Articles | Volume 19, issue 21
https://doi.org/10.5194/bg-19-5107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Leander Moesinger
CORRESPONDING AUTHOR
Department of Geodesy and Geoinformation, Technische Universität Wien, Vienna, Austria
Ruxandra-Maria Zotta
Department of Geodesy and Geoinformation, Technische Universität Wien, Vienna, Austria
Robin van der Schalie
VanderSat, Wilhelminastraat 43A, 2011 VK Haarlem, the Netherlands
Tracy Scanlon
Department of Geodesy and Geoinformation, Technische Universität Wien, Vienna, Austria
Richard de Jeu
VanderSat, Wilhelminastraat 43A, 2011 VK Haarlem, the Netherlands
Department of Geodesy and Geoinformation, Technische Universität Wien, Vienna, Austria
Related authors
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024, https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
Short summary
VODCA v2 is a dataset providing vegetation indicators for long-term ecosystem monitoring. VODCA v2 comprises two products: VODCA CXKu, spanning 34 years of observations (1987–2021), suitable for monitoring upper canopy dynamics, and VODCA L (2010–2021), for above-ground biomass monitoring. VODCA v2 has lower noise levels than the previous product version and provides valuable insights into plant water dynamics and biomass changes, even in areas where optical data are limited.
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Short summary
Gross primary production (GPP) describes the conversion of CO2 to carbohydrates and can be seen as a filter for our atmosphere of the primary greenhouse gas CO2. We developed VODCA2GPP, a GPP dataset that is based on vegetation optical depth from microwave remote sensing and temperature. Thus, it is mostly independent from existing GPP datasets and also available in regions with frequent cloud coverage. Analysis showed that VODCA2GPP is able to complement existing state-of-the-art GPP datasets.
Irene E. Teubner, Matthias Forkel, Benjamin Wild, Leander Mösinger, and Wouter Dorigo
Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021, https://doi.org/10.5194/bg-18-3285-2021, 2021
Short summary
Short summary
Vegetation optical depth (VOD), which contains information on vegetation water content and biomass, has been previously shown to be related to gross primary production (GPP). In this study, we analyzed the impact of adding temperature as model input and investigated if this can reduce the previously observed overestimation of VOD-derived GPP. In addition, we could show that the relationship between VOD and GPP largely holds true along a gradient of dry or wet conditions.
Wolfgang Preimesberger, Pietro Stradiotti, and Wouter Dorigo
Earth Syst. Sci. Data, 17, 4305–4329, https://doi.org/10.5194/essd-17-4305-2025, https://doi.org/10.5194/essd-17-4305-2025, 2025
Short summary
Short summary
We introduce the official ESA CCI Soil Moisture GAPFILLED climate data record. A univariate interpolation algorithm is applied to predict missing data points without relying on ancillary variables. The dataset includes gap-free uncertainty estimates for all predictions and was validated with independent in situ reference measurements. Our data record is recommended for applications which require global long-term gap-free satellite soil moisture data.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Bethan L. Harris, Christopher M. Taylor, Wouter Dorigo, Ruxandra-Maria Zotta, Darren Ghent, and Iván Noguera
EGUsphere, https://doi.org/10.5194/egusphere-2025-1489, https://doi.org/10.5194/egusphere-2025-1489, 2025
Short summary
Short summary
An improved understanding of land-atmosphere coupling processes during flash (rapid-onset) droughts is needed to aid the development of forecasts for these events. We use satellite observations to investigate the surface energy budget during flash droughts globally. The most intense events show a perturbed surface energy budget months before onset. In some regions, vegetation observations 1–2 months before onset provide information on the likelihood of heat extremes during an event.
Martin Hirschi, Pietro Stradiotti, Bas Crezee, Wouter Dorigo, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 29, 397–425, https://doi.org/10.5194/hess-29-397-2025, https://doi.org/10.5194/hess-29-397-2025, 2025
Short summary
Short summary
We investigate the potential of long-term satellite and reanalysis products for characterising soil drying by analysing their 2000–2022 soil moisture trends and their representation of agroecological drought events of this period. Soil moisture trends are globally diverse and partly contradictory between products. This also affects the products' drought-detection capacity. Based on the best-estimate products, consistent soil drying is observed over more than 40 % of the land area covered.
