Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, Brazil
now at: Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, the Netherlands
Adina Paytan
Institute of Marine Sciences, University of California, Santa Cruz, USA
Olga Maria Oliveira de Araújo
Nuclear Instrumentation Laboratory, Nuclear Engineering Program/COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Ricardo Tadeu Lopes
Nuclear Instrumentation Laboratory, Nuclear Engineering Program/COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Cátia Fernandes Barbosa
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, Brazil
Related authors
No articles found.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Cited articles
Abu-Zied, R. H., Al-Dubai, T. A., and Bantan, R. A.: Environmental
conditions of shallow waters alongside the southern Corniche of Jeddah based
on benthic foraminifera, physico-chemical parameters and heavy metals, J.
Foramin. Res., 46, 149–170, https://doi.org/10.2113/gsjfr.46.2.149, 2016.
Amergian, K. E., Beckwith, S., Gfatter, C., Selden, C., and Hallock, P.: Can
areas of high alkalinity freshwater discharge provide potential refugia for
marine calcifying organisms?, J. Foramin. Res., 52, 63–76,
https://doi.org/10.2113/gsjfr.52.1.60, 2022.
Back, W. and Hanshaw, B. B.: Comparison of chemical hydrogeology of the
carbonate peninsulas of Florida and Yucatan, J. Hydrol., 10, 330–368,
https://doi.org/10.1016/0022-1694(70)90222-2, 1970.
Back, W., Hanshaw, B. B., Pyle, T. E., Plummer, L. N., and Weidie, A. E.:
Geochemical significance of groundwater discharge and carbonate solution to
the formation of Caleta Xel Ha, Quintana Roo, Mexico, Water Resour. Res.,
19, 1521–1535, https://doi.org/10.1029/WR015I006P01521,
1979.
Barbosa, C. F., Prazeres, M., Padovani, B., and Seoane, J. C. S.:
Foraminiferal assemblage and reef check census in coral reef health
monitoring of East Brazilian margin, Mar. Micropaleontol., 73,
62–69, https://doi.org/10.1016/j.marmicro.2009.07.002, 2009.
Barbosa, C. F., Ferreira, B. P., Seoane, J. C. S., Oliveira-Silva, P.,
Gaspar, A. L. B., Cordeiro, R. C., and Soares-Gomes, A.: Foraminifer-based
coral reef health assessment for southwestern Atlantic offshore
archipelagos, Brazil, J. Foramin. Res., 42, 169–183,
https://doi.org/10.2113/gsjfr.42.2.169, 2012.
Beddows, P. A., Smart, P. L., Whitaker, F. F., and Smith, S. L.: Decoupled
fresh – saline groundwater circulation of a coastal carbonate aquifer:
Spatial patterns of temperature and specific electrical conductivity, J.
Hydrol., 346, 18–32, https://doi.org/10.1016/j.jhydrol.2007.08.013, 2007.
Bender, H.: Test structure and classification in agglutinated Foraminifera,
in: Proceedings
of the Fourth International Workshop on Agglutinated Foraminifera, edited by: Kaminski, M. A., Geroch, S., and Gasiñski, M. A.,
Kraków Poland, September 12–19, 1993, 27–70, Grzybowski Foundation,
Special Publication, 3, http://gf.tmsoc.org/Spec-Publ-3.html
(last access: 17 November 2022), 1995.
Bender, H. and Hemleben, C.: Constructional aspects in test formation of
some agglutinated foraminifera, Abh. Geol. B.-A., 41, 13–22, 1988.
Bernhard, J. M., Barry, J. P., Buck, K. R., and Starczak, V. R.: Impact of
intentionally injected carbon dioxide hydrate on deep-sea benthic
foraminiferal survival, Glob. Change Biol., 15, 2078–2088, https://doi.org/10.1111/j.1365-2486.2008.01822.x, 2009.
