Articles | Volume 20, issue 15
Research article
11 Aug 2023
Research article |  | 11 Aug 2023

Physical and stoichiometric controls on stream respiration in a headwater stream

Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón

Related authors

The seasonal evolution of albedo across glaciers and the surrounding landscape of Taylor Valley, Antarctica
Anna Bergstrom, Michael N. Gooseff, Madeline Myers, Peter T. Doran, and Julian M. Cross
The Cryosphere, 14, 769–788,,, 2020
Short summary
Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300,,, 2018
Short summary
High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions
Andrew G. Fountain, Juan C. Fernandez-Diaz, Maciej Obryk, Joseph Levy, Michael Gooseff, David J. Van Horn, Paul Morin, and Ramesh Shrestha
Earth Syst. Sci. Data, 9, 435–443,,, 2017
Short summary
Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica
Michael N. Gooseff, David Van Horn, Zachary Sudman, Diane M. McKnight, Kathleene A. Welch, and William B. Lyons
Biogeosciences, 13, 1723–1732,,, 2016
Short summary
Comment on "Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams" by Hall et al. (2013)
R. González-Pinzón, J. Mortensen, and D. Van Horn
Biogeosciences, 12, 5365–5369,,, 2015
Short summary

Related subject area

Biogeochemistry: Rivers & Streams
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271,,, 2023
Short summary
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026,,, 2023
Short summary
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867,,, 2023
Short summary
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316,,, 2023
Short summary
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441,,, 2023
Short summary

Cited articles

Baker, M. A., Dahm, C. N., and Valett, H. M.: Acetate retention and metabolism in the hyporheic zone of a mountain stream, Limnol. Oceanogr., 44, 1530–1539,, 1999. 
Barnhart, T. B., Vukomanovic, J., Bourgeron, P., and Molotch, N. P.: Future land cover and climate may drive decreases in snow wind-scour and transpiration, increasing streamflow at a Colorado, USA headwater catchment, Hydrol. Process., 35, e14416,, 2021. 
Battin, T. J., Kaplan, L. A., Newbold, J. D., and Hansen, C. M. E.: Contributions of microbial biofilms to ecosystem processes in stream mesocosms, Nature, 426, 439–442,, 2003. 
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., and Packmann, A. I.: The ecology and biogeochemistry of stream biofilms, Nat. Rev. Microbiol., 14, 251–263,, 2016. 
Blair, R. C., Higgins, J. J., Journal, S., and Winter, N.: A Comparison of the Power of Wilcoxon's Rank-Sum Statistic to That of Student's t Statistic under Various Nonnormal Distributions, American Educational Research Association and American Statistical Association Stable, J. Educat. Stat., 5, 309–35,, 1980. 
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Final-revised paper