Articles | Volume 20, issue 15
https://doi.org/10.5194/bg-20-3353-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3353-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical and stoichiometric controls on stream respiration in a headwater stream
Jancoba Dorley
Gerald May Department of Civil, Construction & Environmental Engineering, University of New
Mexico, Albuquerque, NM, USA
Joel Singley
Environmental Studies Program, University of Colorado, Boulder, CO, USA
Biology, Marine Biology, and Environmental Science, Roger Williams
University, Bristol, RI, USA
Tim Covino
Ecosystem Science and Sustainability, Colorado State University, Fort
Collins, CO, USA
Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT, USA
Kamini Singha
Geology and Geological Engineering, Hydrologic Science and Engineering
Program, Colorado School of Mines, Golden, CO, USA
Michael Gooseff
Civil, Environmental and Architectural Engineering, University of
Colorado, Boulder, CO, USA
Institute of Arctic and Alpine Research, University of Colorado,
Boulder, CO, USA
David Van Horn
Department of Biology, University of New Mexico, Albuquerque, NM, USA
Gerald May Department of Civil, Construction & Environmental Engineering, University of New
Mexico, Albuquerque, NM, USA
Related authors
No articles found.
Zhechen Zhang, Huade Guan, Erik Veneklaas, Kamini Singha, and Okke Batelaan
Hydrol. Earth Syst. Sci., 29, 3975–3992, https://doi.org/10.5194/hess-29-3975-2025, https://doi.org/10.5194/hess-29-3975-2025, 2025
Short summary
Short summary
We developed a new method using sap-flow and water-potential data to estimate key plant water-use properties without destructive sampling. Testing on drooping sheoak showed that our approach captures seasonal changes in plant water transport and that these hydraulic properties have seasonal variation. This method could improve models predicting how vegetation responds to drought and climate change.
Cited articles
Baker, M. A., Dahm, C. N., and Valett, H. M.: Acetate retention and metabolism in the hyporheic zone of a mountain stream, Limnol. Oceanogr., 44, 1530–1539, https://doi.org/10.4319/lo.1999.44.6.1530, 1999.
Barnhart, T. B., Vukomanovic, J., Bourgeron, P., and Molotch, N. P.: Future
land cover and climate may drive decreases in snow wind-scour and
transpiration, increasing streamflow at a Colorado, USA headwater catchment,
Hydrol. Process., 35, e14416, https://doi.org/10.1002/hyp.14416, 2021.
Battin, T. J., Kaplan, L. A., Newbold, J. D., and Hansen, C. M. E.:
Contributions of microbial biofilms to ecosystem processes in stream
mesocosms, Nature, 426, 439–442, https://doi.org/10.1038/nature02152, 2003.
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., and Packmann,
A. I.: The ecology and biogeochemistry of stream biofilms, Nat. Rev.
Microbiol., 14, 251–263, https://doi.org/10.1038/nrmicro.2016.15, 2016.
Blair, R. C., Higgins, J. J., Journal, S., and Winter, N.: A Comparison of
the Power of Wilcoxon's Rank-Sum Statistic to That of Student's t
Statistic under Various Nonnormal Distributions, American
Educational Research Association and American Statistical Association Stable,
J. Educat. Stat., 5, 309–35, https://doi.org/10.2307/1164905, 1980.
Blume, E., Bischoff, M., Reichert, J. M., Moorman, T., Konopka, A., and
Turco, R. F.: Surface and subsurface microbial biomass, community structure
and metabolic activity as a function of soil depth and season, Appl. Soil
Ecol., 20, 171–181, https://doi.org/10.1016/S0929-1393(02)00025-2, 2002.
Bowley, A. L.: The Standard Deviation of the Correlation Coefficient, J. Am. Stat. Assoc.,
23, 31–34, 2008.
Bukaveckas, P. A.: Effects of Channel Restoration on Water Velocity,
Transient Storage, and Nutrient Uptake in a Channelized Stream, Environ.
Sci. Technol., 41, 1570–1576, https://doi.org/10.1021/es061618x, 2007.
