Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-295-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-295-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Daniel L. Pönisch
CORRESPONDING AUTHOR
Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
Anne Breznikar
CORRESPONDING AUTHOR
Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
Cordula N. Gutekunst
Department of Landscape Ecology, Faculty for Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
Gerald Jurasinski
Department of Landscape Ecology, Faculty for Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
Maren Voss
Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
Gregor Rehder
Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
Related authors
Daniel L. Pönisch, Henry C. Bittig, Martin Kolbe, Ingo Schuffenhauer, Stefan Otto, Peter Holtermann, Kusala Premaratne, and Gregor Rehder
Biogeosciences, 22, 3583–3614, https://doi.org/10.5194/bg-22-3583-2025, https://doi.org/10.5194/bg-22-3583-2025, 2025
Short summary
Short summary
Rewetted peatlands exhibit natural spatiotemporal biogeochemical heterogeneity, influenced by water level and vegetation. This study investigated the variability of greenhouse gas distribution in a peatland rewetted with brackish water. Two innovative sensor-equipped platforms were used to measure a wide range of marine physicochemical variables at high temporal resolution. The measurements revealed strong fluctuations in CO2 and CH4, expressed as multi-day, diurnal, and event-based variability.
Noémie Choisnard, Josephin Lemke, Jenny Fabian, Iris Liskow, Heide Schulz-Vogt, and Maren Voss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3514, https://doi.org/10.5194/egusphere-2025-3514, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied nitrogen cycling during a coastal upwelling event off central Chile using nitrate isotope measurements and high-precision oxygen sensors. Our results show that microbes actively perform nitrification even under extremely low oxygen conditions. This reveals previously overlooked activity in oxygen minimum zones and highlights the need for high-resolution data to better understand nutrient dynamics and ocean productivity.
Daniel L. Pönisch, Henry C. Bittig, Martin Kolbe, Ingo Schuffenhauer, Stefan Otto, Peter Holtermann, Kusala Premaratne, and Gregor Rehder
Biogeosciences, 22, 3583–3614, https://doi.org/10.5194/bg-22-3583-2025, https://doi.org/10.5194/bg-22-3583-2025, 2025
Short summary
Short summary
Rewetted peatlands exhibit natural spatiotemporal biogeochemical heterogeneity, influenced by water level and vegetation. This study investigated the variability of greenhouse gas distribution in a peatland rewetted with brackish water. Two innovative sensor-equipped platforms were used to measure a wide range of marine physicochemical variables at high temporal resolution. The measurements revealed strong fluctuations in CO2 and CH4, expressed as multi-day, diurnal, and event-based variability.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Mindaugas Žilius, Rūta Barisevičiūtė, Stefano Bonaglia, Isabell Klawonn, Elise Lorre, Tobia Politi, Irma Vybernaite-Lubiene, Maren Voss, and Paul Bukaveckas
EGUsphere, https://doi.org/10.5194/egusphere-2023-3054, https://doi.org/10.5194/egusphere-2023-3054, 2024
Preprint archived
Short summary
Short summary
This study analyzes the mechanisms driving nitrate retention and elimination within a large estuarine system. Simultaneous measurements of pelagic and benthic processes provide insight into how nitrates are transformed. Finally, our findings are consistent with the paradigm that eutrophication favors a shift from benthic to pelagic-dominated processes.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Martti Honkanen, Jens Daniel Müller, Jukka Seppälä, Gregor Rehder, Sami Kielosto, Pasi Ylöstalo, Timo Mäkelä, Juha Hatakka, and Lauri Laakso
Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, https://doi.org/10.5194/os-17-1657-2021, 2021
Short summary
Short summary
The exchange of carbon dioxide (CO2) between the sea and the atmosphere is regulated by the gradient of CO2 partial pressure (pCO2) between the sea and the air. The daily variation of the seawater pCO2 recorded at the fixed station Utö in the Baltic Sea was found to be mainly biologically driven. Calculation of the annual net exchange of CO2 between the sea and atmosphere based on daily measurements of pCO2 carried out using the same sampling time every day could introduce a bias of up to 12 %.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Trystan Sanders, Jörn Thomsen, Jens Daniel Müller, Gregor Rehder, and Frank Melzner
Biogeosciences, 18, 2573–2590, https://doi.org/10.5194/bg-18-2573-2021, https://doi.org/10.5194/bg-18-2573-2021, 2021
Short summary
Short summary
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and warming in the next century. Calcifying mussels dominate Baltic Sea seafloor ecosystems yet are sensitive to changes in seawater chemistry. We combine laboratory experiments and a field study and show that a lack of calcium causes extremely slow growth rates in mussels at low salinities. Subsequently, climate change in the Baltic may have drastic ramifications for Baltic seafloor ecosystems.