Bernhard, J. M., Wit, J. C., Starczak, V. R., Beaudoin, D. J., Phalen, W. G.,
and Mccorkle, D. C.: Impacts of multiple stressors on a benthic foraminiferal
community: a long-term experiment assessing response to ocean acidification,
hypoxia and warming, Front. Mar. Sci., 8, 1–18, https://doi.org/10.3389/fmars.2021.643339, 2021.
Clarke, K. R. and Gorley, R. N.: PRIMER v6: User manual/tutorial, PRIMER-E
Ltd., Plymouth Marine Laboratory, UK, 2006.
Coronado, C., Candela, J., Igresias-Prieto, R., Sheinbaum, J., López,
M., and Ocampo-Torres, F. J.: On the circulation in the Puerto Morelos fringing
reef lagoon, Coral Reefs, 26, 149–163, https://doi.org/10.1007/s00338-006-0175-9, 2008.
Cottey, T. L. and Hallock, P.: Test surface degradation in Archaias angulatus, J. Foramin.
Res., 8, 187–202, https://doi.org/10.2113/gsjfr.18.3.187, 1988.
Crook, E. D., Potts, D., Hernandez, L., and Paytan, A.: Calcifying coral
abundance near low-pH springs: implications for future ocean acidification,
Coral Reefs, 31, 239–245, https://doi.org/10.1007/s00338-011-0839-y, 2012.
Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L., and Paytan,
A.: Reduced calcification and lack of acclimatization by coral colonies
growing in areas of persistent natural acidification, P. Natl. Acad. Sci. USA, 110,
11044–11049, https://doi.org/10.1073/pnas.1301589110, 2013.
Crook, E. D., Kroeker, K. J., Potts, D. C., and Rebolledo-Vieyra, M.:
Recruitment and succession in a tropical benthic community in response to
in-situ ocean acidification, PLoS ONE, 11, e0146707,
https://doi.org/10.1371/journal.pone.0146707, 2016.
Culver, S. J. and Buzas, M. A.: Distribution of Recent benthic foraminifera
in the Caribbean area, Smithsonian Institution Press, Washington, https://doi.org/10.5479/si.01960768.14.1, 1982.
Cushman, A.: The Foraminifera of the Atlantic Ocean pt. 8: Rotaliidae, Amphisteginidae, Calcarinidae, Cymbaloporettidae, Globorotaliidae, Anomalinidae, Planorbulinidae, Rupertiidae, and Homotremidae, Bulletin of the United States National Museum, 1–179, https://doi.org/10.5479/si.03629236.104.7, 1931.
De Goeyse, S., Webb, A. E., Reichart, G. J., and De Nooijer, L. J.: Carbonic
anhydrase is involved in calcification by the benthic foraminifer
Amphistegina lessonii, Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, 2021.
De Nooijer, L. J., Langer, G., Nehrke, G., and Bijma, J.:
Physiological controls on seawater uptake and calcification in the benthic
foraminifer Ammonia tepida, Biogeosciences, 6, 2669–2675, https://doi.org/10.5194/bg-6-2669-2009, 2009.
Di Bella, L., Conte, A. M., Conti, A., Esposito, V., Gaglioti, M., Ingrassia,
M., De Vittor, C., and Bigi, S.: Potential resilience to ocean acidification of
benthic foraminifers living in Posidonia oceanica Meadows: The case of the shallow venting
site of Panarea, Geosciences, 12, 184, https://doi.org/10.3390/geosciences12050184, 2022.
Dias, B. B., Hart, M. B., Smart, C. W., and Hall-Spencer, J. M.: Modern
seawater acidification: the response of foraminifera to high-CO2
conditions in the Mediterranean Sea, J. Geol. Soc. Lond., 167, 843–846,
https://doi.org/10.1144/0016-76492010-050, 2010.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, North Pacific Marine Science Organization,
Sidney, BC, Canada, ISBN: 1-897176-07-4, 2007.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of
ocean acidification on marine ecosystems and reliant human communities,
Annu. Rev. Environ. Resour., 45, 83–112, https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
Dong, S., Lei, Y., Li, T., and Jian, Z.: Changing structure of benthic
foraminiferal communities due to declining pH: Results from laboratory
culture experiments, Sci. China Earth Sci., 62, 1151–1166, https://doi.org/10.1007/s11430-018-9321-6, 2019.
