediment traps over
a 4-year period at the LTER station HAUSGARTEN in eastern Fram Strait, Polar
Biol., 38, 845–859, https://doi.org/10.1007/s00300-015-1644-9, 2015.
Carstens, J. and Wefer, G.: Recent distribution of planktonic foraminifera
in the Nansen Basin, Arctic Ocean, Deep-Sea Res. Pt. A, 39, 507–524, https://doi.org/10.1016/S0198-0149(06)80018-X, 1992.
Carstens, J., Hebbeln, D., and Wefer, G.: Distribution of planktic
foraminifera at the ice margin in the Arctic (Fram Strait), Mar.
Micropaleontol., 29, 257–269,
https://doi.org/10.1016/S0377-8398(96)00014-X, 1997.
Daniels, C., Poulton, A., Young, J., Esposito, M., Humphreys, M.,
Ribas-Ribas, M., Tynan, E., and Tyrrell, T.: Species-specific calcite
production reveals Coccolithus pelagicus as the key calcifier in the Arctic
Ocean, Mar. Ecol. Prog. Ser., 555, 29–47,
https://doi.org/10.3354/meps11820, 2016.
Fahl, K. and Nöthig, E.-M.: Lithogenic and biogenic particle fluxes on
the Lomonosov Ridge (central Arctic Ocean) and their relevance for sediment
accumulation: Vertical vs. lateral transport, Deep-Sea Res. Pt. I, 54, 1256–1272,
https://doi.org/10.1016/j.dsr.2007.04.014, 2007.
Field, D. B., Baumgartner, T. R., Charles, C. D., Ferreira-Bartrina, V., and
Ohman, M. D.: Planktonic Foraminifera of the California Current Reflect
20th-Century Warming, Science, 311, 63–66,
https://doi.org/10.1126/science.1116220, 2006.
Greco, M., Jonkers, L., Kretschmer, K., Bijma, J., and Kucera, M.: Depth
habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the
northern high latitudes explained by sea-ice and chlorophyll concentrations,
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, 2019.
Greco, M., Morard, R., and Kucera, M.: Single-cell metabarcoding
reveals biotic interactions of the Arctic calcifier Neogloboquadrina
pachyderma with the eukaryotic pelagic community, J. Plank.
Res., 43, 113–125, https://doi.org/10.1093/plankt/fbab015, 2021a.
Greco, M., Werner, K., Zamelczyk, K., Rasmussen, T. L., and Kucera, M.:
Decadal trend of plankton community change and habitat shoaling in the
Arctic gateway recorded by planktonic foraminifera, Glob. Change Biol.,
28, 1798–1808, https://doi.org/10.1111/gcb.16037, 2021b.
Hebbeln, D.: Flux of ice-rafted detritus from sea ice in the Fram Strait,
Deep-Sea Res. Pt. II, 47, 1773–1790,
https://doi.org/10.1016/S0967-0645(00)00006-0, 2000.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic
foraminifera, Springer Science & Business Media, ISBN 1-4612-3544-8, 1989.
Henehan, M. J., Evans, D., Shankle, M., Burke, J. E., Foster, G. L.,
Anagnostou, E., Chalk, T. B., Stewart, J. A., Alt, C. H., and Durrant, J.:
Size-dependent response of foraminiferal calcification to seawater carbonate
chemistry, Biogeosciences, 14, 3287–3308,
https://doi.org/10.5194/bg-14-3287-2017, 2017.
Jensen, S.: Planktische Foraminiferen im Europäischen Nordmeer: Verbreitung und Vertikalfluss sowie ihre Entwicklung während der letzten 15000 Jahre, Ph.D. thesis, Christian-Albrechts-Universität Kiel, Kiel, Germany, Berichte aus dem Sonderforschungsbereich 313, Veränderungen der Umwelt – Der Nördliche Nordatlantik, 75, 105 pp., 1998.