Mindaugas Zilius, Irma Vybernaite-Lubiene, Diana Vaiciute, Donata Overlingė, Evelina Grinienė, Anastasija Zaiko, Stefano Bonaglia, Iris Liskow, Maren Voss, Agneta Andersson, Sonia Brugel, Tobia Politi, and Paul A. Bukaveckas
Biogeosciences, 18, 1857–1871, https://doi.org/10.5194/bg-18-1857-2021, https://doi.org/10.5194/bg-18-1857-2021, 2021
Short summary
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Florian Beyer, Florian Jansen, Gerald Jurasinski, Marian Koch, Birgit Schröder, and Franziska Koebsch
Biogeosciences, 18, 917–935, https://doi.org/10.5194/bg-18-917-2021, https://doi.org/10.5194/bg-18-917-2021, 2021
Short summary
Short summary
Increasing drought frequency can jeopardize the restoration of the CO2 sink function in degraded peatlands. We explored the effect of the summer drought in 2018 on vegetation development and CO2 exchange in a rewetted fen. Drought triggered a rapid spread of new vegetation whose CO2 assimilation could partially outweigh the drought-related rise in respiratory CO2 loss. Our study shows important regulatory mechanisms of a rewetted fen to maintain its net CO2 sink function even in a very dry year.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Augustin, J. (Ed.): Gaseous emissions from constructed wetlands and
(re)flooded meadows, in: International Conference: Constructed and Riverine
Wetlands for Optimal Control of Wastewater at Catchment Scale, edited by:
Mander, Ü., Vohla, C., and Poom, A., Tartu Univ. Press, ISBN 9985-4-0356-8, 2003.
Augustin, J. and Chojnicki, B.: Austausch von klimarelevanten Spurengasen,
Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach
Wiedervernässung von degradiertem Niedermoorgrünland, Berichte des
Leibniz-Institut für Gewässerökologie und Binnenfischerei, edited by: Gelbrecht, J., Zak, D., and Augustin, J.,
50–61, 2008.
Augustin, J., Merbach, W., Steffens, L., and Snelinski, B.: Nitrous Oxide
Fluxes Of Disturbed Minerotrophic Peatlands, Agribiol. Res., 51, 47–57, 1998.
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O.: Methane
in the Baltic and North Seas and a reassessment of the marine emissions of
methane, Global Biogeochem. Cy., 8, 465–480,
https://doi.org/10.1029/94GB02181, 1994.
Bange, H. W., Dahlke, S., Ramesh, R., Meyer-Reil, L.-A., Rapsomanikis, S.,
and Andreae, M. O.: Seasonal Study of Methane and Nitrous Oxide in the
Coastal Waters of the Southern Baltic Sea, Estuar. Coast. Shelf
S., 47, 807–817, https://doi.org/10.1006/ecss.1998.0397, 1998.
Bartlett, K. B., Bartlett, D. S., Harriss, R. C., and Sebacher, D. I.:
Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4,
183–202, https://doi.org/10.1007/BF02187365, 1987.
Beldowski, J., Löffler, A., Schneider, B., and Joensuu, L.: Distribution
and biogeochemical control of total CO2 and total alkalinity in the
Baltic Sea, J. Marine Syst., 81, 252–259,
https://doi.org/10.1016/j.jmarsys.2009.12.020, 2010.
Bockholt, R.: Flächen-. Ertrags- und Problemanalyse des
Überschwemmungsgrünlandes der Ostsee-, Bodden- und Haffgewässer,
Forschungsbericht Universität Rostock, 17, 1985.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F.,
Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.:
A marine microbial consortium apparently mediating anaerobic oxidation of
methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Borges, A. V., Champenois, W., Gypens, N., Delille, B., and Harlay, J.:
Massive marine methane emissions from near-shore shallow coastal areas,
Sci. Rep.-UK, 6, 27908, https://doi.org/10.1038/srep27908, 2016.
Borges, A. V., Speeckaert, G., Champenois, W., Scranton, M. I., and Gypens,
N.: Productivity and Temperature as Drivers of Seasonal and Spatial
Variations of Dissolved Methane in the Southern Bight of the North Sea,
Ecosystems, 21, 583–599, https://doi.org/10.1007/s10021-017-0171-7, 2018.
Brisch, A.: Erkundung von Torfmächtigkeit und Vegetation in zwei
potenziellen Wiedervernässungsgebieten bei Rambin und Grosow
(Rügen), expert opinion commissioned by and available at the Naturschutzstiftung Deutsche Ostsee, 2015.
Bubier, J., Crill, P., Mosedale, A., Frolking, S., and Linder, E.: Peatland
responses to varying interannual moisture conditions as measured by
automatic CO2 chambers, Global Biogeochem. Cy., 17, 1–35,
https://doi.org/10.1029/2002GB001946, 2003.
Burgin, A. J. and Groffman, P. M.: Soil O2 controls denitrification
rates and N2O yield in a riparian wetland, J. Geophys. Res., 117,
1–15, https://doi.org/10.1029/2011JG001799, 2012.
