Articles | Volume 20, issue 12
https://doi.org/10.5194/bg-20-2283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying land carbon cycle feedbacks under negative CO2 emissions
V. Rachel Chimuka
CORRESPONDING AUTHOR
Department of Geography, Simon Fraser University, Burnaby, BC, V5A
1S6, Canada
Claude-Michel Nzotungicimpaye
Department of Geography, Simon Fraser University, Burnaby, BC, V5A
1S6, Canada
now at: Department of Geography, Planning and Environment, Concordia University, Montréal, QC, H3G 1M8, Canada
Kirsten Zickfeld
Department of Geography, Simon Fraser University, Burnaby, BC, V5A
1S6, Canada
Related authors
No articles found.
Pierre Etienne Banville, Alexander J. MacIsaac, and Kirsten Zickfeld
EGUsphere, https://doi.org/10.5194/egusphere-2025-4000, https://doi.org/10.5194/egusphere-2025-4000, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Reforestation can help fight climate change by absorbing carbon, but it also affects temperatures locally and remotely through complex interactions with the atmosphere and oceans. Using a climate model, we found that the non-carbon physical effects of forests on climate can cause warming in distant locations that strengthens over centuries, amplified by oceanic processes. These results show that long-term, Earth-wide effects must be considered when planning forest-based climate solutions.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Claude-Michel Nzotungicimpaye, Kirsten Zickfeld, Andrew H. MacDougall, Joe R. Melton, Claire C. Treat, Michael Eby, and Lance F. W. Lesack
Geosci. Model Dev., 14, 6215–6240, https://doi.org/10.5194/gmd-14-6215-2021, https://doi.org/10.5194/gmd-14-6215-2021, 2021
Short summary
Short summary
In this paper, we describe a new wetland methane model (WETMETH) developed for use in Earth system models. WETMETH consists of simple formulations to represent methane production and oxidation in wetlands. We also present an evaluation of the model performance as embedded in the University of Victoria Earth System Climate Model (UVic ESCM). WETMETH is capable of reproducing mean annual methane emissions consistent with present-day estimates from the regional to the global scale.
Cited articles
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon–Concentration
and Carbon–Climate Feedbacks in CMIP5 Earth System Models, J. Climate, 26,
5289–5314, https://doi.org/10.1175/JCLI-D-12-00494.1, 2013.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Boer, G. J. and Arora, V.: Geographic Aspects of Temperature and
Concentration Feedbacks in the Carbon Budget, J. Climate, 23, 775–784, https://doi.org/10.1175/2009JCLI3161.1, 2010.
Boer, G. J. and Arora, V.: Feedbacks in emission-driven and
concentration-driven global carbon budgets, J. Climate, 32, 3326–3341,
https://doi.org/10.1175/JCLI-D-12- 00365.1, 2013.
Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C.
D., Lowe, J. Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an
earth system model in response to CO2 concentration changes, Environ. Res.
Lett., 7, 024013, https://doi.org/10.1088/1748-9326/7/2/024013, 2012.
Cao, L. and Caldeira, K.: Atmospheric carbon dioxide removal: Long term
consequences and commitment, Environ. Res. Lett., 5, 024011, https://doi.org/10.1088/1748-9326/5/2/024011, 2010.
Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox,
P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila,
A., Patra, P.K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and
Zickfeld, K.: Global Carbon and other Biogeochemical Cycles and Feedbacks,
in: Climate Change 2021: The Physical Science Basis, Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, ediyed by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, L. C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yeleki, O.,
Yu, R., and Zhou, B., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 673–816,
https://doi.org/10.1017/9781009157896.007, 2021
Chimuka, V., Nzotungicimpaye, C., and Zickfeld, K.: Quantifying land carbon cycle feedbacks under negative CO2 emissions – Supplementary Data, Federated Research Data Repository [data set], last access: 31 May 2023, https://doi.org/10.20383/102.0732, 2023.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Queìreì,
C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other
Biogeochemical Cycles, in: Working Group I Contribution to the
Intergovernmental Panel on Climate Change Fifth Assessment Report Climate
Change 2013: The Physical Science Basis, edited by: Stocker, T. F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P., Cambridge University Press, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf (last access: February 2022), 2013.
Cox, P. M., Betts, R. A., Jones. C.D., Spall, S. A., and Totterdell, I.:
Acceleration of global warming due to carbon-cycle feedbacks in a coupled
climate model, Nature, 408, 184–187, https://doi.org/10.1038/35041539, 2000.
Cox, P.: Description of the TRIFFID Dynamic Global Vegetation Model, Hadley
Centre Technical Note # 24, UK Met Office,
https://digital.nmla.metoffice.gov.uk/IO_cc8f146a-d524-4243-88fc-e3a3bcd782e7/ (last access: June 2022), 2001.