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024, https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
Short summary
VODCA v2 is a dataset providing vegetation indicators for long-term ecosystem monitoring. VODCA v2 comprises two products: VODCA CXKu, spanning 34 years of observations (1987–2021), suitable for monitoring upper canopy dynamics, and VODCA L (2010–2021), for above-ground biomass monitoring. VODCA v2 has lower noise levels than the previous product version and provides valuable insights into plant water dynamics and biomass changes, even in areas where optical data are limited.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Luisa Schmidt, Matthias Forkel, Ruxandra-Maria Zotta, Samuel Scherrer, Wouter A. Dorigo, Alexander Kuhn-Régnier, Robin van der Schalie, and Marta Yebra
Biogeosciences, 20, 1027–1046, https://doi.org/10.5194/bg-20-1027-2023, https://doi.org/10.5194/bg-20-1027-2023, 2023
Short summary
Short summary
Vegetation attenuates natural microwave emissions from the land surface. The strength of this attenuation is quantified as the vegetation optical depth (VOD) parameter and is influenced by the vegetation mass, structure, water content, and observation wavelength. Here we model the VOD signal as a multi-variate function of several descriptive vegetation variables. The results help in understanding the effects of ecosystem properties on VOD.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022, https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
Short summary
Climate data records of surface soil moisture, vegetation optical depth, and land surface temperature can be derived from passive microwave observations. The ability of these datasets to properly detect anomalies and extremes is very valuable in climate research and can especially help to improve our insight in complex regions where the current climate reanalysis datasets reach their limitations. Here, we present a case study over the Okavango Delta, where we focus on inter-annual variability.
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Short summary
Gross primary production (GPP) describes the conversion of CO2 to carbohydrates and can be seen as a filter for our atmosphere of the primary greenhouse gas CO2. We developed VODCA2GPP, a GPP dataset that is based on vegetation optical depth from microwave remote sensing and temperature. Thus, it is mostly independent from existing GPP datasets and also available in regions with frequent cloud coverage. Analysis showed that VODCA2GPP is able to complement existing state-of-the-art GPP datasets.
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Irene E. Teubner, Matthias Forkel, Benjamin Wild, Leander Mösinger, and Wouter Dorigo
Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021, https://doi.org/10.5194/bg-18-3285-2021, 2021
Short summary
Short summary
Vegetation optical depth (VOD), which contains information on vegetation water content and biomass, has been previously shown to be related to gross primary production (GPP). In this study, we analyzed the impact of adding temperature as model input and investigated if this can reduce the previously observed overestimation of VOD-derived GPP. In addition, we could show that the relationship between VOD and GPP largely holds true along a gradient of dry or wet conditions.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Cited articles
Aldred, F., Gobron, N., Miller, J. B., Willett, K. M., and Dunn, R.: Global
climate, Bull. Am. Meteorol. Soc., 102, S11–S142, https://doi.org/10.1175/BAMS-D-21-0098.1, 2021. a
Allan, R.: Können. G. P., Jones, P. D., Katofen, M. H., and Allan, R. J.,
1998: Pre-1866 extensions of the Southern Oscillation Index using early
Indonesian and Tahitian meteorological readings, J. Clim., 11,
2325–2339, 1998. a
Allan, R. J., Nicholls, N., Jones, P. D., and Butterworth, I. J.: A Further
Extension of the Tahiti–Darwin SOI, Early ENSO Events and Darwin Pressure,
J. Clim., 4, 743–749, 1991. a
Bédard, F., Crump, S., and Gaudreau, J.: A comparison between Terra MODIS and
NOAA AVHRR NDVI satellite image composites for the monitoring of natural
grassland conditions in Alberta, Canada, Can. J. Remote Sens.,
32, 44–50, https://doi.org/10.5589/m06-001, 2006. a
Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig,
A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur, A., and
Dorigo, W.: Earth Observation for agricultural drought monitoring in the
Pannonian Basin (southeastern Europe): current state and future directions,
Reg. Environ. Change, 20, 123 pp., https://doi.org/10.3929/ETHZ-B-000459516, 2020. a, b
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi,
M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D.,
Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C.,
van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA
CCI Soil Moisture for improved Earth system understanding: State-of-the art
and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017. a
Dorigo, W. A., Zurita-Milla, R., de Wit, A. J., Brazile, J., Singh, R., and
Schaepman, M. E.: A review on reflective remote sensing and data
assimilation techniques for enhanced agroecosystem modeling, Int.