Cabezas, A., Gelbrecht, J., Zwirnmann, E., Barth, M., and Zak, D.: Effects
of degree of peat decomposition, loading rate and temperature on dissolved
nitrogen turnover in rewetted fens, Soil Biol. Biochem., 48,
182–191, https://doi.org/10.1016/j.soilbio.2012.01.027, 2012.
Capone, D. G. and Kiene, R. P.: Comparison of microbial dynamics in marine
and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol.
Oceangr., 33, 725–749, https://doi.org/10.4319/lo.1988.33.4part2.0725,
1988.
Carter, B. R., Radich, J. A., Doyle, H. L., and Dickson, A. G.: An automated
system for spectrophotometric seawater pH measurements, Limnol. Oceanogr.-Meth., 11, 16–27, https://doi.org/10.4319/lom.2013.11.16, 2013.
Chmura, G. L., Kellman, L., and Guntenspergen, G. R.: The greenhouse gas
flux and potential global warming feedbacks of a northern macrotidal and
microtidal salt marsh, Environ. Res. Lett., 6, 1–6,
https://doi.org/10.1088/1748-9326/6/4/044016, 2011.
Chmura, G. L., Kellman, L., van Ardenne, L., and Guntenspergen, G. R.:
Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient
Enrichment, PloS one, 11, 1–13,
https://doi.org/10.1371/journal.pone.0149937, 2016.
Couwenberg, J., Thiele, A., Tanneberger, F., Augustin, J., Bärisch, S.,
Dubovik, D., Liashchynskaya, N., Michaelis, D., Minke, M., Skuratovich, A.,
and Joosten, H.: Assessing greenhouse gas emissions from peatlands using
vegetation as a proxy, Hydrobiologia, 674, 67–89,
https://doi.org/10.1007/s10750-011-0729-x, 2011.
Danevèiè, T., Mandic-Mulec, I., Stres, B., Stopar, D., and Hacin,
J.: Emissions of CO2, CH4 and N2O from Southern European
peatlands, Soil Biol. Biochem., 42, 1437–1446,
https://doi.org/10.1016/j.soilbio.2010.05.004, 2010.
Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G.,
Egger, M., Jetten, M. S. M., Jong, A. E. E. de, Meisel, O. H., Rasigraf, O.,
Slomp, C. P., in't Zandt, M. H., and Dolman, A. J.: Methane Feedbacks to the
Global Climate System in a Warmer World, Rev. Geophys., 56, 207–250,
https://doi.org/10.1002/2017RG000559, 2018.
Dickson, A. and Riley, J.: The estimation of acid dissociation constants in
seawater media from potentionmetric titrations with strong base. I. The
ionic product of water – Kw, Mar. Chem., 7, 89–99,
https://doi.org/10.1016/0304-4203(79)90001-X, 1979.
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion
HSO in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127,
https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity,
Mar. Chem.,
80, 185–197, https://doi.org/10.1016/S0304-4203(02)00133-0,
2003.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best
practices for ocean CO2 measurements, North Pacific Marine Science
Organization, ISBN 1-897176-07-4, 2007.
Dlugokencky, E., Crotwell, A., Mund, J., Crotwell, M., and Thoning, K.:
Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle
Cooperative Global Air Sampling Network, 1983–2018,
https://doi.org/10.15138/VNCZ-M766, 2019a.
Dlugokencky, E., Crotwell, A., Mund, J., Crotwell, M., and Thoning, K.:
Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle
Cooperative Global Air Sampling Network, 1983–2018,
https://doi.org/10.15138/wkgj-f215, 2019b.
Duhamel, S., Nogaro, G., and Steinman, A. D.: Effects of water level
fluctuation and sediment–water nutrient exchange on phosphorus
biogeochemistry in two coastal wetlands, Aquat. Sci., 79, 57–72,
https://doi.org/10.1007/s00027-016-0479-y, 2017.
Fiedler, J., Fuß, R., Glatzel, S., Hagemann, U., Huth, V., Jordan, S.,
Jurasinski, G., Kutzbach, L., Maier, M., Schäfer, K., Weber, T., and
Weymann, D.: Best Practice Guideline Measurement of carbon dioxide, methane
and nitrous oxide fluxes between soil-vegetation-systems and the atmosphere
using non-steady state chambers, Deutsche Bodenkundliche Gesellschaft, Arbeitsgruppe Bodengase, Göttingen, 70 pp., https://doi.org/10.23689/fidgeo-5422, 2022.
Fisher, J. and Acreman, M. C.: Wetland nutrient removal: a review of the evidence, Hydrol. Earth Syst. Sci., 8, 673–685, https://doi.org/10.5194/hess-8-673-2004, 2004.
Flessa, H., Wild, U., Klemisch, M., and Pfadenhauer, J.: Nitrous oxide and
methane fluxes from organic soils under agriculture, Eur. J. Soil Sci., 49, 327–335, 1998.
Fox, J. and Weisberg, S.: An {R} Companion to
Applied Regression, 3rd Edn., Thousand Oaks CA, Sage,
https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (last access: 3
April 2022), 2019.