Cardenas, M. B., Wilson, J. L., and Zlotnik, V. A.: Impact of heterogeneity,
bed forms, and stream curvature on subchannel hyporheic exchange, Water
Resour. Res., 40, 1–14, https://doi.org/10.1029/2004WR003008, 2004.
Cargill, S. K., Segura, C., Villamizar, S. R., and Warren, D. R.: The
influence of lithology on stream metabolism in headwater systems,
Ecohydrology, 14, e2284, https://doi.org/10.1002/eco.2284, 2021.
Covino, T. P. and McGlynn, B. L.: Stream gains and losses across a
mountain-to-valley transition: Impacts on watershed hydrology and stream
water chemistry, Water Resour. Res., 43, 1–14,
https://doi.org/10.1029/2006WR005544, 2007.
Covino, T. P., McGlynn, B., and Baker, M.: Separating physical and
biological nutrient retention and quantifying uptake kinetics from ambient
to saturation in successive mountain stream reaches, J. Geophys. Res.-Biogeosc., 115, 1–17, https://doi.org/10.1029/2009JG001263, 2010a.
Covino, T. P., Mcglynn, B. L., and Mcnamara, R. A.: Tracer Additions for
Spiraling Curve Characterization (TASCC): Quantifying stream nutrient
uptake kinetics from ambient to saturation, Limnol. Oceanogr. Methods, 8,
484–498, https://doi.org/10.4319/lom.2010.8.484, 2010b.
Covino, T. P., McGlynn, B., and Mallard, J.: Stream-groundwater exchange and
hydrologic turnover at the network scale, Water Resour. Res., 47, 1–11,
https://doi.org/10.1029/2011WR010942, 2011.
Dallan, E., Regier, P., Marion, A., and González-Pinzón, R.: Does
the Mass Balance of the Reactive Tracers Resazurin and Resorufin Close at
the Microbial Scale?, J. Geophys. Res.-Biogeosc., 125, 1–10,
https://doi.org/10.1029/2019JG005435, 2020.
Dodds, W. K., Martí, E., Tank, J. L., Pontius, J., Hamilton, S. K., Grimm, N. B., Bowden, W. B., McDowell, W. H., Peterson, B. J., Valett, H. M., Webster, J. R., and Gregory, S.: Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams, Oecologia, 140, 458–467, https://doi.org/10.1007/s00442-004-1599-y, 2004.
Drummond, J. D., Covino, T. P., Aubeneau, A. F., Leong, D., Patil, S., Schumer, R., and Packman, A. I.: Effects of solute breakthrough curve tail truncation on residence time estimates: A synthesis of solute tracer injection studies, J. Geophys. Res., 117, G00N08, https://doi.org/10.1029/2012JG002019, 2012.
Emanuelson, K., Covino, T. P., Ward, A. S., Dorley, J., and Gooseff, M. N.:
Conservative solute transport processes and associated transient storage
mechanisms: Comparing streams with contrasting channel morphologies, land
use and land cover, Hydrol. Process., 36, e14564, https://doi.org/10.1002/hyp.14564, 2022.
Ensign, S. H. and Doyle, M. W.: In-channel transient storage and associated
nutrient retention: Evidence from experimental manipulations, Limnol.
Oceanogr., 50, 1740–1751, https://doi.org/10.4319/lo.2005.50.6.1740, 2005.
Ensign, S. H. and Doyle, M. W.: Nutrient spiraling in streams and river
networks, J. Geophys. Res., 111, G04009,
https://doi.org/10.1029/2005jg000114, 2006.
Fields, J. F. and Dethier, D. P.: From on high: Geochemistry of alpine
springs, Niwot Ridge, Colorado Front Range, USA, Hydrol. Process., 33,
1756–1774, https://doi.org/10.1002/hyp.13436, 2019.
Francoeur, S. N. and Biggs, B. J. F.: Short-term Effects of Elevated
Velocity and Sediment Abrasion on Benthic Algal Communities, Hydrobiologia,
561, 59–69, https://doi.org/10.1007/s10750-005-1604-4, 2006.
Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using
Multiple Sequences, Stat. Sci., 7, 457–472, https://doi.org/10.1214/ss/1177011136,
1992.
Gomez, J. D., Wilson, J. L., and Cardenas, M. B.: Residence time
distributions in sinuosity-driven hyporheic zones and their biogeochemical
effects, Water Resour. Res., 48, 1–17,
https://doi.org/10.1029/2012WR012180, 2012.
Gonzalez-Pinzon, R.: Resazurin tracer data from experiments in Colorado (2018) and Iowa (2019), HydroShare [data set], http://www.hydroshare.org/resource/50ae3c59bebe4cb383e31408a0c10012, 2022.
González-Pinzón, R. and Haggerty, R.: An efficient method to
estimate processing rates in streams, Water Resour. Res., 49, 6096–6099,
https://doi.org/10.1002/wrcr.20446, 2013.
González-Pinzón, R., Haggerty, R., and Myrold, D. D.: Measuring
aerobic respiration in stream ecosystems using the resazurin-resorufin
system, J. Geophys. Res.-Biogeosc., 117, 1–10,
https://doi.org/10.1029/2012JG001965, 2012.
González-Pinzón, R., Haggerty, R., and Dentz, M.: Scaling and
predicting solute transport processes in streams, Water Resour. Res., 49,
4071–4088, https://doi.org/10.1002/wrcr.20280, 2013.
González-Pinzón, R., Haggerty, R., and Argerich, A.: Quantifying
spatial differences in metabolism in headwater streams, Freshw. Sci., 33,
798–811, https://doi.org/10.1086/677555, 2014.
González-Pinzón, R., Mortensen, J., and Van Horn, D.: Comment on “Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams” by Hall et al. (2013), Biogeosciences, 12, 5365–5369, https://doi.org/10.5194/bg-12-5365-2015, 2015.
González-Pinzón, R., Peipoch, M., Haggerty, R., Martí, E., and
Fleckenstein, J. H.: Nighttime and daytime respiration in a headwater
stream, Ecohydrology, 9, 93–100, https://doi.org/10.1002/eco.1615, 2016.
González-Pinzón, R., Dorley, J., Singley, J., Singha, K., Gooseff,
M., and Covino, T.: TIPT: The Tracer Injection Planning Tool, Environ.
Model. Softw., 156, 105504, https://doi.org/10.1016/j.envsoft.2022.105504,
2022.
Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Duff, J. H.:
Denitrification and hydrologic transient storage in a glacial meltwater
stream, McMurdo Dry Valleys, Antarctica, Limnol. Oceanogr., 49, 1884–1895,
https://doi.org/10.4319/lo.2004.49.5.1884, 2004.
Gooseff, M. N., Bencala, K. E., Scott, D. T., Runkel, R. L., and McKnight,
D. M.: Sensitivity analysis of conservative and reactive stream transient
storage models applied to field data from multiple-reach experiments, Adv.
Water Resour., 28, 479–492,
https://doi.org/10.1016/j.advwatres.2004.11.012, 2005.
Gootman, K. S., Pinzón, R. G., Knapp, J. L. A., Garayburu-Caruso, V.,
and Cable, J.: Spatiotemporal Variability in Transport and Reactive
Processes Across a First – to Fifth – Order Fluvial Network, Water Resour.
Res., 56, e2019WR026303, https://doi.org/10.1029/2019WR026303, 2020.
Hall, R. J. O., Bernhardt, E. S., and Likens, G. E.: Relating nutrient
uptake with transient storage in forested mountain streams, Limnol.
Oceanogr., 47, 255–265, https://doi.org/10.4319/lo.2002.47.1.0255, 2002.
Hall, R. O., Tank, J. L., Sobota, D. J., Mulholland, P. J., O'Brien, J. M.,
Dodds, W. K., Webster, J. R., Valett, H. M., Poole, G. C., Peterson, B. J.,
Meyer, J. L., McDowell, W. H., Johnson, S. L., Hamilton, S. K., Grimm, N.
B., Gregory, S. V., Dahm, C. N., Cooper, L. W., Ashkenas, L. R., Thomas, S.
