Articles | Volume 20, issue 10
https://doi.org/10.5194/bg-20-1829-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1829-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon cycle extremes accelerate weakening of the land carbon sink in the late 21st century
Bharat Sharma
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Sustainability and Data Sciences Laboratory, Northeastern University, Boston, Massachusetts, USA
Computational Sciences & Engineering Division and the Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Jitendra Kumar
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Auroop R. Ganguly
Department of Civil and Environmental Engineering, Sustainability and Data Sciences Laboratory, Northeastern University, Boston, Massachusetts, USA
Forrest M. Hoffman
Computational Sciences & Engineering Division and the Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
Related authors
No articles found.
Elias C. Massoud, Nathan Collier, Yaoping Wang, Jiafu Mao, Adrian Harpold, Steven A. Kannenberg, Gerbrand Koren, Mukesh Kumar, Pushpendra Raghav, Pallav Ray, Mingjie Shi, Jing Tao, Sreedevi P. Vasu, Huiqi Wang, Qing Zhu, and Forrest M. Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3517, https://doi.org/10.5194/egusphere-2025-3517, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We studied how well Earth System Models simulate soil moisture and its connection to plant growth and water use. Using a model evaluation tool and real-world data, we found that models generally perform well at the surface but struggle deeper in the soil. These issues vary by region, especially in colder regions. Our results can help improve future model development and support better predictions of how ecosystems respond to a changing environment.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Cited articles
Ault, T. R.: On the essentials of drought in a changing climate, Science, 368,
256–260, https://doi.org/10.1126/science.aaz5492, 2020. a, b, c
Bonan, G.: Ecological Climatology: Concepts and Applications, Cambridge
University Press, 3 edn., https://doi.org/10.1017/CBO9781107339200, 2015. a
Commane, R., Lindaas, J., Benmergui, J., Luus, K. A., Chang, R. Y.-W., Daube,
B. C., Euskirchen, E. S., Henderson, J. M., Karion, A., Miller, J. B.,
Miller, S. M., Parazoo, N. C., Randerson, J. T., Sweeney, C., Tans, P.,
Thoning, K., Veraverbeke, S., Miller, C. E., and Wofsy, S. C.: Carbon dioxide
sources from Alaska driven by increasing early winter respiration from Arctic
tundra, P. Natl. Acad. Sci. USA, 114, 5361–5366,
https://doi.org/10.1073/pnas.1618567114, 2017. a
Danabasoglu, G.: NCAR CESM2 model output prepared for
CMIP6 ScenarioMIP ssp585, Version 20200530, Earth System Grid
Federation, https://doi.org/10.22033/ESGF/CMIP6.7768, 2019. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2
(CESM2), J. Adv. Model. Earth Sys., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a
Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L.,
Touma, D., Charland, A., Liu, Y., Haugen, M., Tsiang, M., and Rajaratnam, B.:
Quantifying the influence of global warming on unprecedented extreme climate
events, P. Natl. Acad. Sci. USA, 114, 4881–4886,
https://doi.org/10.1073/pnas.1618082114, 2017. a, b
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G.,
Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B.,
Skidmore, A. K., Zurell, D., and Lautenbach, S.: Collinearity: a review of
methods to deal with it and a simulation study evaluating their performance,
Ecography, 36, 27–46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013. a
Flach, M., Brenning, A., Gans, F., Reichstein, M., Sippel, S., and Mahecha, M. D.: Vegetation modulates the impact of climate extremes on gross primary production, Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, 2021. a
Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D.,
Smith, P., van der Velde, M., Vicca, S., Babst, F., Beer, C., Buchmann, N.,
Canadell, J. G., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter,
B., Rammig, A., Seneviratne, S. I., Walz, A., Wattenbach, M., Zavala, M. A.,
and Zscheischler, J.: Effects of climate extremes on the terrestrial carbon
cycle: concepts, processes and potential future impacts, Global Change Biol., 21, 2861–2880, https://doi.org/10.1111/gcb.12916, 2015. a, b, c, d, e, f, g, h, i, j, k
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019. a, b, c
Golyandina, N., Nekrutkin, V., and Zhigljavsky, A. A.: Analysis of Time Series
Structure: SSA and Related Techniques, Chapman and Hall/CRC, 1 edn.,
https://doi.org/10.1201/9781420035841, 2001. a
Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G.,
Chung, C., Kajtar, J. B., Rauniyar, S., Freund, M. B., Lyu, K., Rashid, H.,
Zhang, X., Wales, S., Trenham, C., Holbrook, N. J., Cowan, T., Alexander, L.,
Arblaster, J. M., and Power, S.: Insights From CMIP6 for Australia's Future
Climate, Earth's Future, 8, e2019EF001469,
https://doi.org/10.1029/2019EF001469, 2020. a
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H.,
Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E., Fauset, S., Mukinzi,
J. M., et al.: Asynchronous carbon sink saturation in African and Amazonian
tropical forests, Nature, 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0,
2020. a, b
Jones, M. H., Fahnestock, J. T., Walker, D. A., Walker, M. D., and Welker,
J. M.: Carbon Dioxide Fluxes in Moist and Dry Arctic Tundra during the
Snow-free Season: Responses to Increases in Summer Temperature and Winter
Snow Accumulation, Arc. Alp. Res., 30, 373–380,
https://doi.org/10.1080/00040851.1998.12002912, 1998. a
Langenbrunner, B., Pritchard, M. S., Kooperman, G. J., and Randerson, J. T.:
Why Does Amazon Precipitation Decrease When Tropical Forests Respond to