Dong, S., Lei, Y., Li, T., and Jian, Z.: Response of benthic foraminifera to
pH changes: Community structure and morphological transformation studies
from a microcosm experiment, Mar. Micropaleontol., 156, 101819,
https://doi.org/10.1016/j.marmicro.2019.101819, 2020.
Doo, S. S., Hamylton, S., Finfer, J., and Byrne, M.: Spatial and temporal
variation in reef-scale carbonate storage of large benthic foraminifera: a
case study on One Tree Reef, Coral Reefs, 36, 293–303, https://doi.org/10.1007/s00338-016-1506-0, 2016.
Doo, S. S., Leplastrier, A., Graba-Landry, A., Harianto, J., Coleman, R. A.,
and Byrne, M.: Amelioration of ocean acidification and warming effects through
physiological buffering of a macroalgae, Ecol. Evol., 10, 8465–8475,
https://doi.org/10.1002/ece3.6552, 2020.
Engel, B. E., Hallock, P., Price, R. E., and Pichler, T.: Shell dissolution
in larger benthic foraminifers exposed to pH and temperature extremes:
Results from an in-situ experiment, J. Foramin. Res., 45,
190–203, https://doi.org/10.2113/gsjfr.45.2.190, 2015.
Escudero, M., Mendonza, E., and Silva, R.: Micro sand engine beach
stabilization strategy at Puerto Morelos, Mexico, J. Mar. Sci, 8, 247,
https://doi.org/10.3390/jmse8040247, 2020.
Eyre, B. D., Cyronak, T., Drupp, P., De Carlos, E. H., Sach, J. P., and
Andersson, A. J.: Coral reefs will transition to net dissolving before end of
century, Science, 359, 908–911, https://doi.org/10.1126/science.aao1118, 2018.
Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De`ath,
G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.: Losers and
winners in coral reefs acclimatized to elevated carbon dioxide
concentrations, Nat. Clim. Change, 1, 165–169, https://doi.org/10.1038/NCLIMATE1122, 2011.
Fujita, K., Hikami, M., Suzuki, A., Kuroyanagi, A., Sakai, K., Kawahata, H.,
and Nojiri, Y.: Effects of ocean acidification on calcification of
symbiont-bearing reef foraminifers, Biogeosciences, 8, 2089–2098, https://doi.org/10.5194/bg-8-2089-2011, 2011.
Geerken, E., De Nooijer, L. J., Toyofuku, T., Roepert, A., Middelburg, J.
J., Kienhuis, M. V. M., Nagai, Y., Polerecky, L., and Reichart, G. J.: High
precipitation rates characterize biomineralization in the benthic
foraminifer Ammonia beccarii, Geochim. Cosmochim. Ac., 318, 70–82,
https://doi.org/10.1016/j.gca.2021.11.026, 2022.
Girard, E., B., Estradivari, Ferse, S., Ambo-Rappe, R., Jompa, J., and
Renema, W.: Dynamics of large benthic foraminiferal assemblages: A tool to
foreshadow reef degradation?, Environ. Pollut., 811, 151396, https://doi.org/10.1016/j.scitotenv.2021.151396, 2022.
Gischler, E. and Möder, A.: Modern benthic foraminifera on Banco
Chinchorro, Quintana Roo, Mexico, Facies, 55, 27–35,
https://doi.org/10.1007/s10347-008-0162-4, 2009.
Glas, M. S., Fabricius, K. E., De Beer, D., and Uthicke, S.: The O2, pH and
Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World,
PLOS ONE, 7, e50010, https://doi.org/10.1371/journal.pone.0050010, 2012.