M., Sheibley, R. W., Potter, J. D., Niederlehner, B. R., Johnson, L. T.,
Helton, A. M., Crenshaw, C. M., Burgin, A. J., Bernot, M. J., Beaulieu, J.
J., and Arangob, C. P.: Nitrate removal in stream ecosystems measured by 15N
addition experiments: Total uptake, Limnol. Oceanogr., 54, 653–665,
https://doi.org/10.4319/lo.2009.54.3.0653, 2009.
Harvey, J. W., Saiers, J. E., and Newlin, J. T.: Solute transport and
storage mechanisms in wetlands of the Everglades, south Florida, Water
Resour. Res., 41, W05009, https://doi.org/10.1029/2004WR003507, 2005.
Harvey, J. W., Böhlke, J. K., Voytek, M. A., Scott, D., and Tobias, C.
R.: Hyporheic zone denitrification: Controls on effective reaction depth and
contribution to whole-stream mass balance, Water Resour. Res., 49,
6298–6316, https://doi.org/10.1002/wrcr.20492, 2013.
Hill, B. H., Elonen, C. M., Seifert, L. R., May, A. A., and Tarquinio, E.:
Microbial enzyme stoichiometry and nutrient limitation in US streams and
rivers, Ecol. Indic., 18, 540–551,
https://doi.org/10.1016/j.ecolind.2012.01.007, 2012.
Jackson, T. R., Haggerty, R., Apte, S. V., Coleman, A., and Drost, K. J.:
Defining and measuring the mean residence time of lateral surface transient
storage zones in small streams, Water Resour. Res., 48, W10501,
https://doi.org/10.1029/2012WR012096, 2012.
Jackson, T. R., Haggerty, R., Apte, S. V., and O'Connor, B. L.: A mean
residence time relationship for lateral cavities in gravel-bed rivers and
streams: Incorporating streambed roughness and cavity shape, Water Resour.
Res., 49, 3642–3650, https://doi.org/10.1002/wrcr.20272, 2013.
Jackson, T. R., Apte, S. V., Haggerty, R., and Budwig, R.: Flow structure
and mean residence times of lateral cavities in open channel flows:
influence of bed roughness and shape, Environ. Fluid Mech., 15, 1069–1100,
https://doi.org/10.1007/s10652-015-9407-2, 2015.
Kasahara, T. and Wondzell, S. M.: Geomorphic controls on hyporheic exchange
flow in mountain streams, Water Resour. Res., 39, 1005,
https://doi.org/10.1029/2002wr001386, 2003.
Katz, S. B., Segura, C., and Warren, D. R.: The influence of channel bed
disturbance on benthic Chlorophyll a: A high resolution perspective,
Geomorphology, 305, 141–153,
https://doi.org/10.1016/j.geomorph.2017.11.010, 2018.
Kelleher, C., Wagener, T., McGlynn, B., Ward, A. S., Gooseff, M. N., and
Payn, R. A.: Identifiability of transient storage model parameters along a
mountain stream, Water Resour. Res., 49, 5290–5306,
https://doi.org/10.1002/wrcr.20413, 2013.
Kiel, B. A. and Bayani Cardenas, M.: Lateral hyporheic exchange throughout
the Mississippi River network, Nat. Geosci., 7, 413–417,
https://doi.org/10.1038/ngeo2157, 2014.
Knapp, J. L. A. and Kelleher, C.: A Perspective on the Future of Transient
Storage Modeling: Let's Stop Chasing Our Tails, Water Resour. Res., 56,
e2019WR026257, https://doi.org/10.1029/2019WR026257, 2020.
Knapp, J. L. A., González-Pinzón, R., Drummond, J. D., Larsen, L.
G., Cirpka, O. A., and Harvey, J. W.: Tracer-based characterization of
hyporheic exchange and benthic biolayers in streams, Water Resour. Res., 53,
1575–1594, https://doi.org/10.1002/2016WR019393, 2017.
