Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5343-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5343-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mineralization of autochthonous particulate organic carbon is a fast channel of organic matter turnover in Germany's largest drinking water reservoir
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, 91054 Erlangen, Germany
Michael Seewald
Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a,
39114 Magdeburg, Germany
Karsten Rinke
Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a,
39114 Magdeburg, Germany
Kurt Friese
Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a,
39114 Magdeburg, Germany
Robert van Geldern
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, 91054 Erlangen, Germany
Jakob Schmidmeier
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, 91054 Erlangen, Germany
Johannes A. C. Barth
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, 91054 Erlangen, Germany
Related authors
No articles found.
Jan Maier, Anna-Neva Visser, Christina M. Schubert, Simon T. Wander, and Johannes A. C. Barth
Biogeosciences, 22, 5123–5137, https://doi.org/10.5194/bg-22-5123-2025, https://doi.org/10.5194/bg-22-5123-2025, 2025
Short summary
Short summary
We present the first large-scale assessment of the dissolved oxygen (DO) budget and δ18ODO across the Danube to distinguish DO sources and sinks, key for biogeochemical cycles. Two highly productive areas in the warm season showed large deviations (+12.1 ‰) from atmospheric equilibrium (+24.6 ‰ ± 0.4 ‰), unusual for large rivers. Critically low DO in the Sava (0.16 mmol/L) and lower Danube (0.2 mmol/L) in late summer resulted from intensified respiration.
Aixala Gaillard, Robert van Geldern, Johannes Arthur Christopher Barth, and Christine Stumpp
Hydrol. Earth Syst. Sci., 29, 3853–3863, https://doi.org/10.5194/hess-29-3853-2025, https://doi.org/10.5194/hess-29-3853-2025, 2025
Short summary
Short summary
We produced a new interpolated map of stable isotopes in groundwater in southern Germany and compared it to local precipitation. Interestingly, discrepancies were found between two components of the hydrological cycle, highlighting different recharge patterns and evaporation processes in the northern and southern part of the study area. This research provides insights into understanding different groundwater recharge patterns on a large scale and eventually for groundwater management.
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Cited articles
Åberg, J., Bergström, A.-K., Algesten, G., Söderbackj, K., and
Jansson, M.: A comparison of the carbon balances of a natural lake (L.
Örträsket) and a hydroelectric reservoir (L. Skinnmuddselet) in
northern Sweden, Water Res., 38, 531–538, https://doi.org/10.1016/j.watres.2003.10.035,
2004.
Ahad, J. M. E., Barth, J. A. C., Ganeshram, R. S., Spencer, R. G. M., and Uher, G.:
Controls on carbon cycling in two contrasting temperate zone estuaries: The
Tyne and Tweed, UK, Estuar. Coast. Shelf Sci., 78, 685–693,
https://doi.org/10.1016/j.ecss.2008.02.006, 2008.
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and
Thingstad, F.: The Ecological Role of Water-Column Microbes in the Sea, Mar.
Ecol. Prog. Ser., 10, 257–263, https://doi.org/10.3354/meps010257, 1983.
Barth, J. A. C., Mader, M., Nenning, F., van Geldern, R., and Friese, K.:
Stable isotopes mass balances versus concentration differences of dissolved
inorganic carbon – implications for tracing carbon turnover in reservoirs,
Isot. Environ. Health Stud., 53, 413–426, https://doi.org/10.1080/10256016.2017.1282478, 2017.
Barth, J. A. C., Veizer, J., and Mayer, B.: Origin of particulate organic
carbon in the upper St. Lawrence: Isotopic constraints, Earth Planet. Sc.
Lett., 162, 111–121, https://doi.org/10.1016/S0012-821X(98)00160-5, 1998.
Bastviken, D., Santoro, A. L., Marotta, H., Queiroz Pinho, L., Fernandes
Calheiros, D., Crill, P., and Enrich-Prast, A.: Methane Emissions from
Pantanal, South America, during the Low Water Season: Toward More
Comprehensive Sampling, Environ. Sci. Technol., 44, 5450–5455,
https://doi.org/10.1021/es1005048, 2010.
Billett, M. F., Charman, D. J., Clark, J. M., Evans, C. D., Evans, M. G., Ostle,
N. J., Worrall, F., Burden, A., Dinsmore, K. J., Jones, T., McNamara, N. P.,
Parry, L., Rowson, J. G., and Rose, R.: Carbon balance of UK peatlands:
current state of knowledge and future research challenges, Clim. Res.,
45, 13–29, https://doi.org/10.3354/cr00903, 2010.