Franz, D., Koebsch, F., Larmanou, E., Augustin, J., and Sachs, T.: High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen, Biogeosciences, 13, 3051–3070, https://doi.org/10.5194/bg-13-3051-2016, 2016.
Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., and Orr, J.: seacarb: Seawater
Carbonate Chemistry), R package version 3.2.15, https://CRAN.R-project.org/,
https://CRAN.R-project.org/package=seacarb (last access: 6 February
2022), 2019.
Geurts, J. J. M., Smolders, A. J. P., Banach, A. M., van de Graaf, J. P. M.,
Roelofs, J. G. M., and Lamers, L. P. M.: The interaction between
decomposition, net N and P mineralization and their mobilization to the
surface water in fens, Water Res., 44, 3487–3495,
https://doi.org/10.1016/j.watres.2010.03.030, 2010.
Glatzel, S. and Stahr, K.: Methane and nitrous oxide exchange in differently
fertilised grassland in southern Germany, Plant Soil, 231, 21–35, 2001.
Glatzel, S., Forbrich, I., Krüger, C., Lemke, S., and Gerold, G.: Small scale controls of greenhouse gas release under elevated N deposition rates in a restoring peat bog in NW Germany, Biogeosciences, 5, 925–935, https://doi.org/10.5194/bg-5-925-2008, 2008.
Goldberg, S. D., Knorr, K.-H., Blodau, C., Lischeid, G., and Gebauer, G.:
Impact of altering the water table height of an acidic fen on N2O and
NO fluxes and soil concentrations, Glob. Change Biol., 16, 220–233,
https://doi.org/10.1111/j.1365-2486.2009.02015.x, 2010.
Grasshoff, K., Kremling, K., and Ehrhardt, M. (Eds.): Methods of Seawater Analysis, Wiley-VCH, ISBN 3-527-29589-5,
2009.
Grolemund, G. and Wickham, H.: Dates and Times Made Easy with lubridate,
J. Stat. Softw., 40, 1–25, https://doi.org/10.18637/jss.v040.i03, 2011.
Hahn, J., Köhler, S., Glatzel, S., and Jurasinski, G.: Methane Exchange
in a Coastal Fen in the First Year after Flooding-A Systems Shift, PloS one,
10, 1–25, https://doi.org/10.1371/journal.pone.0140657, 2015.
Hahn-Schöfl, M., Zak, D., Minke, M., Gelbrecht, J., Augustin, J., and Freibauer, A.: Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2, Biogeosciences, 8, 1539–1550, https://doi.org/10.5194/bg-8-1539-2011, 2011.
Harpenslager, S. F., van den Elzen, E., Kox, M. A., Smolders, A. J., Ettwig,
K. F., and Lamers, L. P.: Rewetting former agricultural peatlands: Topsoil
removal as a prerequisite to avoid strong nutrient and greenhouse gas
emissions, Ecol. Eng., 84, 159–168,
https://doi.org/10.1016/j.ecoleng.2015.08.002, 2015.
HELCOM: HELCOM Guidelines for the annual and periodical compilation and
reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water),
HELCOM,
http://nest.su.se/helcom_plc/ (last access: 17 December 2021), 2019.
Heyer, J. and Berger, U.: Methane Emission from the Coastal Area in the
Southern Baltic Sea, Estuar. Coast. Shelf S., 51, 13–30,
https://doi.org/10.1006/ecss.2000.0616, 2000.
Hogan, D. M., Jordan, T. E., and Walbridge, M. R.: Phosphorus retention and
soil organic carbon in restored and natural freshwater wetlands, Wetlands,
24, 573–585,
https://doi.org/10.1672/0277-5212(2004)024[0573:PRASOC]2.0.CO;2, 2004.
Holz, R., Herrmann, C., and Müller-Motzfeld, G.: Vom Polder zum
Ausdeichungsgebiet: Das Projekt Karrendorfer Wiesen und die Zukunft der
Küstenüberflutungsgebiete in Mecklenburg-Vorpommern, Natur und
Naturschutz in MV, Schriftenreihe des Institutes für
Landschaftsökologie und Naturschutz Greifswald, Band 32, 1996.
Joosten, H. and Clarke, D.: Wise use of mires and peatlands, Background and
principles including a framework for decision-making, International Mire Conservation Group and International Peat Society, ISBN 951-97744-8-3, 2002.
Jørgensen, B. B.: Bacteria and Marine Biogeochemistry, in: Marine
Geochemistry, Springer Nature, 169–206, edited by: Schulz, H. D. and Zabel, M., https://doi.org/10.1007/3-540-32144-6_5, 2006.
Jørgensen, C. J. and Elberling, B.: Effects of flooding-induced N2O
production, consumption and emission dynamics on the annual N2O
emission budget in wetland soil, Soil Biol. Biochem., 53, 9–17,
https://doi.org/10.1016/j.soilbio.2012.05.005, 2012.