Knapp, J. L. A., González-Pinzón, R., and Haggerty, R.: The
Resazurin-Resorufin System: Insights From a Decade of “Smart” Tracer
Development for Hydrologic Applications, Water Resour. Res., 54, 6877–6889,
https://doi.org/10.1029/2018WR023103, 2018.
Krause, S., Lewandowski, J., Grimm, N. B., Hannah, D. M., Pinay, G.,
McDonald, K., Martí, E., Argerich, A., Pfister, L., Klaus, J., Battin,
T., Larned, S. T., Schelker, J., Fleckenstein, J., Schmidt, C., Rivett, M.
O., Watts, G., Sabater, F., Sorolla, A., and Turk, V.: Ecohydrological
interfaces as hot spots of ecosystem processes: ECOHYDROLOGICAL INTERFACES
AS HOT SPOTS, Water Resour. Res., 53, 6359–6376,
https://doi.org/10.1002/2016WR019516, 2017.
Lane, C. S., Lyon, D. R., and Ziegler, S. E.: Cycling of two carbon
substrates of contrasting lability by heterotrophic biofilms across a
nutrient gradient of headwater streams, Aquat. Sci., 75, 235–250,
https://doi.org/10.1007/s00027-012-0269-0, 2012.
Lautz, L. K. and Siegel, D. I.: The effect of transient storage on nitrate
uptake lengths in streams: an inter-site comparison, Hydrol. Process., 21,
3533–3548, https://doi.org/10.1002/hyp.6569, 2007.
Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley,
S. L., Knapp, J. L. A., van Meerveld, I., Rinaldo, A., Seibert, J., Wen, H.,
and Kirchner, J. W.: Toward catchment hydro-biogeochemical theories, Wiley
Interdiscip. Rev. Water, 8, 1–31, https://doi.org/10.1002/wat2.1495, 2021.
Li, Z., Zeng, Z., Tian, D., Wang, J., Fu, Z., Wang, B., Tang, Z., Chen, W.,
Chen, H. Y. H., Wang, C., Yi, C., and Niu, S.: The stoichiometry of soil
microbial biomass determines metabolic quotient of nitrogen mineralization,
Environ. Res. Lett., 15, 034005, https://doi.org/10.1088/1748-9326/ab6a26,
2020.
Liu, S., Maavara, T., Brinkerhoff, C. B., and Raymond, P. A.: Global
Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number
Analysis, Global Biogeochem. Cy., 36, e2021GB007278,
https://doi.org/10.1029/2021GB007278, 2022.
Logue, J. B., Stedmon, C. A., Kellerman, A. M., Nielsen, N. J., Andersson,
A. F., Laudon, H., Lindström, E. S., and Kritzberg, E. S.: Experimental
insights into the importance of aquatic bacterial community composition to
the degradation of dissolved organic matter, ISME J., 10, 533–545,
https://doi.org/10.1038/ismej.2015.131, 2016.
Martí, E., Grimm, N. B., and Fisher, S. G.: Pre- and Post-Flood
Retention Efficiency of Nitrogen in a Sonoran Desert Stream, J. North Am.
Benthol. Soc., 16, 805–819, https://doi.org/10.2307/1468173, 1997.
Mulholland, P. J. and Hill, W. R.: Seasonal patterns in streamwater nutrient
and dissolved organic carbon concentrations: Separating catchment flow path
and in-stream effects, Water Resour. Res., 33, 1297–1306,
https://doi.org/10.1029/97wr00490, 1997.
Natural Resources Conservation Service: U.S. Department of Agriculture, 2006, Natural Resources Conservation Services, Web soil survey, http://websoilsurvey.nrcs.usda.gov/app/, last access: 1 July 2022.
Navel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L., and
Marmonier, P.: Water-Sediment Exchanges Control Microbial Processes
Associated with Leaf Litter Degradation in the Hyporheic Zone: A Microcosm
Study, Microb. Ecol., 61, 968–979,
https://doi.org/10.1007/s00248-010-9774-7, 2011.
