Articles | Volume 19, issue 21
https://doi.org/10.5194/bg-19-5107-2022
https://doi.org/10.5194/bg-19-5107-2022
Research article
 | 
07 Nov 2022
Research article |  | 07 Nov 2022

Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)

Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo

Related authors

VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024,https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022,https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Impact of temperature and water availability on microwave-derived gross primary production
Irene E. Teubner, Matthias Forkel, Benjamin Wild, Leander Mösinger, and Wouter Dorigo
Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021,https://doi.org/10.5194/bg-18-3285-2021, 2021
Short summary
The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)
Leander Moesinger, Wouter Dorigo, Richard de Jeu, Robin van der Schalie, Tracy Scanlon, Irene Teubner, and Matthias Forkel
Earth Syst. Sci. Data, 12, 177–196, https://doi.org/10.5194/essd-12-177-2020,https://doi.org/10.5194/essd-12-177-2020, 2020
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Consistency of global carbon budget between concentration- and emission-driven historical experiments simulated by CMIP6 Earth system models and suggestions for improved simulation of CO2 concentration
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris D. Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
Biogeosciences, 22, 1447–1473, https://doi.org/10.5194/bg-22-1447-2025,https://doi.org/10.5194/bg-22-1447-2025, 2025
Short summary
Selecting allometric equations to estimate forest biomass from plot- rather than individual-level predictive performance
Nicolas Picard, Noël Fonton, Faustin Boyemba Bosela, Adeline Fayolle, Joël Loumeto, Gabriel Ngua Ayecaba, Bonaventure Sonké, Olga Diane Yongo Bombo, Hervé Martial Maïdou, and Alfred Ngomanda
Biogeosciences, 22, 1413–1426, https://doi.org/10.5194/bg-22-1413-2025,https://doi.org/10.5194/bg-22-1413-2025, 2025
Short summary
Impact of winter warming on CO2 fluxes in evergreen needleleaf forests
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025,https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Effects of pH/pCO2 fluctuations on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequences of coastal acidification
Yu Shang, Jingmin Qiu, Yuxi Weng, Xin Wang, Di Zhang, Yuwei Zhou, Juntian Xu, and Futian Li
Biogeosciences, 22, 1203–1214, https://doi.org/10.5194/bg-22-1203-2025,https://doi.org/10.5194/bg-22-1203-2025, 2025
Short summary
Long-term impacts of global temperature stabilization and overshoot on exploited marine species
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025,https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary

Cited articles

Aldred, F., Gobron, N., Miller, J. B., Willett, K. M., and Dunn, R.: Global climate, Bull. Am. Meteorol. Soc., 102, S11–S142, https://doi.org/10.1175/BAMS-D-21-0098.1, 2021. a
Allan, R.: Können. G. P., Jones, P. D., Katofen, M. H., and Allan, R. J., 1998: Pre-1866 extensions of the Southern Oscillation Index using early Indonesian and Tahitian meteorological readings, J. Clim., 11, 2325–2339, 1998. a
Allan, R. J., Nicholls, N., Jones, P. D., and Butterworth, I. J.: A Further Extension of the Tahiti–Darwin SOI, Early ENSO Events and Darwin Pressure, J. Clim., 4, 743–749, 1991. a
Bédard, F., Crump, S., and Gaudreau, J.: A comparison between Terra MODIS and NOAA AVHRR NDVI satellite image composites for the monitoring of natural grassland conditions in Alberta, Canada, Can. J. Remote Sens., 32, 44–50, https://doi.org/10.5589/m06-001, 2006. a
Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig, A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur, A., and Dorigo, W.: Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions, Reg. Environ. Change, 20, 123 pp., https://doi.org/10.3929/ETHZ-B-000459516, 2020. a, b
Download
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Share
Altmetrics
Final-revised paper
Preprint