J. Appl. Earth Obs., 9, 165–193,
https://doi.org/10.1016/j.jag.2006.05.003, 2007. a
Dunn, R. J., Stanitski, D. M., Gobron, N., and Willett, K. M.: Global
climate, Bull. Am. Meteorol. Soc., 101, S9–S128, https://doi.org/10.1175/BAMS-D-20-0104.1, 2020. a
Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang,
M., Moisy, C., Le Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra,
B., and Baghdadi, N.: Global Monitoring of the Vegetation Dynamics from the
Vegetation Optical Depth (VOD): A Review, Remote Sens., 12, 2915,
https://doi.org/10.3390/rs12182915, 2020. a, b
Gaiser, P. W., St. Germain, K. M., Twarog, E. M., Poe, G. A., Purdy, W.,
Richardson, D., Grossman, W., Jones, W. L., Spencer, D., Golba, G.,
Cleveland, J., Choy, L., Bevilacqua, R. M., and Chang, P. S.: The windSat
spaceborne polarimetric microwave radiometer: Sensor description and early
orbit performance, IEEE Trans. Geosci. Remote Sens., 42,
2347–2361, https://doi.org/10.1109/TGRS.2004.836867, 2004. a
Gallo, K., Ji, L., Reed, B., Eidenshink, J., and Dwyer, J.: Multi-platform
comparisons of MODIS and AVHRR normalized difference vegetation index data,
Remote Sens. Environ., 99, 221–231, https://doi.org/10.1016/j.rse.2005.08.014,
2005. a
Guo, Y., Huang, S., Huang, Q., Wang, H., Fang, W., Yang, Y., and Wang, L.:
Assessing socioeconomic drought based on an improved Multivariate
Standardized Reliability and Resilience Index, J. Hydrol., 568,
904–918, https://doi.org/10.1016/j.jhydrol.2018.11.055, 2019. a, b
Hao, Z. and AghaKouchak, A.: Multivariate Standardized Drought Index: A
parametric multi-index model, Adv. Water Resour., 57, 12–18,
https://doi.org/10.1016/j.advwatres.2013.03.009, 2013. a, b
Hashimoto, H., Nemani, R., Bala, G., Cao, L., Michaelis, A., Ganguly, S., Wang,
W., Milesi, C., Eastman, R., Lee, T., and Myneni, R.: Constraints to
Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate,
Climate, 7, 27, https://doi.org/10.3390/cli7020027, 2019. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Holmes, T. R. H., De Jeu, R. A. M., Owe, M., and Dolman, A. J.: Land surface
temperature from Ka band (37 GHz) passive microwave observations, J.
Geophys. Res., 114, D04113, https://doi.org/10.1029/2008JD010257, 2009. a
Huang, J. and van Den Dool, H. M.: Monthly precipitation-temperature
relations and temperature prediction over the United States, J.