Hallock, P.: Larger foraminifera: A tool for paleoenvironmental Analysis of
Cenozoic Carbonate Depositional Facies, Palaios, 1, 55–64, 1986.
Hallock, P., Lidz, B. H., Burkhard-Cockey, E. M., and Donnelly, K. B.:
Foraminifera as bioindicators in coral reef assessment and monitoring: The
FORAM Index, Environ. Monit. Assess., 81, 221–238,
https://doi.org/10.1023/A:1021337310386, 2003.
Haynert, K., Schönfeld, J., Polovodova-Asteman, I., and Thomsen, J.: The benthic foraminiferal community in a naturally CO2-rich coastal habitat of the southwestern Baltic Sea, Biogeosciences, 9, 4421–4440, https://doi.org/10.5194/bg-9-4421-2012, 2012.
Hernandez-Terrones, L. M., Street, J., Null, K., and Paytan, A.: Groundwater
chemistry and Sr isotope ratios shed light on connectivity and water-rock
interactions in the coastal aquifer of the Caribbean coast, Mexico, Cont.
Shelf Res., 212, 104293, https://doi.org/10.1016/j.csr.2020.104293, 2021.
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G.
S., Jackson, J. B.C., Kleypas, J., Van De Leemput, I. A., Lough, J. M.,
Morrison, T. H., Palumbi, S. R., Van Nes, E. H., and Scheffer, M.: Coral
reefs in the Anthropocene, Nature, 546, 82–90, https://doi.org/10.1038/nature22901, 2017.
IPCC: Climate Change 2021: The Physical Science Basis, contribution of
working group I to the sixth assessment report of the intergovernmental
panel on climate change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, https://doi.org/10.1017/9781009157896, 2021.
Iwasaki, S., Kimoto, K., Okazaki, Y., and Ikehara, M.: X-ray micro-CT
scanning of tests of three planktic foraminiferal species to clarify
dissolution process and progress, Geochem. Geophy. Geosy., 20, 6051–6065, https://doi.org/10.1029/2019GC008456, 2019.
Jones, R. W.: The challenger foraminifera – The Natural History Museum.
Oxford University Press, London, ISBN: 0198540965, 1994.
Kawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi,
A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura,
T., and Suzuki, A.: Perspective on the response of marine calcifiers to
global warming and ocean acidification — Behavior of corals and
foraminifera in a high CO2 world “hot house”, Prog. Earth Planet.
Sci., 6, 1–37, https://doi.org/10.1186/s40645-018-0239-9,
2019.
Knorr, P. O., Robbins, L. L., Harries, P. J., Hallock, P., and Wynn, J.:
Response of the miliolid Archaias angulatus to simulated ocean acidification, J. Foramin.
Res., 45, 109–127, https://doi.org/10.2113/gsjfr.45.2.109,
2015.
Koehler-Rink, S. and Kuehl, M.: Microsensor studies of photosynthesis and
respiration in larger symbiotic foraminifera. I The physico-chemical
microenvironment of Marginopora vertebralis, Amphistegina lobifera and Amphisorus hemprichii, Mar. Biol., 137, 473–486, https://doi.org/10.1007/s002270000335, 2000.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh,
G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean acidification on
marine organisms: quantifying sensitivities and interaction with warming,
Glob. Change Biol., 19, 1884–1896,
https://doi.org/10.1111/gcb.12179, 2013.
Kuroyanagi, A., Iriem T., Kinoshita, S., Kawahata, H., Suzuki, A., Nishi,
H., Sasaki, O., Takashima, R., and Fujita, K.: Decrease in volume and
density of foraminiferal shells with progressing ocean acidification, Sci.
Rep., 11, 19988, https://doi.org/10.1038/s41598-021-99427-1,
2021.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Langer, M. R.: Assessing the contribution of foraminiferan protists to
global ocean carbonate production, J. Eukaryotic Microbiol., 55,
163–169, https://doi.org/10.1111/j.1550-7408.2008.00321.x,
2008.
