Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1671-2023
https://doi.org/10.5194/bg-20-1671-2023
Research article
 | Highlight paper
 | 
28 Apr 2023
Research article | Highlight paper |  | 28 Apr 2023

Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations

Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams

Related authors

Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022,https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary

Related subject area

Biogeochemistry: Open Ocean
Composite model-based estimate of the ocean carbon sink from 1959 to 2022
Jens Terhaar
Biogeosciences, 22, 1631–1649, https://doi.org/10.5194/bg-22-1631-2025,https://doi.org/10.5194/bg-22-1631-2025, 2025
Short summary
Phytoplankton community structure in relation to iron and macronutrient fluxes from subsurface waters in the western North Pacific during summer
Huailin Deng, Koji Suzuki, Ichiro Yasuda, Hiroshi Ogawa, and Jun Nishioka
Biogeosciences, 22, 1495–1508, https://doi.org/10.5194/bg-22-1495-2025,https://doi.org/10.5194/bg-22-1495-2025, 2025
Short summary
Intense and localized export of selected marine snow types at eddy edges in the South Atlantic Ocean
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
Biogeosciences, 22, 1183–1201, https://doi.org/10.5194/bg-22-1183-2025,https://doi.org/10.5194/bg-22-1183-2025, 2025
Short summary
Spatial distributions of iron and manganese in surface waters of the Arctic's Laptev and East Siberian seas
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
Biogeosciences, 22, 1057–1076, https://doi.org/10.5194/bg-22-1057-2025,https://doi.org/10.5194/bg-22-1057-2025, 2025
Short summary
Climate-driven shifts in Southern Ocean primary producers and biogeochemistry in CMIP6 models
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences, 22, 975–994, https://doi.org/10.5194/bg-22-975-2025,https://doi.org/10.5194/bg-22-975-2025, 2025
Short summary

Cited articles

Allison, L. C., Roberts, C. D., Palmer, M. D., Hermanson, L., Killick, R. E., Rayner, N. A., Smith, D. M., and Andrews, M. B.: Towards quantifying uncertainty in ocean heat content changes using synthetic profiles, Environ. Res. Lett., 14, 084037, https://doi.org/10.1088/1748-9326/ab2b0b, 2019. a, b, c
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, E., L., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Bourgeois, T., Goris, N., Schwinger, J., and Tjiputra, J. F.: Stratification constrains future heat and carbon uptake in the Southern Ocean between 30 S and 55 S, Nat. Commun., 13, 1–8, 2022. a
Download
Co-editor-in-chief
The paper by Turner and co-authors tackles the very timely question on how well we can reconstruct carbon inventories given the sparse observations. Using an Ensemble Optimal Interpolation approach and synthetic observations, the authors show that a large fraction of ocean carbon and its variability can be reconstructed using temperature and salinity measurements in the top 100 meter, however, reconstruction skill decreases when the top 2000 meters are considered. The authors propose a new way to use sparse observations to better understand historical carbon cycle changes, i.e., an important quantity in light of future changes driven by man-made emissions.
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Share
Altmetrics
Final-revised paper
Preprint