Clim., 6, 1111–1132,
https://doi.org/10.1175/1520-0442(1993)006<1111:mptrat>2.0.co;2, 1993. a
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review
on the use of normalized difference vegetation index (NDVI) in the era of
popular remote sensing, J. Forest. Res., 32, 1–6, https://doi.org/10.1007/s11676-020-01155-1, 2021. a
Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R.,
Hutyra, L. R., Yang, W., Nemani, R. R., and Myneni, R.: Amazon rainforests
green-up with sunlight in dry season, Geophys. Res. Lett., 33,
L06405, https://doi.org/10.1029/2005GL025583, 2006. a
Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, 2020. a
Jackson, T. and Schmugge, T.: Vegetation effects on the microwave emission of
soils, Remote Sens. Environ., 36, 203–212,
https://doi.org/10.1016/0034-4257(91)90057-D, 1991. a, b
Janssen, T., van der Velde, Y., Hofhansl, F., Luyssaert, S., Naudts, K.,
Driessen, B., Fleischer, K., and Dolman, H.: Drought effects on leaf fall,
leaf flushing and stem growth in the Amazon forest: reconciling remote
sensing data and field observations, Biogeosciences, 18, 4445–4472,
https://doi.org/10.5194/bg-18-4445-2021, 2021. a
Jones, M. O., Jones, L. A., Kimball, J. S., and McDonald, K. C.: Satellite
passive microwave remote sensing for monitoring global land surface
phenology, Remote Sens. Environ., 115, 1102–1114,
https://doi.org/10.1016/J.RSE.2010.12.015, 2011. a
Katz, R. W. and Glantz, M. H.: Anatomy of a rainfall index., Mon. Weather
Rev., 114, 764–771, https://doi.org/10.1175/1520-0493(1986)114<0764:AOARI>2.0.CO;2,
1986. a
Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y.,
Shibata, A., Miura, M., Inahata, H., and Spencer, R.: The advanced microwave
scanning radiometer for the earth observing system (AMSR-E), NASDA's
contribution to the EOS for global energy and water cycle studies, IEEE
Trans. Geosci. Remote Sens., 41, 184–194,
https://doi.org/10.1109/TGRS.2002.808331, 2003. a
Knowles, K., Savoie, M., Armstrong, R., and Brodzik, M. J.: AMSR-E/Aqua Daily
EASE-Grid Brightness Temperatures, Version 1 [Data Set], Boulder, Colorado USA, NASA National
Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/XIMNXRTQVMOX, 2006. a
Kogan, F. N.: Remote sensing of weather impacts on vegetation in
non-homogeneous areas, Int. J. Remote Sens., 11,
1405–1419, https://doi.org/10.1080/01431169008955102, 1990. a, b, c, d
Kogan, F. N.: Operational space technology for global vegetation assessment,
Bull. Am. Meteorol. Soc., 82, 1949–1964,
https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2, 2001. a, b, c, d
Konings, A. G., Holtzman, N. M., Rao, K., Xu, L., and Saatchi, S. S.:
Interannual Variations of Vegetation Optical Depth are Due to Both Water
Stress and Biomass Changes, Geophys. Res. Lett., 48,
e2021GL095267, https://doi.org/10.1029/2021gl095267, 2021. a, b
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J., Kummerow, C.,
Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical Rainfall
Measuring Mission (TRMM) Sensor Package, J. Atmos. Ocean.
Technol., 15, 809–817,
https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998. a
Larcher, W.: Temperature stress and survival ability of mediterranean
sclerophyllous plants, Plant Biosyst., 134, 279–295,
https://doi.org/10.1080/11263500012331350455, 2000. a
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M., and
Nepstad, D.: The 2010 Amazon drought, Science, 331, p. 554, https://doi.org/10.1126/science.1200807, 2011. a
Li, W., Migliavacca, M., Forkel, M., Walther, S., Reichstein, M., and Orth, R.:
Revisiting Global Vegetation Controls Using Multi-Layer Soil Moisture,
Geophys. Res. Lett., 48, e2021GL092856,
https://doi.org/10.1029/2021GL092856, 2021. a
Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and Holmes, T. R. H.: An
analysis of spatiotemporal variations of soil and vegetation moisture from a
29-year satellite-derived data set over mainland Australia, Water Resour.
Res., 45, 7, https://doi.org/10.1029/2008WR007187, 2009. a
Liu, Y. Y., Van Dijk, A. I., De Jeu, R. A., Canadell, J. G., McCabe, M. F.,
Evans, J. P., and Wang, G.: Recent reversal in loss of global terrestrial
biomass, Nat. Clim. Change, 5, 470–474, https://doi.org/10.1038/nclimate2581,
2015. a, b
Liu, Y. Y., van Dijk, A. I., Miralles, D. G., McCabe, M. F., Evans, J. P.,
de Jeu, R. A., Gentine, P., Huete, A., Parinussa, R. M., Wang, L., Guan, K.,
Berry, J., and Restrepo-Coupe, N.: Enhanced canopy growth precedes
senescence in 2005 and 2010 Amazonian droughts, Remote Sens.