Jurasinski, G., Günther, A. B., Huth, V., Couwenberg, J., and Glatzel,
S.: Ecosystem services provided by paludiculture – greenhouse gas emissions. in: Paludiculture – productive use of wet peatlands, edited by: Wichtmann, W., Schröder, C., and Joosten, H., Schweizerbart Scientific Publishers, Stuttgart, 79–94, 2016.
Jurasinski, G., Koebsch, F., Guenther, A., and Beetz, S.: flux: Flux Rate Calculation from Dynamic Closed Chamber Measurements, R package version 0.3-0.1, https://CRAN.R-project.org/package=flux, last access: 12 April 2022.
Jurasinski, G., Janssen, M., Voss, M., Böttcher, M. E., Brede, M.,
Burchard, H., Forster, S., Gosch, L., Gräwe, U., Gründling-Pfaff,
S., Haider, F., Ibenthal, M., Karow, N., Karsten, U., Kreuzburg, M., Lange,
X., Leinweber, P., Massmann, G., Ptak, T., Rezanezhad, F., Rehder, G.,
Romoth, K., Schade, H., Schubert, H., Schulz-Vogt, H., Sokolova, I. M.,
Strehse, R., Unger, V., Westphal, J., and Lennartz, B.: Understanding the
Coastal Ecocline: Assessing Sea–Land Interactions at Non-tidal, Low-Lying
Coasts Through Interdisciplinary Research, Front. Mar. Sci., 5, 342,
https://doi.org/10.3389/fmars.2018.00342, 2018.
Kaat, A. and Joosten, H.: Factbook for UNFCCC policies on peat carbon
emissions, Wetlands International, 2009.
Kandel, T. P., Lærke, P. E., Hoffmann, C. C., and Elsgaard, L.: Complete
annual CO2, CH4, and N2O balance of a temperate riparian
wetland 12 years after rewetting, Ecol. Eng., 127, 527–535,
https://doi.org/10.1016/j.ecoleng.2017.12.019, 2019.
Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: progress with
an unknown process, Annu. Rev. Microbiol., 63, 311–334,
https://doi.org/10.1146/annurev.micro.61.080706.093130, 2009.
Koebsch, F., Glatzel, S., Hofmann, J., Forbrich, I., and Jurasinski, G.:
CO2 exchange of a temperate fen during the conversion from moderately
rewetting to flooding, J. Geophys. Res.-Biogeo., 118, 940–950,
https://doi.org/10.1002/jgrg.20069, 2013.
Koebsch, F., Jurasinski, G., Koch, M., Hofmann, J., and Glatzel, S.:
Controls for multi-scale temporal variation in ecosystem methane exchange
during the growing season of a permanently inundated fen, Agr.
Forest Meteorol., 204, 94–105,
https://doi.org/10.1016/j.agrformet.2015.02.002, 2015.
Koebsch, F., Winkel, M., Liebner, S., Liu, B., Westphal, J., Schmiedinger, I., Spitzy, A., Gehre, M., Jurasinski, G., Köhler, S., Unger, V., Koch, M., Sachs, T., and Böttcher, M. E.: Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland, Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, 2019.
Koebsch, F., Gottschalk, P., Beyer, F., Wille, C., Jurasinski, G., and
Sachs, T.: The impact of occasional drought periods on vegetation spread and
greenhouse gas exchange in rewetted fens, Philos. T.
Roy. Soc. B, 375, 20190685,
https://doi.org/10.1098/rstb.2019.0685, 2020.
Komsta, L.: mblm: Median-Based Linear Models, R package
version 0.12.1, https://CRAN.R-project.org/package=mblm (last access: 12 April 2022), 2019.
Kool, D. M., Dolfing, J., Wrage, N., and van Groenigen, J. W.: Nitrifier
denitrification as a distinct and significant source of nitrous oxide from
soil, Soil Biol. Biochem., 43, 174–178,
https://doi.org/10.1016/j.soilbio.2010.09.030, 2011.
Kreyling, J., Tanneberger, F., Jansen, F., van der Linden, S., Aggenbach,
C., Blüml, V., Couwenberg, J., Emsens, W.-J., Joosten, H., Klimkowska,
A., Kotowski, W., Kozub, L., Lennartz, B., Liczner, Y., Liu, H., Michaelis,
D., Oehmke, C., Parakenings, K., Pleyl, E., Poyda, A., Raabe, S., Röhl,
M., Rücker, K., Schneider, A., Schrautzer, J., Schröder, C., Schug,
F., Seeber, E., Thiel, F., Thiele, S., Tiemeyer, B., Timmermann, T., Urich,
T., van Diggelen, R., Vegelin, K., Verbruggen, E., Wilmking, M.,
Wrage-Mönnig, N., Wołejko, L., Zak, D., and
Jurasinski, G.: Rewetting does not return drained fen peatlands to their old
selves, Nat. Commun., 12, 5693,
https://doi.org/10.1038/s41467-021-25619-y, 2021.