Jonkers, L., Brummer, G.-J. A., Peeters, F. J. C., van Aken, H. M., and De
Jong, M. F.: Seasonal stratification, shell flux, and oxygen isotope
dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic,
Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849, 2010.
Jonkers, L., Hillebrand, H., and Kucera, M.: Global change drives modern
plankton communities away from the pre-industrial state, Nature, 570,
372–375, https://doi.org/10.1038/s41586-019-1230-3, 2019.
Jutterström, S. and Anderson, L. G.: The saturation of calcite and
aragonite in the Arctic Ocean, Mar. Chem., 94, 101–110,
https://doi.org/10.1016/j.marchem.2004.08.010, 2005.
Kiss, P., Jonkers, L., Hudáčková, N., Reuter, R. T., Donner, B.,
Fischer, G., and Kučera, M.: Determinants of Planktonic Foraminifera
Calcite Flux: Implications for the Prediction of Intra-and Interannual
Pelagic Carbonate Budgets, Global Biogeochem. Cy., 35, 9,
https://doi.org/10.1029/2020GB006748, 2021.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Ocean Carbon-Mineral Flux Association, Global Biogeochem. Cy., 16,
63-1–63-14, https://doi.org/10.1029/2001GB001765, 2002.
Kohfeld, K. E.: Geochemistry and ecology of polar planktonic foraminifera, and applications to paleoceanographic reconstructions, Ph.D. thesis, Columbia University, UnitedStates, 250 pp., 1998.
Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., and Walsh, I. D.:
Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers
in polar oceans: Evidence from Northeast Water Polynya plankton tows,
sediment traps, and surface sediments, Paleoceanography, 11, 679–699,
https://doi.org/10.1029/96PA02617, 1996.
Lončarić, N., Peeters, F. J. C., Kroon, D., and Brummer, G.-J. A.:
Oxygen isotope ecology of recent planktic foraminifera at the central Walvis
Ridge (SE Atlantic), Palaeoceanography, 21, PA3009,
https://doi.org/10.1029/2005PA001207, 2006.
Manno, C. and Pavlov, A. K.: Living planktonic foraminifera in the Fram
Strait (Arctic): absence of diel vertical migration during the midnight sun,
Hydrobiologia, 721, 285–295, https://doi.org/10.1007/s10750-013-1669-4,
2014.
Meilland, J., Siccha, M., Weinkauf, M. F. G., Jonkers, L., Morard, R.,
Baranowski, U., Baumeister, A., Bertlich, J., Brummer, G.-J., Debray, P.,
Fritz-Endres, T., Groeneveld, J., Magerl, L., Munz, P., Rillo, M. C.,
Schmidt, C., Takagi, H., Theara, G., and Kucera, M.: Highly replicated
sampling reveals no diurnal vertical migration but stable species-specific
vertical habitats in planktonic foraminifera, J. Plank. Res.,
41, 127–141, https://doi.org/10.1093/plankt/fbz002, 2019.
Meilland, J., Howa, H., Hulot, V., Demangel, I., Salaün, J., and Garlan,
T.: Population dynamics of modern planktonic foraminifera in the western
Barents Sea, Biogeosciences, 17, 1437–1450,
https://doi.org/10.5194/bg-17-1437-2020, 2020.
Meilland, J., Siccha, M., Kaffenberger, M., Bijma, J., and Kucera, M.: Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean, Biogeosciences, 20, 5789–5809,
https://doi.org/10.5194/bg-2021-141, 2021.
Miller, L. A., Macdonald, R. W., McLaughlin, F., Mucci, A., Yamamoto-Kawai,
M., Giesbrecht, K. E., and Williams, W. J.: Changes in the marine carbonate
system of the western Arctic: patterns in a rescued data set, Polar
Res., 33, 20577, https://doi.org/10.3402/polar.v33.20577, 2014.