Blough, N. V.: Photochemical Processes, in: Encyclopedia of Ocean Sciences, edited by: Thorpe, S. A. and Turekian, K. K., Academic Press, Photochemical Processes, 2162,
https://doi.org/10.1006/rwos.2001.0072, 2001.
Bond, T., Huang, J., Graham, N. J. D., and Templeton, M. R.: Examining the
interrelationship between DOC, bromide and chlorine dose on DBP formation in
drinking water – a case study, Sci. Total Environ., 470/471, 469–479,
https://doi.org/10.1016/j.scitotenv.2013.09.106, 2014.
Carignan, R., Planas, D., and Vis, C.: Planktonic production and respiration
in oligotrophic Shield lakes, Limnol. Oceanogr., 45, 189–199,
https://doi.org/10.4319/lo.2000.45.1.0189, 2000.
Cole, J. J. and Prairie, Y. T.: Dissolved CO2 in Freshwater Systems, in:
Reference Module in Earth Systems and Environmental Sciences, 1–5, ISBN: 9780124095489,
https://doi.org/10.1016/B978-0-12-409548-9.09399-4, 2014.
Cole, J. J., Likens, G. E., and Hobbie, J. E.: Decomposition of planktonic
algae in an oligotrophic lake, Oikos, 42, 257–266, https://doi.org/10.2307/3544393, 1984.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 172–185,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
del Giorgio, P. A. and Peters, R. H.: The balance between phytoplankton
production and plankton respiration in lakes, Can. J. Fish. Aquat. Sci., 50,
282–289, https://doi.org/10.1139/f93-032, 1993.
DelSontro, T., Beaulieu, J. J., and Downing, J. A.: Greenhouse gas emissions
from lakes and impoundments: Upscaling in the face of global change, Limnol.
Oceanog. Lett., 3, 64–75, https://doi.org/10.1002/lol2.10073, 2018.
Dordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., and M., Barth, J. A. C.:
Novel evaluations of sources and sinks of dissolved oxygen via stable
isotopes in lentic water bodies, Sci. Total Environ., 838,
156541,
https://doi.org/10.1016/j.scitotenv.2022.156541, 2022.
Duarte, C. M. and Agustí, S.: The CO2 Balance of Unproductive Aquatic
Ecosystems, Science, 281,
234–236, https://doi.org/10.1126/science.281.5374.234, 1998.
Emerson, S.: Chemically enhanced CO2 gas exchange in a euthrophic lake: A
general model, Limnol. Oceanog., 20, 743–753, https://doi.org/10.4319/lo.1975.20.5.0743,
1975.
Fisher, I. H., Kastl, G., and Sathasivan, A.: New model of chlorine-wall
reaction for simulating chlorine concentration in drinking water
distribution systems, Water Res., 125, 427–437,
https://doi.org/10.1016/j.watres.2017.08.066, 2017.
Friese, K., Schultze, M., Böhrer, B., Büttner, O., Herzsprung, P.,
Koschorreck, M., Kuehn, B., Rönicke, H., Tittel, J., Wendt-Potthoff, K.,
Wollschläger, U., Dietze, M., and Rinke, K.: Ecological response of two
hydro-morphological similar pre-dams to contrasting land-use in the Rappbode
reservoir system (Germany), Int. Rev. Ges. Hydrobiol. Hydrogr., 99, 335–349, https://doi.org/10.1002/iroh.201301672, 2014.
Gammons, C. H., Babcock, J. N., Parker, S. R., and Poulson, S. R.: Diel cycling
and stable isotopes of dissolved oxygen, dissolved inorganic carbon, and
nitrogenous species in a stream receiving treated municipal sewage, Chem.
Geol., 283, 44–55, https://doi.org/10.1016/j.chemgeo.2010.07.006, 2011.
Gammons, C. H., Henne, W., Poulsom, S. R., Parker, S. R., Johnston, T. B., Dore,
J. E., and Boyd, E. S.: Stable isotopes track biogeochemical processes under
seasonal ice cover in a shallow, productive lake, Biogeochemistry, 120,
359–379, https://doi.org/10.1007/s10533-014-0005-z, 2014.
Gattuso, J.-P., Peduzzi, S., Pizay, M.-D., and Tonolla, M.: Changes in
freshwater bacterial community composition during measurements of microbial
and community respiration, J. Plank. Res., 24, 1197–1206,
https://doi.org/10.1093/plankt/24.11.1197, 2002.
