Articles | Volume 19, issue 21
https://doi.org/10.5194/bg-19-5107-2022
https://doi.org/10.5194/bg-19-5107-2022
Research article
 | 
07 Nov 2022
Research article |  | 07 Nov 2022

Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)

Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo

Related authors

VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024,https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022,https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Impact of temperature and water availability on microwave-derived gross primary production
Irene E. Teubner, Matthias Forkel, Benjamin Wild, Leander Mösinger, and Wouter Dorigo
Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021,https://doi.org/10.5194/bg-18-3285-2021, 2021
Short summary
The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)
Leander Moesinger, Wouter Dorigo, Richard de Jeu, Robin van der Schalie, Tracy Scanlon, Irene Teubner, and Matthias Forkel
Earth Syst. Sci. Data, 12, 177–196, https://doi.org/10.5194/essd-12-177-2020,https://doi.org/10.5194/essd-12-177-2020, 2020
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024,https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024,https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024,https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024,https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024,https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary

Cited articles

Aldred, F., Gobron, N., Miller, J. B., Willett, K. M., and Dunn, R.: Global climate, Bull. Am. Meteorol. Soc., 102, S11–S142, https://doi.org/10.1175/BAMS-D-21-0098.1, 2021. a
Allan, R.: Können. G. P., Jones, P. D., Katofen, M. H., and Allan, R. J., 1998: Pre-1866 extensions of the Southern Oscillation Index using early Indonesian and Tahitian meteorological readings, J. Clim., 11, 2325–2339, 1998. a
Allan, R. J., Nicholls, N., Jones, P. D., and Butterworth, I. J.: A Further Extension of the Tahiti–Darwin SOI, Early ENSO Events and Darwin Pressure, J. Clim., 4, 743–749, 1991. a
Bédard, F., Crump, S., and Gaudreau, J.: A comparison between Terra MODIS and NOAA AVHRR NDVI satellite image composites for the monitoring of natural grassland conditions in Alberta, Canada, Can. J. Remote Sens., 32, 44–50, https://doi.org/10.5589/m06-001, 2006. a
Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig, A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur, A., and Dorigo, W.: Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions, Reg. Environ. Change, 20, 123 pp., https://doi.org/10.3929/ETHZ-B-000459516, 2020. a, b
Download
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Altmetrics
Final-revised paper
Preprint