Ofstad, S., Meilland, J., Zamelczyk, K., Chierici, M., Fransson,
A., Gründger, F., and Rasmussen, T. L.: Development, productivity and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea, J. Geophys. Res.-Biogeo., 125, 2, https://doi.org/10.1029/2019JG005387, 2020.
Pados, T. and Spielhagen, R. F.: Species distribution and depth habitat of
recent planktic foraminifera in Fram Strait, Arctic Ocean, Polar Res.,
33, 22483, https://doi.org/10.3402/polar.v33.22483, 2014.
Pados, T., Spielhagen, R. F., Bauch, D., Meyer, H., and Segl, M.: Oxygen and
carbon isotope composition of modern planktic foraminifera and near-surface
waters in the Fram Strait (Arctic Ocean) – a case study, Biogeosciences,
12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, 2015.
Peeters, F. J. C. and Brummer, G.-J. A.: The seasonal and vertical
distribution of living planktic foraminifera in the NW Arabian Sea,
Geol. Soc. Lond. Special Publ., 195, 463–497,
https://doi.org/10.1144/GSL.SP.2002.195.01.26, 2002.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org (last access: 15 April 2022), 2018.
Riebesell, U., Kortzinger, A., and Oschlies, A.: Sensitivities of marine
carbon fluxes to ocean change, P. Natl. Acad.
Sci. USA, 106, 20602–20609, https://doi.org/10.1073/pnas.0813291106, 2009.
Salmon, K. H., Anand, P., Sexton, P. F., and Conte, M.: Upper ocean mixing
controls the seasonality of planktonic foraminifer fluxes and associated
strength of the carbonate pump in the oligotrophic North Atlantic,
Biogeosciences, 12, 223–235, https://doi.org/10.5194/bg-12-223-2015, 2015.
Salter, I., Schiebel, R., Ziveri, P., Movellan, A., Lampitt, R., and Wolff,
G. A.: Carbonate counter pump stimulated by natural iron fertilization in
the Polar Frontal Zone, Nat. Geosci., 7, 885–889,
https://doi.org/10.1038/ngeo2285, 2014.
Schiebel, R.: Planktic foraminiferal sedimentation and the marine calcite
budget, Global Biogeochem. Cy., 16, 3-1–3-21,
https://doi.org/10.1029/2001GB001459, 2002.
Schiebel, R. and Hemleben, C.: Interannual variability of planktic
foraminiferal populations and test flux in the eastern North Atlantic Ocean
(JGOFS), Deep-Sea Res. Pt. II, 47, 1809–1852,
https://doi.org/10.1016/S0967-0645(00)00008-4, 2000.
Schiebel, R., Hiller, B., and Hemleben, C.: Impacts of storms on recent
planktic foraminiferal test production and CaCO3 flux in the North Atlantic
at 47∘ N, 20∘ W (JGOFS), Mar. Micropaleontol., 26, 115–129,
https://doi.org/10.1016/0377-8398(95)00035-6, 1995.
Schiebel, R., Barker, S., Lendt, R., Thomas, H., and Bollmann, J.: Planktic
foraminiferal dissolution in the twilight zone, Deep-Sea Res. Pt. II, 54, 676–686,
https://doi.org/10.1016/j.dsr2.2007.01.009, 2007.
Schiebel, R., Spielhagen, R. F., Garnier, J., Hagemann, J., Howa, H.,
Jentzen, A., Martínez-Garcia, A., Meilland, J., Michel, E.,
Repschläger, J., Salter, I., Yamasaki, M., and Haug, G.: Modern planktic
foraminifers in the high-latitude ocean, Mar. Micropaleontol., 136,
1–13, https://doi.org/10.1016/j.marmicro.2017.08.004, 2017.