Increasing CO2?, Earth's Future, 7, 450–468,
https://doi.org/10.1029/2018EF001026, 2019. a
Lawrence, D. M., Fisher, R. A., Koven, C. D., W, K., Swenson, S. C.,
and Vertenstein, M.: Technical Description of version 5.0 of the
Community Land Model (CLM),
https://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf (last access: 15 Februar 2021),
2018. a
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., et al.:
The Community Land Model version 5: Description of new features,
benchmarking, and impact of forcing uncertainty, J. Adv. Model. Earth Sys., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. a, b, c
Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1), Biogeosciences, 10, 2293–2314, https://doi.org/10.5194/bg-10-2293-2013, 2013. a, b
Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S. I.:
Soil moisture dominates dryness stress on ecosystem production globally,
Nat. Commun., 11, 1–9, 2020. a
Marcolla, B., Migliavacca, M., Rödenbeck, C., and Cescatti, A.: Patterns and trends of the dominant environmental controls of net biome productivity, Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, 2020. a, b, c
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M.,
Selbmann, A.-K., Sullivan, P. F., Abbott, B. W., Arndt, K. A., Birch, L.,
Björkman, M. P., Bloom, A. A., Celis, G., Christensen, T. R., Christiansen,
C. T., Commane, R., Cooper, E. J., Crill, P., Czimczik, C., Davydov, S., Du,
J., Egan, J. E., Elberling, B., Euskirchen, E. S., Friborg, T., Genet, H.,
Göckede, M., Goodrich, J. P., Grogan, P., Helbig, M., Jafarov, E. E.,
Jastrow, J. D., Kalhori, A. A. M., Kim, Y., Kimball, J. S., Kutzbach, L., Lara,
M. J., Larsen, K. S., et al.:
Large loss of CO2 in winter observed across the northern permafrost
region, Nat. Clim. Chang. 9, 852–857, https://doi.org/10.1038/s41558-019-0592-8, 2019. a, b, c
Pan, S., Yang, J., Tian, H., Shi, H., Chang, J., Ciais, P., Francois, L.,
Frieler, K., Fu, B., Hickler, T., Ito, A., Nishina, K., Ostberg, S., Reyer,
C. P., Schaphoff, S., Steinkamp, J., and Zhao, F.: Climate Extreme Versus
Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and
Precipitation, J. Geophys. Res.-Biogeo., 125,
e2019JG005252, https://doi.org/10.1029/2019JG005252, 2020. a, b, c, d, e, f, g, h, i
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne,
S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D.,
Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A.,
and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500,
287–295, https://doi.org/10.1038/nature12350, 2013. a, b, c, d, e
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., and Zscheischler, J.: Risk of crop failure due to compound dry and hot extremes estimated with nested copulas, Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, 2020. a, b
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., and Zhang, X.: Changes in Climate Extremes and
their Impacts on the Natural Physical Environment, in: A Special Report
of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F.,
Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K.,
Allen, S. K., Tignor, M., and Midgley, P. M.,
Cambridge
Univ. Press, Cambridge, U.K., New York, IPCC, 109–230,
2012. a, b
Sharma, B.: Codes for Carbon Cycle Extremes Accelerate
Weakening of the Land Carbon Sink in the Late 21st Century, in
Biogeosciences Discussions, Zenodo [code],
https://doi.org/10.5281/zenodo.7854623, last aceess: 22 April 2023. a
Sharma, B., Kumar, J., Collier, N., Ganguly, A. R., and Hoffman, F. M.:
Quantifying Carbon Cycle Extremes and Attributing Their Causes Under Climate
and Land Use and Land Cover Change From 1850 to 2300, J. Geophys.
Res.-Biogeo., 127, e2021JG006738, https://doi.org/10.1029/2021JG006738,
2022a. a, b, c, d, e
Sharma, B., Kumar, J., Ganguly, A. R., and Hoffman, F. M.: Using Image
Processing Techniques to Identify and Quantify Spatiotemporal Carbon Cycle
Extremes, in: 2022 IEEE International Conference on Data Mining Workshops
(ICDMW), 1136–1143, https://doi.org/10.1109/ICDMW58026.2022.00148,
2022b. a
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon
release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0,
2020. a
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018. a, b, c
Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen, C. M.,
Asao, S., Guenet, B., Harper, A., Hickler, T., Hungate, B. A., et al.:
Decadal biomass increment in early secondary succession woody ecosystems is
increased byCO2 enrichment, Nat. Commun., 10, 1–13,
https://doi.org/10.1038/s41467-019-08348-1, 2019. a
Wu, Z., K. Schneider, E., Kirtman, B., Sarachik, E., Huang, N., and J. Tucker,
C.: The modulated annual cycle: An alternative reference frame for climate
anomalies, Clim. Dynam., 31, 823–841, https://doi.org/10.1007/s00382-008-0437-z,
2008. a
Zhang, T., Xu, M., Xi, Y., Zhu, J., Tian, L., Zhang, X., Wang, Y., Li, Y., Shi,
P., Yu, G., Sun, X., and Zhang, Y.: Lagged climatic effects on carbon fluxes
over three grassland ecosystems in China, J. Plant Ecol., 8,
291–302, https://doi.org/10.1093/jpe/rtu026, 2014. a
Zscheischler, J., Mahecha, M. D., von Buttlar, J., Harmeling, S., Jung, M.,
Rammig, A., Randerson, J. T., Schölkopf, B., Seneviratne, S. I., Tomelleri,
E., Zaehle, S., and Reichstein, M.: A few extreme events dominate global
interannual variability in gross primary production, Environ. Res. Lett., 9, 035001, https://doi.org/10.1088/1748-9326/9/3/035001, 2014. a, b, c, d, e
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change,
8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a, b, c
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3787 KB) - Full-text XML
- Corrigendum
-
Supplement
(13800 KB) - BibTeX
- EndNote
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and...
Altmetrics
Final-revised paper
Preprint