Environ., 211, 26–37, https://doi.org/10.1016/J.RSE.2018.03.035, 2018. a, b
Markus, T., Comiso, J. C., and Meier, W. N.:
AMSR-E/AMSR2 Unified L3 Daily 25 km Brightness Temperatures & Sea Ice Concentration Polar Grids,
Version 1 [Data Set], Boulder, Colorado USA, NASA National Snow and
Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/TRUIAL3WPAUP,
2018. a
Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu,
R. A., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest,
N. E.: GLEAM v3: Satellite-based land evaporation and root-zone soil
moisture, Geosci. Model Dev., 10, 1903–1925,
https://doi.org/10.5194/gmd-10-1903-2017, 2017. a
Martens, B., Waegeman, W., Dorigo, W. A., Verhoest, N. E., and Miralles, D. G.:
Terrestrial evaporation response to modes of climate variability, npj
Clim. Atmos. Sci., 1, 1–7, https://doi.org/10.1038/s41612-018-0053-5,
2018. a
Meesters, A., DeJeu, R., and Owe, M.: Analytical Derivation of the Vegetation
Optical Depth From the Microwave Polarization Difference Index, IEEE
Geosci. Remote Sens. Lett., 2, 121–123,
https://doi.org/10.1109/LGRS.2005.843983, 2005. a, b
Miralles, D. G., Van Den Berg, M. J., Gash, J. H., Parinussa, R. M., De
Jeu, R. A., Beck, H. E., Holmes, T. R., Jiménez, C., Verhoest, N. E.,
Dorigo, W. A., Teuling, A. J., and Johannes Dolman, A.: El Niño-La
Niña cycle and recent trends in continental evaporation, Nat.
Clim. Change, 4, 122–126, https://doi.org/10.1038/nclimate2068, 2014. a
Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R., and Jackson, T. J.: A
model for microwave emission from vegetation-covered fields, J.
Geophys. Res., 87, 11229, https://doi.org/10.1029/JC087iC13p11229, 1982. a
Moesinger, L., Zotta, R.-M., van der Schalie, R., Scanlon, T., de Jeu, R.,
Teubner, I., and Dorigo, W.: The Standardized Vegetation Optical Depth Index
SVODI, Zenodo [data set], https://doi.org/10.5281/zenodo.7114654, 2022. a, b
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook,
B. D., Vermote, E. F., Harding, D. J., and North, P. R. J.: Amazon forests
maintain consistent canopy structure and greenness during the dry season,
Nature, 506, 221–224, https://doi.org/10.1038/nature13006, 2014. a
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Palmer, W. C.: Meteorological drought, U.S. Research Paper No. 45, US Weather Bureau,
Washington, DC, 1965. a
Panisset, J. S., Libonati, R., Gouveia, C. M. P., Machado-Silva, F.,
França, D. A., França, J. R. A., and Peres, L. F.: Contrasting
patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon
Basin, Int. J. Climatol., 38, 1096–1104,
https://doi.org/10.1002/joc.5224, 2018. a
Papagiannopoulou, C., Miralles, D. G., Dorigo, W. A., Verhoest, N. E.,
Depoorter, M., and Waegeman, W.: Vegetation anomalies caused by antecedent
precipitation in most of the world, Environ. Res. Lett., 12,
074016, https://doi.org/10.1088/1748-9326/aa7145, 2017. a, b
Pause, M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich,
P., Heurich, M., Jung, A., and Lausch, A.: In Situ/Remote Sensing
Integration to Assess Forest Health – A Review, Remote Sens., 8, 471,
https://doi.org/10.3390/rs8060471, 2016. a
Petersen, L.: Real-Time Prediction of Crop Yields From MODIS Relative
Vegetation Health: A Continent-Wide Analysis of Africa, Remote Sens., 10,
1726, https://doi.org/10.3390/rs10111726, 2018. a
Rodríguez-Pérez, J. R., Ordóñez, C.,
González-Fernández, A. B., Sanz-Ablanedo, E., Valenciano, J. B.,
and Marcelo, V.: Leaf water content estimation by functional linear
regression of field spectroscopy data, Biosyst. Eng., 165, 36–46,
https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.08.017, 2018. a, b
Saji, N. H. and Yamagata, T.: Possible impacts of Indian Ocean Dipole mode
events on global climate, Clim. Res., 25, 151–169,
https://doi.org/10.3354/CR025151, 2003. a
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole
mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999. a
Saleska, S. R., Didan, K., Huete, A. R., and da Rocha, H. R.: Amazon forests
green-up during 2005 drought, Science, 318, p. 612,
https://doi.org/10.1126/science.1146663, 2007. a
Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin,
Y., Nemani, R. R., and Myneni, R. B.: Amazon forests did not green-up during
the 2005 drought, Geophys. Res. Lett., 37, 5,
https://doi.org/10.1029/2009GL042154, 2010. a, b
Samanta, A., Ganguly, S., Vermote, E., Nemani, R. R., and Myneni, R. B.: Why
Is Remote Sensing of Amazon Forest Greenness So Challenging?, Earth
Interact., 16, 1–14, https://doi.org/10.1175/2012EI440.1, 2012. a
Szpakowski, D. M. and Jensen, J. L.: A review of the applications of remote
sensing in fire ecology, Remote Sens., 11, 2638, https://doi.org/10.3390/rs11222638, 2019. a
Teubner, I. E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D. G.,
Tramontana, G., van der Schalie, R., Vreugdenhil, M., Mösinger, L., and
Dorigo, W. A.: A carbon sink-driven approach to estimate gross primary
production from microwave satellite observations, Remote Sens.