Kuliński, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull,
D.: The influence of dissolved organic matter on the acid–base system of
the Baltic Sea, J. Marine Syst., 132, 106–115,
https://doi.org/10.1016/j.jmarsys.2014.01.011, 2014.
Kuliński, K., Schneider, B., Szymczycha, B., and Stokowski, M.: Structure and functioning of the acid–base system in the Baltic Sea, Earth Syst. Dynam., 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, 2017.
Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P. O. J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H. E. M., Müller-Karulis, B., Naumann, M., Olesen, J. E., Savchuk, O., Schramm, A., Slomp, C. P., Sofiev, M., Sobek, A., Szymczycha, B., and Undeman, E.: Biogeochemical functioning of the Baltic Sea, Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, 2022.
Lamers, L. P., Smolders, A. J., and Roelofs, J. G.: The restoration of fens
in the Netherlands, Hydrobiologia, 478, 107–130,
https://doi.org/10.1023/A:1021022529475, 2002.
Lennartz, B. and Liu, H.: Hydraulic Functions of Peat Soils and Ecosystem
Service, Front. Environ. Sci., 7, 92, https://doi.org/10.3389/fenvs.2019.00092,
2019.
Leppelt, T., Dechow, R., Gebbert, S., Freibauer, A., Lohila, A., Augustin, J., Drösler, M., Fiedler, S., Glatzel, S., Höper, H., Järveoja, J., Lærke, P. E., Maljanen, M., Mander, Ü., Mäkiranta, P., Minkkinen, K., Ojanen, P., Regina, K., and Strömgren, M.: Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe, Biogeosciences, 11, 6595–6612, https://doi.org/10.5194/bg-11-6595-2014, 2014.
Liu, H. and Lennartz, B.: Short Term Effects of Salinization on Compound
Release from Drained and Restored Coastal Wetlands, Water, 11, 1549,
https://doi.org/10.3390/w11081549, 2019.
Liu, H., Zak, D., Rezanezhad, F., and Lennartz, B.: Soil degradation
determines release of nitrous oxide and dissolved organic carbon from
peatlands, Environ. Res. Lett., 14, 94009,
https://doi.org/10.1088/1748-9326/ab3947, 2019.
Livingston, G. P. and Hutchinson, G.: Enclosure-based measurement of trace
gas exchange: applications and sources of error, in: Biogenic trace gases: measuring emissions from soil and
water, edited by: Matson, P. A. and
Harris, R. C., Blackwell Science Ltd., Oxford, UK, 14–51, 1995.
Löffler, A., Schneider, B., Perttilä, M., and Rehder, G.: Air–sea
CO2 exchange in the Gulf of Bothnia, Baltic Sea, Cont. Shelf
Res., 37, 46–56, https://doi.org/10.1016/j.csr.2012.02.002, 2012.
Martikainen, P. J., Nykänen, H., Crill, P., and Silvola, J.: Effect of a
lowered water table on nitrous oxide fluxes from northern peatlands, Nature,
366, 51–53, https://doi.org/10.1038/366051a0, 1993.
Millero, F. J.: Carbonate constants for estuarine waters, Mar. Freshwater
Res., 61, 139–142, https://doi.org/10.1071/MF09254, 2010.
Minkkinen, K., Ojanen, P., Koskinen, M., and Penttilä, T.: Nitrous oxide
emissions of undrained, forestry-drained, and rewetted boreal peatlands,
Forest Ecol. Manag., 478, 118494,
https://doi.org/10.1016/j.foreco.2020.118494, 2020.
Moore, T. R., Roulet, N. T., and Waddington, J. M.: Uncertainty in
Predicting the Effect of Climatic Change on the Carbon Cycling of Canadian
Peatlands, Climatic Change, 40, 229–245,
https://doi.org/10.1023/A:1005408719297, 1998.
Moseman-Valtierra, S., Gonzalez, R., Kroeger, K. D., Tang, J., Chao, W. C.,
Crusius, J., Bratton, J., Green, A., and Shelton, J.: Short-term nitrogen
additions can shift a coastal wetland from a sink to a source of N2O,
Atmos. Environ., 45, 4390–4397,
https://doi.org/10.1016/j.atmosenv.2011.05.046, 2011.
Müller, J. D. and Rehder, G.: Metrology of pH Measurements in Brackish
Waters – Part 2: Experimental Characterization of Purified meta-Cresol
Purple for Spectrophotometric pHT Measurements, Front. Mar. Sci., 5, 177,
https://doi.org/10.3389/fmars.2018.00177, 2018.
Müller, J. D., Schneider, B., and Rehder, G.: Long-term alkalinity
trends in the Baltic Sea and their implications for CO2-induced
acidification, Limnol. Oceangr., 61, 1984–2002,
https://doi.org/10.1002/lno.10349, 2016.