Langer, M. R., Lipps, J. H., Silk, M. T., and Lipps, J. H. Global ocean
carbonate and carbon dioxide production: the role of reef foraminifera, J.
Foramin. Res., 27, 271–277, https://doi.org/10.2113/gsjfr.27.4.271, 1997.
Lida, Y., Takatani, Y., Kojima, A., and Ishii, M.: Global trends of ocean
CO2 sink and ocean acidification: an observationbased
reconstruction of surface ocean inorganic carbon variables, J. Oceanogr.,
77, 323–358, https://doi.org/10.1007/s10872-020-00571-5, 2021.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2
calculated from dissolved inorganic carbon, alkalinity, and equations for K1
and K2: validation based on laboratory measurements of CO2 in gas and
seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000-800,000 years before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
Maiklem, W. R.: Black and brown speckled foraminiferal sand from the
southern part of the Great Barrier Reef, J. Sediment. Res., 34,
1023–1030, https://doi.org/10.1306/74D71820-2B21-11D7-8648000102C1865D, 1967.
Martin, R. E.: Habitat and distribution of the foraminifer Archaias angulatus (Fichtel and
Moll) (Miliolina, Soritidae), northern Florida Keys, J. Foramin. Res., 16,
3, 201–206, https://doi.org/10.2113/gsjfr.16.3.201, 1986.
Martinez, A., Hernández-Terrones, L., Rebolledo-Vieyra, M., and Paytan,
A.: Impact of carbonate saturation on large Caribbean benthic foraminifera
assemblages, Biogeosciences, 15, 6819–6832, https://doi.org/10.5194/bg-15-6819-2018, 2018.
Martinez, A., Crook, E. D., Barshis, D. J., Potts, D. C., Rebolledo-Vieyra,
M., Hernandez, L., and Paytan, A.: Species-specific calcification response
of Caribbean corals after 2-year transplantation to a low aragonite
saturation submarine spring, Proc. R. Soc. B, 286, 20190572,
https://doi.org/10.1098/rspb.2019.0572, 2019.
McIntyre-Wressnig, A., Bernhard, J., M., McCorkle, D., C., and Hallock, P.:
Non-lethal effects of ocean acidification on the symbiont-bearing benthic
foraminifer Amphistegina gibbosa, Mar. Ecol.-Prog. Ser., 472, 45–60, https://doi.org/10.3354/meps09918, 2013.
Milker, Y. and Schmiedl, G.: A taxonomic guide to modern benthic shelf
foraminifera of the western Mediterranean Sea, Palaeontol. Electronica,
15, 1–134, https://doi.org/10.26879/271, 2012.
Moodley, L., Boschker, H. T. S., Middelburg, J. J., Pel, R., Herman, P. M.
J., De Deckere, E., and Heip, C. H. R.: Ecological significance of benthic
foraminifera: 13C Labelling experiments, Mar. Ecol. Prog. Ser., 202,
289–295, https://doi.org/10.3354/meps202289, 2000.
Murray, J. W.: Ecology and applications of benthic foraminifera. Cambridge
University Press, Cambridge, New York, ISBN: 9780511535529, 2006.
Narayan, G. R., Reymond, C. E., Stuhr, M., Doo, S., Schmidt, C., Mann, T.,
and Westphal, H.: Response of large benthic foraminifera to climate and
local changes: Implications for future carbonate production, Sedimentology,
69, 121–161, https://doi.org/10.1111/sed.12858, 2021.
Nehrke, G., Keul, N., Langer, G., De Nooijer, L. J., Bijma, J., and Meibom,
A.: A new model for biomineralization and trace-element signatures of
Foraminifera tests, Biogeosciences, 10, 6759–6767, https://doi.org/10.5194/bg-10-6759-2013, 2013.