Schiebel, R., Smart, S. M., Jentzen, A., Jonkers, L., Morard, R., Meilland,
J., Michel, E., Coxall, H. K., Hull, P. M., de Garidel-Thoron, T., Aze, T.,
Quillévéré, F., Ren, H., Sigman, D. M., Vonhof, H. B.,
Martínez-García, A., Kučera, M., Bijma, J., Spero, H. J., and
Haug, G. H.: Advances in planktonic foraminifer research: New perspectives
for paleoceanography, Revue Micropaléontol., 61, 113–138,
https://doi.org/10.1016/j.revmic.2018.10.001, 2018.
Schönfeld, J., Golikova, E., Korsun, S., and Spezzaferri, S.: The
Helgoland Experiment – assessing the influence of methodologies on Recent
benthic foraminiferal assemblage composition, J. Micropalaeontol., 32,
161–182, https://doi.org/10.1144/jmpaleo2012-022, 2013.
Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic
foraminifera census counts in marine surface sediment samples, Sci. Data, 4,
170109, https://doi.org/10.1038/sdata.2017.109, 2017.
Siccha, M., Schiebel, R., Schmidt, S., and Howa, H.: Short-term and
small-scale variability in planktic foraminifera test flux in the Bay of
Biscay, Deep-Sea Res. Pt. I, 64,
146–156, https://doi.org/10.1016/j.dsr.2012.02.004, 2012.
Simstich, J.: Die ozeanische Deckschicht des Europäischen Nordmeers im Abbild stabiler Isotope von Kalkgehäusen unterschiedlicher Planktonforaminiferenarten, Ph.D. thesis, Berichte – Reports 2, Institut für Geowissenschaften, Christian-Albrechts-Universität, Kiel, Germany, 96 pp., 1999.
Simstich, J., Sarnthein, M., and Erlenkeuser, H.: Paired δ18O
signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba
show thermal stratification structure in Nordic Seas, Mar.
Micropaleontol., 48, 107–125,
https://doi.org/10.1016/S0377-8398(02)00165-2, 2003.
Soltwedel, T., Bauerfeind, E., Bergmann, M., Budaeva, N., Hoste, E.,
Jaeckisch, N., von Juterzenka, K., Matthießen, J., Mokievsky, V., and
Nöthig, E.-M.: HAUSGARTEN: multidisciplinary investigations at a
deep-sea, long-term observatory in the Arctic Ocean, Oceanography, 18,
46–61, https://doi.org/10.5670/oceanog.2005.24, 2005.
Spindler, M.: On the salinity tolerance of the planktonic foraminifer
Neogloboquadrina pachyderma from Antarctic sea ice, Proc. NIPR Symp., Polar
Biol., 9, 85–91, 1996.
Stangeew, E.: Distribution and Isotopic Composition of Living Planktonic
Foraminifera N. pachyderma (sinistral) and T. quinqueloba in the High Latitude North
Atlantic, PhD Thesis, Christian-Albrechts Universität zu Kiel, Germany,
90 pp., M39/4_361CTD-18,
https://doi.pangaea.de/10.1594/PANGAEA.62182,
M39/4_402CTD-55,
https://doi.pangaea.de/10.1594/PANGAEA.62183, 2001.
Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney,
S. C.: Imminent ocean acidification in the Arctic projected with the NCAR
global coupled carbon cycle-climate model, Biogeosciences, 6, 515–533,
https://doi.org/10.5194/bg-6-515-2009, 2009.
Sulpis, O., Jeansson, E., Dinauer, A., Lauvset, S. K., and Middelburg, J.
J.: Calcium carbonate dissolution patterns in the ocean, Nat. Geosci.,
14, 423–428, https://doi.org/10.1038/s41561-021-00743-y, 2021.
Takahashi, K. and Bé, A. W. H.: Planktonic foraminifera: factors
controlling sinking speeds, Deep-Sea Res. Pt. A, 31, 1477–1500, https://doi.org/10.1016/0198-0149(84)90083-9, 1984.
Tell, F.: Neogloboquadrina pachyderma compiled data from vertical profiles in the Arctic Ocean, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.941250, last access: 15 February 2022.