Giling, D. P., Staehr, P. A., Grossart, H. P., Andersen, M. R., Boehrer, B.,
Scot, C., Evrendilek, F., Gómez-Gener, L.,
Gisriel, C., Shen, G., Kurashow, V., Ho, M.-Y., Zhang, S., Williams, D.,
Golbeck, J. H., Fromme, P., and Bryant, D. A.: The structure of Photosystem I
acclimated to far-red light illuminates an ecologically important
acclimation process in photosynthesis, Sci. Adv., 6, 1–11, https://doi.org/10.1126/sciadv.aay6415, 2020.
Hanson, P. C., Bade, D. L., Carpenter, S. R., and Kratz, T. K.: Lake metabolism:
Relationships with dissolved organic carbon and phosphorus, Limnol.
Oceanogr., 48, 1112–1119, https://doi.org/10.4319/lo.2003.48.3.1112, 2003.
Herzsprung, P., Wentzky, V., Kamjunke, N., von Tumpling, W., and Wilske, C.:
Improved understanding of dissolved organic matter processing in freshwater
using complementary experimental and machine learning approaches, Environ.
Sci. Technol., 54, 13556–13565, https://doi.org/10.1021/acs.est.0c02383, 2020.
Huang, C., Chen, Z., Gao, Y., Luo, Y., Huang, T., Zhu, A., Yang, H., and
Yang, B.: Enhanced mineralization of sedimentary organic carbon induced by
excess carbon from phytoplankton in a eutrophic plateau lake, J. Soils
Sediments, 19, 2613–2623, https://doi.org/10.1007/s11368-019-02261-2, 2019.
Jansen, J., Woolway, R. I., Kraemer, B. M., Albergel, C., Bastviken, D.,
Weyhenmeyer, G. A., Marcé, R., Sharma, S., Sobek, S., Tranvik, L. J.,
Perroud, M., Golub, M., Moore, T. N., Vinnå, L. R., La Fuente, S.,
Grant, L., Pierson, D. C., Thiery, W., and Jennings, E.: Global increase in
methane production under future warming of lake bottom waters, Glob. Change
Biol., 28, 5427–5440, https://doi.org/10.1111/gcb.16298, 2022.
Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L., and Jansson, M.:
Light limitation of nutrient-poor lake ecosystems, Nature, 460, 506–509,
https://doi.org/10.1038/nature08179, 2009.
Karst, G., Sathasivan, A., Fisher, I. H., and van Leeuwen, J.: Modeling DOC
Removal by Enhanced Coagulation, J. Am. WATER Work Assoc., 96, 79–89,
https://doi.org/10.1002/j.1551-8833.2004.tb10557.x, 2004.
Kawasaki, N. and Benner, R.: Bacterial release of dissolved organic matter
during cell growth and decline: molecular origin and composition, Limnol.
Oceanogr., 51, 2170–2180, https://doi.org/10.4319/lo.2006.51.5.2170, 2006.
Keaveney, E. M., Radbourne, A. D., McGowan, S., Ryves, D. B., and Reimer, P.
J.: Source and quantity of carbon influence its sequestration in Rostherne
Mere (UK) sediment: a novel application of stepped combustion radiocarbon
analysis, J. Paleolimnol., 64, 347–363, https://doi.org/10.1007/s10933-020-00141-1,
2020.
Khan, H., Marcé, R., Laas, A., and Obrador, B.: The relevance of pelagic
calcification in the global carbon budget
of lakes and reservoirs, Limnetica, 41, 17–25, https://doi.org/10.23818/limn.41.02,
2022.
Kong, X., Zhan, Q., Boehrer, B., and Rinke, K.: High frequency data provide new
insights into evaluating and modeling nitrogen retention in reservoirs,
Water Res., 166, 115017, https://doi.org/10.1016/j.watres.2019.115017, 2019.
Koschorreck, M., Hentschel, I., and Boehrer, B.: Oxygen Ebullition From
Lakes, Geophys. Res. Lett., 44, 9372–9378, https://doi.org/10.1002/2017GL074591, 2017.
Kreling, J., Bravidor, J., Engelhardt, C., Hupfer, M., Koschorreck, M., and
Lorke, A.: The importance of physical transport and oxygen consumption for
the development of a metalimnetic oxygen minimum in a lake, Limnol.
Oceanogr., 62, 348–363, https://doi.org/10.1002/lno.10430, 2017.
Kretz, R.: Calculation and illustration of uncertainty in geochemical
analyses, J. Geol. Educ., 33, 40–44, https://doi.org/10.5408/0022-1368-33.1.40, 1985.