Environ., 229, 100–113, https://doi.org/10.1016/J.RSE.2019.04.022, 2019. a
McKee, T. B., Doesken, N. J., and Kleist, J.:
The Relation of Drought Frequency and Duration to Time Scales,
Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, 17–22 January 1993, 179–184, 1993. a
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W.,
Mahoney, R., Vermote, E. F., and El Saleous, N.: An extended AVHRR 8 km
NDVI dataset compatible with MODIS and SPOT vegetation NDVI data,
Int. J. Remote Sens., 26, 4485–4498,
https://doi.org/10.1080/01431160500168686, 2005. a, b
van der Schalie, R., de Jeu, R., Kerr, Y., Wigneron, J.,
Rodríguez-Fernández, N., Al-Yaari, A., Parinussa, R.,
Mecklenburg, S., and Drusch, M.: The merging of radiative transfer based
surface soil moisture data from SMOS and AMSR-E, Remote Sens.
Environ., 189, 180–193, https://doi.org/10.1016/J.RSE.2016.11.026, 2017. a, b
Van Der Schrier, G., Barichivich, J., Briffa, K. R., and Jones, P. D.: A
scPDSI-based global data set of dry and wet spells for 1901–2009, J.
Geophys. Res.-Atmos., 118, 4025–4048, https://doi.org/10.1002/jgrd.50355,
2013.
a, b
van Marle, M. J. E., van der Werf, G. R., de Jeu, R. A. M., and Liu, Y. Y.: Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010), Biogeosciences, 13, 609–624, https://doi.org/10.5194/bg-13-609-2016, 2016. a
Vogelmann, J. E., Xian, G., Homer, C., and Tolk, B.: Monitoring gradual
ecosystem change using Landsat time series analyses: Case studies in selected
forest and rangeland ecosystems, Remote Sens. Environ., 122,
92–105, https://doi.org/10.1016/j.rse.2011.06.027, 2012. a
Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S.,
Steele-Dunne, S., Pfeil, I., Dorigo, W., and Wagner, W.: Sentinel-1 Cross
Ratio and Vegetation Optical Depth: A Comparison over Europe, Remote
Sens., 12, 3404, https://doi.org/10.3390/rs12203404, 2020. a
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer Drought
Severity Index, J. Clim., 17, 2335–2351,
https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004. a
Wentz, F. J.: A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res.-Ocean., 102, 8703–8718,
https://doi.org/10.1029/96JC01751, 1997. a
Zeng, F.-W., Collatz, G., Pinzon, J., and Ivanoff, A.: Evaluating and
Quantifying the Climate-Driven Interannual Variability in Global Inventory
Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index
(NDVI3g) at Global Scales, Remote Sens., 5, 3918–3950,
https://doi.org/10.3390/rs5083918, 2013. a
Zhao, J., Lu, Z., Wang, L., and Jin, B.: Plant Responses to Heat Stress:
Physiology, Transcription, Noncoding RNAs, and Epigenetics, Int.
J. Mol. Sci., 22, 117, https://doi.org/10.3390/ijms22010117, 2020. a, b
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation...
Altmetrics
Final-revised paper
Preprint