Vihtakari, M.: ggOceanMaps: Plot Data on Oceanographic Maps using “ggplot2”,
R package version 1.1.19, Zenodo [code], https://doi.org/10.5281/zenodo.4554714,
2021 (available at: https://github.com/MikkoVihtakari/ggOceanMaps, last access: 15 February 2022).
Vilks, G.: Comparison of Globorotalia pachyderma (Ehrenberg) in the water
column and sediments of the Canadian Arctic, J. Foramin.
Res., 5, 313–325, https://doi.org/10.2113/gsjfr.5.4.313, 1975.
Volkmann, R.: Planktic foraminifer ecology and stable isotope geochemistry in the Arctic Ocean: implications from water column and sediment surface studies for quantitative reconstructions of oceanic parameters, Ph. D. thesis, Berichte zur Polarforschung (Reports on Polar Research), 361, Alfred-Wegener-Institute, Bremerhaven, Germany, 100 pp., https://doi.org/10.2312/BzP_0361_2000,
2000a.
Volkmann, R.: Planktic foraminifers in the outer Laptev Sea and the Fram
Strait – modern distribution and ecology, J. Foramin. Res.,
30, 157–176, https://doi.org/10.2113/0300157, 2000b.
Volkmann, R. and Mensch, M.: Stable isotope composition (δ18O, δ13C) of
living planktic foraminifers in the outer Laptev Sea and the Fram Strait,
Mar. Micropaleontol., 26, 163–188, https://doi.org/10.1016/S0377-8398(01)00018-4,
2001.
von Bodungen, B., Antia, A., Bauerfeind, E., Haupt, O., Koeve, W., Machado,
E., Peeken, I., Peinert, R., Reitmeier, S., Thomsen, C., Voss, M., Wunsch,
M., Zeller, U., and Zeitzschel, B.: Pelagic processes and vertical flux of
particles: an overview of a long-term comparative study in the Norwegian Sea
and Greenland Sea, Geol. Rundsch., 84, 11–27,
https://doi.org/10.1007/BF00192239, 1995.
von Gyldenfeldt, A.-B., Carstens, J., and Meincke, J.: Estimation of the
catchment area of a sediment trap by means of current meters and
foraminiferal tests, Deep-Sea Res. Pt. II, 47, 1701–1717, https://doi.org/10.1016/S0967-0645(00)00004-7,
2000.
Wassmann, P., Kosobokova, K. N., Slagstad, D., Drinkwater, K. F., Hopcroft,
R. R., Moore, S. E., Ellingsen, I., Nelson, R. J., Carmack, E., Popova, E.,
and Berge, J.: The contiguous domains of Arctic Ocean advection: Trails of
life and death, Prog. Oceanogr., 139, 42–65,
https://doi.org/10.1016/j.pocean.2015.06.011, 2015.
Weinkauf, M. F. G., Kunze, J. G., Waniek, J. J., and Kučera, M.:
Seasonal Variation in Shell Calcification of Planktonic Foraminifera in the
NE Atlantic Reveals Species-Specific Response to Temperature, Productivity,
and Optimum Growth Conditions, PLOS ONE, 33, 11,
https://doi.org/10.1371/journal.pone.0148363, 2016.
Wolfteich, C. M.: Satellite-derived sea surface temperature, mesoscale variability, and foraminiferal production in the North Atlantic, M.S. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, https://doi.org/10.1575/1912/5556, 1994.
Zeebe, R. E.: History of Seawater Carbonate Chemistry, Atmospheric CO2,
and Ocean Acidification, Annu. Rev. Earth Planet. Sci., 40, 141–165,
https://doi.org/10.1146/annurev-earth-042711-105521, 2012.
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
This study analyses the production of calcite shells formed by one of the main Arctic pelagic...
Altmetrics
Final-revised paper
Preprint