Müller, J. D., Bastkowski, F., Sander, B., Seitz, S., Turner, D. R.,
Dickson, A. G., and Rehder, G.: Metrology for pH Measurements in Brackish
Waters – Part 1: Extending Electrochemical pHT Measurements of TRIS Buffers
to Salinities 5–20, Front. Mar. Sci., 5, 176,
https://doi.org/10.3389/fmars.2018.00176, 2018.
Neubauer, S. C., Franklin, R. B., and Berrier, D. J.: Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon, Biogeosciences, 10, 8171–8183, https://doi.org/10.5194/bg-10-8171-2013, 2013.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S.:
Greenhouse gas emissions from soils – A review, Geochemistry, 76, 327–352,
https://doi.org/10.1016/j.chemer.2016.04.002, 2016.
Oremland, R. S. (Ed.): The biogeochemistry of methanogenic bacteria, in: The
biology of microorganisms, Wiley, New York, http://pubs.er.usgs.gov/publication/70198767 (last access: 17 February 2022), 1988.
Parish, F.: Assessment on peatlands, biodiversity and climate change, Main
report, Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen, ISBN 978-983-43751-0-2, 2008.
Pedersen, T. L.: patchwork: The Composer of Plots, R package version 1.1.1, https://CRAN.R-project.org/package=patchwork (last access: 27 October 2021), 2020.
Petersen, S. O., Hoffmann, C. C., Schäfer, C.-M., Blicher-Mathiesen, G., Elsgaard, L., Kristensen, K., Larsen, S. E., Torp, S. B., and Greve, M. H.: Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture, Biogeosciences, 9, 403–422, https://doi.org/10.5194/bg-9-403-2012, 2012.
Pönisch, D. L.: Methodenentwicklung und -anwendung zur Analytik von
Methan und Lachgas in Seewasser, Leibniz Institute for Baltic Sea Research
Warnemünde (IOW), Master thesis, 2018.
Pönisch, D. L. and Breznikar, A.: Supplementary data of the discrete water sampling used in the publication “Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea”, IOW [data set], https://doi.org/10.12754/data-2022-0003, 2022.
Pönisch, D. L. and Gutekunst, C. N.: Supplementary data for greenhouse gas emissions used in the publication “Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea”, IOW [data set], https://doi.org/10.12754/data-2022-0004, 2022.
Rassamee, V., Sattayatewa, C., Pagilla, K., and Chandran, K.: Effect of oxic
and anoxic conditions on nitrous oxide emissions from nitrification and
denitrification processes, Biotechnol. Bioeng., 108,
2036–2045, https://doi.org/10.1002/bit.23147, 2011.
R Core Team : R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 10 January 2023), 2021.
Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107,
486–513, https://doi.org/10.1021/cr050362v, 2007.
Regina, K., Nykänen, H., Silvola, J., and Martikainen, P. J.: Fluxes of
nitrous oxide from boreal peatlands as affected by peatland type, water
table level and nitrification capacity, Biogeochemistry, 35, 401–418,
https://doi.org/10.1007/BF02183033, 1996.
Regina, K., Silvola, J., and Martikainen, P. J.: Short-term effects of
changing water table on N2O fluxes from peat monoliths from natural and
drained boreal peatlands, Glob. Change Biol., 5, 183–189,
https://doi.org/10.1046/j.1365-2486.1999.00217.x, 1999.
Richert, M., Dietrich, O., Koppisch, D., and Roth, S.: The Influence of
Rewetting on Vegetation Development and Decomposition in a Degraded Fen,
Restor Ecology, 8, 186–195,
https://doi.org/10.1046/j.1526-100x.2000.80026.x, 2000.
Roughan, B. L., Kellman, L., Smith, E., and Chmura, G. L.: Nitrous oxide
emissions could reduce the blue carbon value of marshes on eutrophic
estuaries, Environ. Res. Lett., 13, 44034,
https://doi.org/10.1088/1748-9326/aab63c, 2018.
Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B., Sloth, N. P.,
and Rysgaard, S.: Effects of Salinity on NH Adsorption Capacity,
Nitrification, and Denitrification in Danish Estuarine Sediments, Estuaries,
22, 21–30, https://doi.org/10.2307/1352923, 1999.
Sabbaghzadeh, B., Arévalo-Martínez, D. L., Glockzin, M., Otto, S.,
and Rehder, G.: Meridional and Cross-Shelf Variability of N2O and
CH4 in the Eastern-South Atlantic, J. Geophys. Res.-Oceans, 126, e2020JC016878,
https://doi.org/10.1029/2020JC016878, 2021.
Schneider, B. and Müller, J. D. (Eds.): Biogeochemical Transformations in the
Baltic Sea, Springer International Publishing AG, Springer Oceanography, https://doi.org/10.1007/978-3-319-61699-5, 2018.
Schönheit, P., Kristjansson, J. K., and Thauer, R. K.: Kinetic mechanism
for the ability of sulfate reducers to out-compete methanogens for acetate,
Arch. Microbiol., 132, 285–288, 1982.