Earth System Climate Model: UVic ESCM [code], https://terra.seos.uvic.ca/model/2.10/, last access: 31 May 2023.
Eby, M., Weaver, A. J., Alexander, K., Zickfeld, K., Abe-Ouchi, A., Cimatoribus, A. A., Crespin, E., Drijfhout, S. S., Edwards, N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I. I., Monier, E., Olsen, S. M., Pedersen, J. O. P., Perrette, M., Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling, T., Shaffer, G., Smith, R. S., Spahni, R., Sokolov, A. P., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., Zeng, N., and Zhao, F.: Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity, Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, 2013.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., Zeng, A. N., and
Friedlingstein, P.: Climate–Carbon Cycle Feedback Analysis: Results from
the C4 MIP Model Intercomparison, J. Climate, 19, 3337–3353,
doi.org/10.1175/JCLI3800.1, 2006.
Friedlingstein, P., Meinshausen, M., Arora, V., Jones, C., Anav, A.,
Liddicoat, S., and Knutti, R.: Uncertainties in CMIP5 climate projections
due to carbon cycle feedbacks, J. Climate, 27, 511–526, https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.
Fung, I.Y., Doney, S. C., Lindsay, K., and Jasmin J. G.: Evolution of
carbon sinks in a changing climate, P. Natl. Acad. Sci. USA, 102, 11201–11206, https://doi.org/10.1073/pnas.0504949102, 2005.
Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M. Ciais,
P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le
Quéré, C., Raupach, M. R., Sharifi, A., Smith P., and Yamagata, Y.:
Betting on negative emissions, Nat. Clim. Change, 4, 850–853,
doi.org/10.1038/nclimate2392, 2014.
IPCC: Climate Change 2022: Impacts, Adaptation, and
Vulnerability, Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O.
Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A.,
Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B., Cambridge University Press, in Press, https://doi.org/10.1017/9781009325844, 2022.
Jeltsch-Thömmes, A., Stocker, T. F., and Joos, F.: Hysteresis of the
Earth system under positive and negative CO2 emissions, Environ.
Res. Lett., 15, 124026, https://doi.org/10.1088/1748-9326/abc4af, 2020.
Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., and Zaehle, S.: C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6, Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, 2016.
Jones, C. D., Ciais, J., Davis, S. J., Friedlingstein, P., Gasser, T.,
Peters, G. P., and Wiltshire, A.: Simulating the Earth System response to
negative emissions, Environ. Res. Lett., 11, 095012, https://doi.org/10.1088/1748-9326/11/9/095012, 2016.
Jones, C. D., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M.
J.: Strong carbon cycle feedbacks in a climate model with interactive CO2
and sulphate aerosols, Geophys. Res. Lett., 30, 1479, https://doi.org/10.1029/2003GL016867, 2003.
Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., Jones, C. D., Kravitz, B., Muri, H., and Zickfeld, K.: The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6, Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, 2018.
Keller, D. P., Oschlies, A., and Eby, M.: A new marine ecosystem model for the University of Victoria Earth System Climate Model, Geosci. Model Dev., 5, 1195–1220, https://doi.org/10.5194/gmd-5-1195-2012, 2012.
Koven, C. D., Arora, V. K., Cadule, P., Fisher, R. A., Jones, C. D., Lawrence, D. M., Lewis, J., Lindsay, K., Mathesius, S., Meinshausen, M., Mills, M., Nicholls, Z., Sanderson, B. M., Séférian, R., Swart, N. C., Wieder, W. R., and Zickfeld, K.: Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios, Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, 2022.
MacDougall, A. H.: Limitations of the 1 % experiment as the benchmark idealized experiment for carbon cycle intercomparison in C4MIP, Geosci. Model Dev., 12, 597–611, https://doi.org/10.5194/gmd-12-597-2019, 2019.
MacDougall, A. H. and Knutti, R.: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach, Biogeosciences, 13, 2123–2136, https://doi.org/10.5194/bg-13-2123-2016, 2016.
MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews, H. D., Zickfeld, K., Arora, V. K., Barrett, N. J., Brovkin, V., Burger, F. A., Eby, M., Eliseev, A. V., Hajima, T., Holden, P. B., Jeltsch-Thömmes, A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I. I., Oka, A., Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K., Tjiputra, J., Wiltshire, A., and Ziehn, T.: Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2, Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, 2020.
Matthews, H. D. and Caldeira, K.: Stabilizing climate requires near–zero
emissions, Geophys. Res. Lett., 35, L04705, https://doi.org/10.1029/2007GL032388, 2008.
Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of
land surface dynamics in glacial inception: a study with the UVic Earth
System Model, Clim. Dynam., 21, 515–537, https://doi.org/10.1007/s00382-003-0352-2, 2003.