Null, K. A., Knee, K. L., Crook, E. D., Sieyes, N. R., Rebolledo-Vieyra, M.,
Hernández-Terrones, L., and Paytan, A.: Composition and fluxes of
submarine groundwater along the Caribbean coast of the Yucatan Peninsula,
Cont. Shelf Res., 77, 38–50, https://doi.org/10.1016/j.csr.2014.01.011, 2014.
Penã, V., Harvey, B. P., Agostini, S., Porzio, L., Milazzo, M., Horta,
P., Gall, L. L., and Hall-Spencer, J. M.: Major loss of coralline algal
diversity in response to ocean acidification, Glob. Change Biol., 27,
4785–4798, https://doi.org/10.1111/gcb.15757, 2021.
Perry, E., Velazquez-Oliman, G., and Marin, L.: The hydrogeochemistry of the
karst aquifer system of the northern Yucatan peninsula, Mexico, Int. Geol.
Rev., 44, 191–221, https://doi.org/10.2747/0020-6814.44.3.191,
2002.
Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson,
R. B., Korsbakken, J. I., Le Quéré, C., and Peregon, A.: Carbon
dioxide emissions continue to grow amidst slowly emerging climate policies,
Nat. Clim. Change, 10, 3–6, https://doi.org/10.1038/s41558-019-0659-6, 2020.
Petit, J. R., J. Jouzel, Raynaud, D., Barnola, J. M., Basile, I., Bender,
M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M.,
Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman,
E., and Stievenard, M: Climate and atmospheric history of the past 420,000
years from the Vostok ice core, Antarctica, Nature, 399, 429–436,
https://doi.org/10.1038/20859, 1999.
Pettit, L. R., Hart, M. B., Medina-Sánchez, A. N., Smart, C. W.,
Rodolfo-Metalpa, R., Hall-Spencer, J. M., and Prol-Ledesma, R. M.: Benthic
foraminifera show some resilience to ocean acidification in the northern
Gulf of California, Mexico, Mar. Pollut. Bull., 73, 452–462,
https://doi.org/10.1016/j.marpolbul.2013.02.011, 2013.
Pettit, L. R., Smart, C. W., Hart, M. B., Milazzo, M., and Hall-Spencer, J.
M.: Seaweed fails to prevent ocean acidification impact on foraminifera
along a shallow-water CO2 gradient, Ecol. Evol., 5, 1–10,
https://doi.org/10.1002/ece3.1475, 2015.
Pierrot, D. E., Levis, E., and Wallace, D. W. R.: MS Excel Program Developed
for CO2 System Calculations, Oak Ridge, TN: U.S. Department of Energy:
Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a,
2006.
Prazeres, M., Uthicke, S., and Pandolfi, J. M.: Ocean acidification induces
biochemical and morphological changes in the calcification process of large
benthic foraminifera, Proc. R. Soc. B, 282, 20142782,
https://doi.org/10.1098/rspb.2014.2782, 2015.
Prazeres, M., Martínez-Colón, M., and Hallock, P.: Foraminifera as
bioindicators of water quality: The FoRAM indez revisited, Environ. Pollut.,
257, 113612, https://doi.org/10.1016/j.envpol.2019.113612,
2020.
Price, N. N., Martz, T. R., Brainard, R. E., and Smith, J. E.: Diel
variability in seawater pH relates to calcification and benthic community
structure on coral reefs, PLoS ONE, 7, e4384, https://doi.org/10.1371/journal.pone.0043843, 2012.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 31 March 2022), 2020.
Sariaslan, N. and Langer, M. R.: Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil, Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, 2021.
Schiebel, R.: Planktic foraminiferal sedimentation and the marine calcite
budget, Global Biogeochem. Cy., 16, 3-1–3-21,
https://doi.org/10.1029/2001GB001459, 2002.