Segarra, K. E., Comerford, C., Slaughter, J., and Joye, S. B.: Impact of
electron acceptor availability on the anaerobic oxidation of methane in
coastal freshwater and brackish wetland sediments, Geochim.
Cosmochim. Ac., 115, 15–30, https://doi.org/10.1016/j.gca.2013.03.029,
2013.
Segers, R. and Kengen, S.: Methane production as a function of anaerobic
carbon mineralization: A process model, Soil Biol. Biochem., 30,
1107–1117, https://doi.org/10.1016/S0038-0717(97)00198-3, 1998.
Seifert, T., Tauber, F., and Kayser, B.: A high resolution spherical grid
topography of the Baltic Sea, 2nd Edn., Baltic Sea Science Congress, 25–29 November 2001,
Stockholm, Poster #147, 2001.
Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., van der
Velde, G., and Roelofs, J. G. M.: Internal eutrophication: How it works and
what to do about it – a review, Chem. Ecol., 22, 93–111,
https://doi.org/10.1080/02757540600579730, 2006.
Steinle, L., Maltby, J., Treude, T., Kock, A., Bange, H. W., Engbersen, N., Zopfi, J., Lehmann, M. F., and Niemann, H.: Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters, Biogeosciences, 14, 1631–1645, https://doi.org/10.5194/bg-14-1631-2017, 2017.
Steinmuller, H. E. and Chambers, L. G.: Can Saltwater Intrusion Accelerate
Nutrient Export from Freshwater Wetland Soils? An Experimental Approach,
Soil Sci. Soc. Am. j., 82, 283–292,
https://doi.org/10.2136/sssaj2017.05.0162, 2018.
Strack, M. (Ed.): Peatlands and climate change, Internat. Peat Soc., ISBN 978-952-99401-1-0, 2008.
Succow, M. and Joosten, H. (Eds.): Landschaftsökologische Moorkunde, E.
Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), ISBN 978-3-510-65198-6, 2001.
Thomas, H. and Schneider, B.: The seasonal cycle of carbon dioxide in Baltic
Sea surface waters, J. Marine Syst., 22, 53–67,
https://doi.org/10.1016/S0924-7963(99)00030-5, 1999.
Treude, T., Krüger, M., Boetius, A., and Jørgensen, B. B.:
Environmental control on anaerobic oxidation of methane in the gassy
sediments of Eckernförde Bay (German Baltic), Limnol. Oceangr., 50,
1771–1786, https://doi.org/10.4319/lo.2005.50.6.1771, 2005.
van de Riet, B. P., Hefting, M. M., and Verhoeven, J. T. A.: Rewetting
Drained Peat Meadows: Risks and Benefits in Terms of Nutrient Release and
Greenhouse Gas Exchange, Water Air Soil Pollut., 224, 1440, https://doi.org/10.1007/s11270-013-1440-5, 2013.
Voss, M., Deutsch, B., Liskow, I., Pastuszak, M., Schulte, U., and Sitek,
S.: Nitrogen retention in the Szczecin Lagoon, Baltic Sea, Isot.
Environ. Healt. S., 46, 355–369,
https://doi.org/10.1080/10256016.2010.503895, 2010.
Wang, M., Liu, H., and Lennartz, B.: Microtopography effects on carbon
accumulation and nutrient release from rewetted coastal wetlands, AGU Fall Meeting 2021, New Orleans, LA, 13–17 December 2021, id. B55D-1237, 2021.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Wasmund, N., Topp, I., and Schories, D.: Optimising the storage and extraction of chlorophyll samples, Oceanologia, 48, 125–144, 2006.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–359,
https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse, Journal of Open
Source Software, 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and
Dickson, A. G.: Total alkalinity: The explicit conservative expression and
its application to biogeochemical processes, Mar. Chem., 106,
287–300, https://doi.org/10.1016/j.marchem.2007.01.006, 2007.
Zak, D. and Gelbrecht, J.: The mobilisation of phosphorus, organic carbon
and ammonium in the initial stage of fen rewetting (a case study from NE
Germany), Biogeochemistry, 85, 141–151,
https://doi.org/10.1007/s10533-007-9122-2, 2007.
Zak, D., Meyer, N., Cabezas, A., Gelbrecht, J., Mauersberger, R., Tiemeyer,
B., Wagner, C., and McInnes, R.: Topsoil removal to minimize internal
eutrophication in rewetted peatlands and to protect downstream systems
against phosphorus pollution: A case study from NE Germany, Ecol.
Eng., 103, 488–496, https://doi.org/10.1016/j.ecoleng.2015.12.030,
2017.
Zielinski, T., Sagan, I., and Surosz, W. (Eds.): Interdisciplinary Approaches
for Sustainable Development Goals, Springer International Publishing,
https://doi.org/10.1007/978-3-319-71788-3, 2018.
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however,...
Altmetrics
Final-revised paper
Preprint