Niyogi, D. K., Simon, K. S., and Townsend, C. R.: Land use and stream
ecosystem functioning: nutrient uptake in streams that contrast in
agricultural development, Arch. Für Hydrobiol., 160, 471–486,
https://doi.org/10.1127/0003-9136/2004/0160-0471, 2004.
Ocampo, C. J., Oldham, C. E., and Sivapalan, M.: Nitrate attenuation in agricultural catchments: Shifting balances between transport and reaction, Water Resour. Res., 42, W01408, https://doi.org/10.1029/2004WR003773, 2006.
Oldham, C. E., Farrow, D. E., and Peiffer, S.: A generalized Damköhler number for classifying material processing in hydrological systems, Hydrol. Earth Syst. Sci., 17, 1133–1148, https://doi.org/10.5194/hess-17-1133-2013, 2013.
Patil, S., Covino, T. P., Packman, A. I., McGlynn, B. L., Drummond, J. D., Payn, R. A., and Schumer, R.: Intrastream variability in solute transport: Hydrologic and geomorphic controls on solute retention, J. Geophys. Res.-Earth, 118, 413–422, https://doi.org/10.1029/2012JF002455, 2013.
Perkins, D. M., Yvon-Durocher, G., Demars, B. O. L., Reiss, J., Pichler, D.
E., Friberg, N., Trimmer, M., and Woodward, G.: Consistent temperature
dependence of respiration across ecosystems contrasting in thermal history,
Glob. Change Biol., 18, 1300–1311,
https://doi.org/10.1111/j.1365-2486.2011.02597.x, 2012.
Pinay, G., Peiffer, S., De Dreuzy, J.-R., Krause, S., Hannah, D. M.,
Fleckenstein, J. H., Sebilo, M., Bishop, K., and Hubert-Moy, L.: Upscaling
Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders' Drainage
Basins, Ecosystems, 18, 1101–1120,
https://doi.org/10.1007/s10021-015-9878-5, 2015.
Redfield, A. C.: On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton, James Johnstone Memorial Volume, University Press of Liverpool, 176–192, 1934.
Ries III, K. G., Newson, J. K., Smith, M. J., Guthrie, J. D., Steeves, P.
A., Haluska, T., Kolb, K. R., Thompson, R. F., Santoro, R. D., and Vraga, H.
W.: StreamStats, version 4, Fact Sheet, Reston, VA,
https://doi.org/10.3133/fs20173046, 2017.
Ryan, R. J., Packman, A. I., and Kilham, S. S.: Relating phosphorus uptake
to changes in transient storage and streambed sediment characteristics in
headwater tributaries of Valley Creek, an urbanizing watershed, J. Hydrol.,
336, 444–457, https://doi.org/10.1016/j.jhydrol.2007.01.021, 2007.
Schmid, B. H., Innocenti, I., and Sanfilippo, U.: Characterizing solute
transport with transient storage across a range of flow rates: The evidence
of repeated tracer experiments in Austrian and Italian streams, Adv. Water
Resour., 33, 1340–1346, https://doi.org/10.1016/j.advwatres.2010.06.001,
2010.
Sheibley, R. W., Duff, J. H., and Tesoriero, A. J.: Low Transient Storage
and Uptake Efficiencies in Seven Agricultural Streams: Implications for
Nutrient Demand, J. Environ. Qual., 43, 1980–1990,
https://doi.org/10.2134/jeq2014.01.0034, 2014.
Smith, R. A., Alexander, R. B., and Schwarz, G. E.: Natural background
concentrations of nutrients in streams and rivers of the conterminous United
States, Environ. Sci. Technol., 37, 3039–3047,
https://doi.org/10.1021/es020663b, 2003.
Thomas, S. A., Maurice Valett, H., Webster, J. R., and Mulholland, P. J.: A
regression approach to estimating reactive solute uptake in advective and
transient storage zones of stream ecosystems, Adv. Water Resour., 26,
965–976, https://doi.org/10.1016/S0309-1708(03)00083-6, 2003.