Kritzberg, E. S., Cole, J. J., Pace, M. L., Granéli, W., and Bade, D. L.:
Autochthonous versus allochthonous carbon sources of bacteria: Results from
whole-lake 13C addition experiments, Limnol. Oceanog., 49, 588–596,
https://doi.org/10.4319/lo.2004.49.2.0588, 2004.
Ku, H. H.: Notes on the use of propagation of error formulas, J. Res. Nat.
Bur. Stand. Sect. C., 70, 263–273, 1966.
Liu, X., Wendt-Potthof, K., Barth, J. A. C., and Friese, K.:
Post-depositional alteration of stable isotope signals by preferential
degradation of algae-derived organic matter in reservoir sediments,
Biogeochemistry, 159, 315–336, https://doi.org/10.1007/s10533-022-00930-y,
2022.
MacKenzie, A. B., Cook, G. T., Barth, J., Gulliver, P., and McDonald, P.: 14C
and δ13C characteristics of organic matter and carbonate in
saltmarsh sediments from south west Scotland, J. Environ. Monit., 6,
441–447, https://doi.org/10.1039/B315766K, 2004.
Mazuecos, I. P., Arístegui, J., Vázquez-Domínguez, E.,
Ortega-Retuerta, E., Gasol, J. M., and Reche, I.: Temperature control of
microbial respiration and growth efficiency in the mesopelagic zone of the
South Atlantic and Indian Oceans, Deep-Sea Res. Pt. I, 95,
131–138, https://doi.org/10.1016/j.dsr.2014.10.014 2016.
McDonald, C. P., Saeed, M. N., Robertson, D. M., and Prellwitz, S.:
Temperature explains the formation of a metalimnetic oxygen minimum in a
deep mesotrophic lake, Inland Waters, 12, 1–10, https://doi.org/10.1080/20442041.2022.2029318, 2022.
Mi, C., Shatwell, T., Ma, J., Wentzky, V. C., Boehrer, B., Xu, Y., and
Rinke, K.: The formation of a metalimnetic oxygen minimum exemplifies how
ecosystem dynamics shape biogeochemical processes: A modelling study, Water
Res., 175, 115701, https://doi.org/10.1016/j.watres.2020.115701, 2020.
Nix, J.: Contribution of hypolimnetic water on metalimnetic dissolved oxygen
minima in a reservoir, Water Res., 17, 329–332,
https://doi.org/10.1029/WR017i002p00329, 1981.
Nürnberg, G. K., LaZerte, B. D., and Olding, D. D.: An Artificially
induced Planktothrix rubescens surface bloom in a small kettle lake in
Southern Ontario compared to blooms world-wide, Lake Reservoir Manag., 19,
307–322, https://doi.org/10.1080/07438140309353941, 2003.
Pace, M. L. and Prairie, Y.: Respiration in lakes, in: Respiration in
Aquatic Ecosystems, edited by: del Giorgio, P. and Williams, P., Oxford Academic, chap. 7, Respiration in lakes, 103–121, https://doi.org/10.1093/acprof:oso/9780198527084.003.0007, 2005.
Piatka, D. R., Frank, A. H., Köhler, I., Castiglione, K., van Geldern, R., and Barth, J. A. C.: Balance of carbon species combined with stable isotope ratios show critical switch towards bicarbonate uptake during cyanobacteria blooms, Sci. Total Environ., 807, https://doi.org/10.1016/j.scitotenv.2021.151067, 2022.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A.,
Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation
of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, https://doi.org/10.1038/NGEO1830,
2013.
Rinke, K., Kuehn, B., Bocaniov, S., Wendt-Potthoff, K., Büttner, O.,
Tittel, J., Schultze, M., Herzsprung, P., Rönicke, H., Rink, K., Rinke,
K., Dietze, M., Matthes, M., Paul, L., and Friese, K.: Reservoirs as
sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains,
Germany), Environ. Earth Sci., 69, 523–536, https://doi.org/10.1007/s12665-013-2464-2,
2013.
Robarts, R. D.: Decomposition is freshwater ecosystems, J.
Limnol. Soc. Southern Afr., 12, 72–89,
https://doi.org/10.1080/03779688.1986.9639399, 1986.
Scavia, D. and Laird, G. A.: Bacterioplankton in Lake Michigan: Dynamics,
controls, and significance to carbon flux, Limnol. Oceanogr., 32, 1017–1033,
https://doi.org/10.4319/lo.1987.32.5.1017, 1987.