Melnikova, I., Boucher, O., Cadule, P., Ciais, P., Gasser, T., Quilcaille,
Y., Shiogama, H., Tachiiri, K., Yokohata, T. and Tanaka, K.: Carbon cycle
response to temperature overshoot beyond 2 ∘C: An analysis of
CMIP6 models, Earth's Future, 9, e2020EF001967,
https://doi.org/10.1029/2020EF001967, 2021.
Mengis, N., Keller, D. P., MacDougall, A. H., Eby, M., Wright, N., Meissner, K. J., Oschlies, A., Schmittner, A., MacIsaac, A. J., Matthews, H. D., and Zickfeld, K.: Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10), Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, 2020.
Pacanowski, R. C.: MOM 2 Documentation, users guide and reference manual,
GFDL Ocean Group Technical Report 3, Geophys, Fluid Dyn. Lab., Princet.
Univ. Princeton, NJ, https://www.gfdl.noaa.gov/wp-content/uploads/2016/10/manual2.2.pdf (last access: February 2022), 1995.
Park, S. and Kug, J.: A decline in atmospheric CO2 levels under negative
emissions may enhance carbon retention in the terrestrial biosphere, Commun.
Earth. Environ., 3, 289, https://doi.org/10.1038/s43247-022-00621-4, 2022
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Seferian,
R., and Vilarino, M. V.: Mitigation Pathways Compatible with 1.5 ?C in the
Context of Sustainable Development, in: Global Warming of 1.5 ?C. An IPCC
Special Report on the impacts of global warming of 1.5 ?C above
pre-industrial levels and related global greenhouse gas emission pathways,
in the context of strengthening the global response to the threat of climate
change, sustainable development, and efforts to eradicate poverty, edited
by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea,
J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R.,
Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy,
E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, Cambridge, UK and New York, NY, USA, 93–174, https://doi.org/10.1017/9781009157940.004, 2018.
Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J., and
Séférian, R.: Estimating and tracking the remaining carbon budget
for stringent climate targets, Nature, 571, 335–342, https://doi.org/10.1038/s41586-019-1368-z, 2019
Schwinger, J. and Tjiputra, J.: Ocean Carbon Cycle Feedbacks Under Negative
Emissions, Geophys. Res. Lett., 45, 5062–5070, https://doi.org/10.1029/2018GL077790,
2018.
Solomon, S., Plattner, G.-K., Knutti, R., and Friedlingstein, P.:
Irreversible climate change due to carbon dioxide emissions, P. Natl. Acad. Sci. USA, 106, 1704–1709, https://doi.org/10.1073/pnas.0812721106, 2009.
Tokarska, K. B. and Zickfeld, K.: The effectiveness of net negative carbon
dioxide emissions in reversing anthropogenic climate change, Environ. Res.
Lett., 094013, https://doi.org/10.1088/1748-9326/10/9/094013, 2015.
UNFCCC: Adoption of the Paris Agreement,
https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf (last access: 19 November 2022),
2022.
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T.
L., and Fanning, A. F.: The UVic Earth System Climate Model: Model
description, climatology, and applications to past, present and future
climates, Atmos. Ocean, 39, 361–428, 2001.
Zickfeld, K., Azevedo, D., Mathesius, S., and Matthews, H. D.: Asymmetry in
the climate–carbon cycle response to positive and negative CO2 emissions,
Nat. Clim. Change, 11, 613–617, https://doi.org/10.1038/s41558-021-01061-2, 2021.
Zickfeld, K., Eby, M., Matthews, H. D., Schmittner, A., and Weaver, A. J.:
Nonlinearity of Carbon Cycle Feedbacks, J. Climate, 24, 4255–4275, https://doi.org/10.1175/2011JCLI3898.1, 2011.
Zickfeld, K., MacDougall, A. H., and Matthews, H. D.: On the
proportionality between global temperature change and cumulative CO2
emissions during periods of net negative CO2 emissions, Environ. Res. Lett.,
11, 055006, https://doi.org/10.1088/1748-9326/11/5/055006, 2016.
Ziehn, T., Lenton, A., and Law, R.: An assessment of land-based climate and
carbon reversibility in the Australian Community Climate and Earth System
Simulator, Mitig. Adapt. Strateg. Glob. Change, 25, 713–731, https://doi.org/10.1007/s11027-019-09905-1, 2020.
Co-editor-in-chief
This study is the first to quantify land carbon cycle feedbacks under decreasing atmospheric CO2 concentration following negative CO2 emissions and compare them to feedbacks under positive emissions. The novel approach presented here reduces the carbon cycle inertia in the phase where atmospheric CO2 concentration decreases in order to improve the quantification of carbon cycle feedbacks under negative emissions. This approach reduced the effectivity of negative emissions in reducing atmospheric CO2, due to larger concentration-carbon and climate-carbon feedbacks.
This study is the first to quantify land carbon cycle feedbacks under decreasing atmospheric CO2...
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our...
Altmetrics
Final-revised paper
Preprint