Schmidt, C., Kucera, M., and Uthicke, S.: Combined effects of warming and
ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa, Coral Reefs, 33,
805–818, https://doi.org/10.1007/s00338-014-1151-4, 2014.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: Nih Image to ImageJ:
25 years of image analysis, Nat. Methods, 9, 671–675, https://doi.org/10.1038/nmeth.2089, 2012.
Scott, D. B. and Medioli, F. S.: Living vc. Total foraminiferal populations:
Their relative usefulness in paleoecology, J. Foraminiferal Res., 54, 814–831,
http://www.jstor.org/stable/1304312 (last access: 17 June 2022), 1980.
Stephenson, C. M., Hallock, P., and Kelmo, F.: Foraminiferal assemblage
indices: A comparison of sediment and reef rubble samples from Conch Reef,
Florida, USA, Ecol. Indic., 48, 1–7,
https://doi.org/10.1016/j.ecolind.2014.07.004, 2015.
Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S.
S., Westphal, H., Sickmann, A., and Ries, J. B.: Divergent proteomic
responses offer insights into resistant physiological responses of a
reef-foraminifera to climate change scenarios, Oceans, 2, 281–314,
https://doi.org/10.3390/oceans2020017, 2021.
Toyofuku, T., Matsuo, M. Y., De Nooijer, L. J., Nagai, Y., Kawada, S.,
Fujita, K., Reichart, G. J., Nomaki, H., Tsuchiya, M., Sakaguchi, H., and
Kitazato, H.: Proton pumping accompanies calcification in foraminifera, Nat.
Commun., 8, 14145, https://doi.org/10.1038/ncomms14145,
2017.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep-Sea Res. Oceanogr. Abstr., 21, 161–162, 1974.
Uthicke, S. and Fabricius, K. E.: Productivity gains do not compensate for
reduced calcification under near-future ocean acidification in the
photosynthetic benthic foraminifer species Marginopora vertebralis, Glob. Change Biol., 18,
2781–2791, https://doi.org/10.1111/j.1365-2486.2012.02715.x,
2012.
Uthicke, S., Momigliano, P., and Fabricius, K. E.: High risk of extinction
of benthic foraminifera in this century due to ocean acidification, Sci.
Rep., 3, 1–5, https://doi.org/10.1038/srep01769, 2013.
Vogel, N. and Uthicke, S.: Calcification and photobiology in symbiont-bearing
benthic foraminifera and responses to a high CO2 environment, J. Exp.
Mar. Biol. Ecol, 424/425, 15–24, https://doi.org/10.1016/j.jembe.2012.05.008, 2012.
Wilson, B. and Wilson, J. I.: Shoreline foraminiferal thanatacoenoses around
five eastern Caribbean islands and their environmental and biogeographic
implications, Cont. Shelf Res., 31, 857–866, https://doi.org/10.1016/j.csr.2011.02.010, 2011.
WoRMS Editorial Board: World Register of Marine Species, VLIZ,
https://doi.org/10.14284/170, 2022.
Yamamoto, S., Kayanne, H., Terai, M., Watanabe, A., Kato, K., Negishi, A.,
and Nozaki, K.: Threshold of carbonate saturation state determined by CO2
control experiment, Biogeosciences, 9, 1441–1450,
https://doi.org/10.5194/bg-9-1441-2012, 2012.
Yamano, H., Miyajima, T., and
Koike, I.: Importance of foraminifera for the formation and maintenance of a
coral sand cay: Green Island, Australia, Coral Reefs, 19, 51–58,
https://doi.org/10.1007/s003380050226, 2000.
Yordanova, E. K. and Hohenegger, W.: Taphonomy of Larger Foraminifera:
Relationships between Living Individuals and Empty Tests on Flat Reef Slopes
(Sesoko Island, Japan), FACIES, 46, 169–204, https://doi.org/10.1007/BF02668080, 2002.
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Our analysis revealed that under the two most conservative acidification projections...
Altmetrics
Final-revised paper
Preprint