Tromboni, F., Thomas, S. A., Gücker, B., Neres-Lima, V.,
Lourenço-Amorim, C., Moulton, T. P., Silva-Junior, E. F.,
Feijó-Lima, R., Boëchat, I. G., and Zandonà, E.: Nutrient
Limitation and the Stoichiometry of Nutrient Uptake in a Tropical Rain
Forest Stream, J. Geophys. Res.-Biogeosc., 123, 2154–2167,
https://doi.org/10.1029/2018JG004538, 2018.
Valett, H. M., Morrice, J. A., Dahm, C. N., and Campana, M. E.: Parent
lithology, surface-groundwater exchange, and nitrate retention in headwater
streams, Limnol. Oceanogr., 41, 333–345,
https://doi.org/10.4319/lo.1996.41.2.0333, 1996.
Vrugt, J. A., Ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman,
J. M., and Higdon, D.: Accelerating Markov Chain Monte Carlo Simulation by
Differential Evolution with Self-Adaptive Randomized Subspace Sampling, Int.
J. Nonlinear Sci. Numer. Simul., 10, 273–290,
https://doi.org/10.1515/IJNSNS.2009.10.3.273, 2009.
Wagner, K., Bengtsson, M. M., Findlay, R. H., Battin, T. J., and Ulseth, A.
J.: High light intensity mediates a shift from allochthonous to
autochthonous carbon use in phototrophic stream biofilms, J. Geophys. Res.-Biogeosc., 122, 1806–1820, https://doi.org/10.1002/2016JG003727, 2017.
Ward, A. S. and Packman, A. I.: Advancing our predictive understanding of
river corridor exchange, Wiley Interdiscip. Rev. Water, 6, e1327,
https://doi.org/10.1002/wat2.1327, 2019.
Ward, A. S., Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E.,
Kelleher, C. A., Wondzell, S. M., and Wagener, T.: Variations in surface
water-ground water interactions along a headwater mountain stream:
Comparisons between transient storage and water balance analyses, Water
Resour. Res., 49, 3359–3374, https://doi.org/10.1002/wrcr.20148, 2013.
Webster, J. R., Mulholland, P. J., Tank, J. L., Valett, H. M., Dodds, W. K.,
Peterson, B. J., Bowden, W. B., Dahm, C. N., Findlay, S., Gregory, S. V.,
Grimm, N. B., Hamilton, S. K., Johnson, S. L., Marti, E., Mcdowell, W. H.,
Meyer, J. L., Morrall, D. D., Thomas, S. A., and Wollheim, W. M.: Factors
affecting ammonium uptake in streams – an inter-biome perspective, Freshw.
Biol., 48, 1329–1352, https://doi.org/10.1046/j.1365-2427.2003.01094.x,
2003.
Wen, H. and Li, L.: An upscaled rate law for mineral dissolution in
heterogeneous media: The role of time and length scales, Geochim. Cosmochim.
Acta, 235, 1–20, https://doi.org/10.1016/j.gca.2018.04.024, 2018.
Wilhelm, L., Besemer, K., Fragner, L., Peter, H., Weckwerth, W., and Battin,
T. J.: Altitudinal patterns of diversity and functional traits of
metabolically active microorganisms in stream biofilms, ISME J., 9,
2454–2464, https://doi.org/10.1038/ismej.2015.56, 2015.
Wondzell, S. M.: Effect of morphology and discharge on hyporheic exchange
flows in two small streams in the Cascade Mountains of Oregon, USA, Hydrol.
Process., 20, 267–287, https://doi.org/10.1002/hyp.5902, 2006.
Zarnetske, J. P., Gooseff, M. N., Brosten, T. R., Bradford, J. H., McNamara,
J. P., and Bowden, W. B.: Transient storage as a function of geomorphology,
discharge, and permafrost active layer conditions in Arctic tundra streams,
Water Resour. Res., 43, 7410, https://doi.org/10.1029/2005WR004816, 2007.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., and
González-Pinzón, R.: Coupled transport and reaction kinetics control
the nitrate source-sink function of hyporheic zones, Water Resour. Res., 48, W11508,
https://doi.org/10.1029/2012wr011894, 2012.
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P...
Altmetrics
Final-revised paper
Preprint