Schindler, D. W. and Gunn, J. M.: Dissolved organic carbon as a controlling
variable in lake trout and other Boreal Shield lakes. Boreal Shield
watersheds: Lake trout ecosystems in a changing environment, edited by:
Gunn, J. M., Steedman, R. J., and Ryder, R. A., Lewis Publishers, Boca Raton, Fla,
133–146, https://doi.org/10.1201/9780203495087.CH8, 2004.
Schulte, P., van Geldern, R., Freitag, H., Karim, A., Négrel, P.,
Petelet-Giraud, E., Probst, J.-L., Telmer, K., Veizer, J., and Barth, J. A. C.:
Applications of stable water and carbon isotopes in watershed research:
weathering, carbon cycling, and water balances, Earth Sci. Rev., 109, 20–31,
https://doi.org/10.1016/j.earscirev.2011.07.003, 2011.
Shapiro, J.: The cause of a metalimnetic minimum of dissolved oxygen,
Limnol. Oceanogr., 5, 216–227, 1960.
Sommer, U., Gliwicz, Z. M., Lampert, W. I., and Duncan, A.: The PEG-model of
seasonal succession of planktonic events in fresh waters, Arch. Hydrobiol.,
106, 433–471, 1986.
Stiller, M. and Nissenbaum, A.: A stable carbon isotope study of dissolved
inorganic carbon in hardwater Lake Kinneret (Sea of Galilee), S. Afr. J.
Sci., 95, 166–170, 1999.
Sun, L., Leybourne, M., Rissman, C., and Brikowski, T.: Geochemistry of a
large impoundment – part II: Fe and Mn cycling and metal transport,
Geochem. Explor. Environ. Anal., 16, 165–177, https://doi.org/10.1144/geochem2015-361,
2016.
Thurman, E. M.: Organic geochemistry of natural waters, Martinus Nijhoff/Dr.
W. Junk Publishers, ISBN: 978-94-009-5095-5, 1985.
Tittel, J., Hüls, M., and Koschorreck, M.: Terrestrial Vegetation Drives Methane Production in the Sediments of two German Reservoirs, Sci. Rep., 9, 15944, https://doi.org/10.1038/s41598-019-52288-1, 2019.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl,
R.G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M.,
McCallister, S. L., McKnight, D. M., Melack,, J. M., Overholt, E., Porter,
J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler,
D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von
Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators
of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
van Geldern, R., Schulte, P., Mader, M., Baier, A., and Barth, J. A. C.:
Spatial and temporal variations of pCO2, dissolved inorganic carbon, and
stable isotopes along a temperate karstic watercourse, Hydrol. Process., 29,
3423–3440, https://doi.org/10.1002/hyp.10457, 2015.
Wachniew, P.: Isotopic composition of dissolved inorganic carbon in a large
polluted river: the Vistula, Poland, Chem. Geol., 233, 293–308,
https://doi.org/10.1016/j.chemgeo.2006.03.012, 2006.
Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., and Zhang, B.: Changing Lengths of the Four Seasons by Global Warming, Geophys. Res. Lett., 48, https://doi.org/10.1029/2020GL091753, 2021.
Wentzky, V., Frassl, M. A., Rinke, K., and Boehrer, B.: Metalimnetic oxygen
minimum and the presence of Planktothrix rubescens in a low-nutrient
drinking water reservoir, Water Res., 148, 208–218, https://doi.org/10.1016/j.watres.2018.10.047,
2019.
Wetzel, R. G.: Limnology, 2nd Edn., Saunders College Publishing,
Philadelphia, ISBN: 0-03-057913-9, 1983.
Wetzel, R. G., Rich, P. H., Miller, M. C., and Allen, H. L.: Metabolism of
dissolved and particulate detrital carbon in a temperate hard-water lake,
Mem. Ist. Ita. Idrobiol., 29, 185–243, 1972.
Willey, J. D., Kieber, R. J., Eyman Jr., M. S., and Brooks Avery, G.: Rainwater
dissolved organic carbon concentrations and global flux, Global Biogeochem.
Cy., 14, 139–148, https://doi.org/10.1029/1999GB900036, 2000.
Wu, J. L. and Chen, M.: Effects of nitrogen and phosphorus on phytoplankton
composition and biomass in 15 subtropical, urban shallow lakes in Wuhan,
China, Limnologica, 41, 48–56, https://doi.org/10.1016/j.limno.2010.03.003, 2011.
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of...
Altmetrics
Final-revised paper
Preprint