Articles | Volume 21, issue 13
https://doi.org/10.5194/bg-21-3165-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3165-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Mery Ingrid Guimarães de Alencar
CORRESPONDING AUTHOR
Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 59078-900, Brazil
Laboratoire de Géologie, Ecole normale supérieure, CNRS, IPSL, Université PSL, Paris, 75005, France
Rafael D. Guariento
Universidade Federal do Mato Grosso do Sul, CCBS, Campo Grande, 79070-900, Brazil
Bertrand Guenet
Laboratoire de Géologie, Ecole normale supérieure, CNRS, IPSL, Université PSL, Paris, 75005, France
Luciana S. Carneiro
Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 59078-900, Brazil
Eduardo L. Voigt
Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 59078-900, Brazil
Adriano Caliman
Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 59078-900, Brazil
Related authors
No articles found.
Elodie Salmon, Bertrand Guenet, and Agnès Ducharne
EGUsphere, https://doi.org/10.5194/egusphere-2025-3511, https://doi.org/10.5194/egusphere-2025-3511, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Soil organic carbon stockage is a key process to mitigate climate change and is intertwined with soil temperature and moisture and of other secondary soil properties. This study shows the significance of secondary drivers in the relationship between soil moisture and microbial efficiency in soil organic carbon degradation. Using empirical relationships in a global ecosystem model enhanced significantly the heterogeneous spatial pattern of soil organic carbon stock and carbon dioxide fluxes.
Boris Ťupek, Aleksi Lehtonen, Stefano Manzoni, Elisa Bruni, Petr Baldrian, Etienne Richy, Bartosz Adamczyk, Bertrand Guenet, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-3813, https://doi.org/10.5194/egusphere-2024-3813, 2024
Short summary
Short summary
We explored soil microbial respiration (Rh) kinetics of low-dose and long-term N fertilization in N-limited boreal forest in connection to CH₄, and N₂O fluxes, soil, and tree C sinks. The insights show that N fertilization effects C retention in boreal forest soils through modifying Rh sensitivities to soil temperature and moisture. The key findings reveal that N-enriched soils exhibited reduced sensitivity of Rh to moisture, which on annual level contributes to enhanced soil C sequestration.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Laura Sereni, Julie-Maï Paris, Isabelle Lamy, and Bertrand Guenet
SOIL, 10, 367–380, https://doi.org/10.5194/soil-10-367-2024, https://doi.org/10.5194/soil-10-367-2024, 2024
Short summary
Short summary
We estimate the tendencies of copper (Cu) export in freshwater or accumulation in soils in Europe for the 21st century and highlight areas of importance for environmental monitoring. We develop a method combining computations of Cu partitioning coefficients between solid and solution phases with runoff data. The surfaces with potential for export or accumulation are roughly constant over the century, but the accumulation potential of Cu increases while leaching potential decreases for 2000–2095.
Nina Raoult, Louis-Axel Edouard-Rambaut, Nicolas Vuichard, Vladislav Bastrikov, Anne Sofie Lansø, Bertrand Guenet, and Philippe Peylin
Biogeosciences, 21, 1017–1036, https://doi.org/10.5194/bg-21-1017-2024, https://doi.org/10.5194/bg-21-1017-2024, 2024
Short summary
Short summary
Observations are used to reduce uncertainty in land surface models (LSMs) by optimising poorly constraining parameters. However, optimising against current conditions does not necessarily ensure that the parameters treated as invariant will be robust in a changing climate. Manipulation experiments offer us a unique chance to optimise our models under different (here atmospheric CO2) conditions. By using these data in optimisations, we gain confidence in the future projections of LSMs.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, and Panos Panagos
Geosci. Model Dev., 15, 7835–7857, https://doi.org/10.5194/gmd-15-7835-2022, https://doi.org/10.5194/gmd-15-7835-2022, 2022
Short summary
Short summary
Currently, spatially explicit models for soil carbon stock can simulate the impacts of several changes. However, they do not incorporate the erosion, lateral transport, and deposition (ETD) of soil material. The present work developed ETD formulation, illustrated model calibration and validation for Europe, and presented the results for a depositional site. We expect that our work advances ETD models' description and facilitates their reproduction and incorporation in land surface models.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Céline Gommet, Ronny Lauerwald, Philippe Ciais, Bertrand Guenet, Haicheng Zhang, and Pierre Regnier
Earth Syst. Dynam., 13, 393–418, https://doi.org/10.5194/esd-13-393-2022, https://doi.org/10.5194/esd-13-393-2022, 2022
Short summary
Short summary
Dissolved organic carbon (DOC) leaching from soils into river networks is an important component of the land carbon (C) budget, but its spatiotemporal variation is not yet fully constrained. We use a land surface model to simulate the present-day land C budget at the European scale, including leaching of DOC from the soil. We found average leaching of 14.3 Tg C yr−1 (0.6 % of terrestrial net primary production) with seasonal variations. We determine runoff and temperature to be the main drivers.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Yan Sun, Daniel S. Goll, Jinfeng Chang, Philippe Ciais, Betrand Guenet, Julian Helfenstein, Yuanyuan Huang, Ronny Lauerwald, Fabienne Maignan, Victoria Naipal, Yilong Wang, Hui Yang, and Haicheng Zhang
Geosci. Model Dev., 14, 1987–2010, https://doi.org/10.5194/gmd-14-1987-2021, https://doi.org/10.5194/gmd-14-1987-2021, 2021
Short summary
Short summary
We evaluated the performance of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 against remote sensing, ground-based measurement networks and ecological databases. The simulated carbon, nitrogen and phosphorus fluxes among different spatial scales are generally in good agreement with data-driven estimates. However, the recent carbon sink in the Northern Hemisphere is substantially underestimated. Potential causes and model development priorities are discussed.
Cited articles
Allen, S. E., Grimshaw, H. M., Parkinson, J. A., and Quarmby, C.: Chemical analysis of ecological material, Blackwell., Oxford, 325 pp., ISBN: 0632017422, 9780632017423, 1974.
Allison, S. D., Chacon, S. S., and German, D. P.: Substrate concentration constraints on microbial decomposition, Soil Biol. Biochem., 79, 43–49, https://doi.org/10.1016/j.soilbio.2014.08.021, 2014.
Ashman, T.-L. and Schoen, D. J.: How long should flowers live?, Nature, 371, 788–791, https://doi.org/10.1038/371788a0, 1994.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol. Environ., 9, 53–60, https://doi.org/10.1890/100014, 2011.
Barantal, S., Roy, J., Fromin, N., Schimann, H., and Hättenschwiler, S.: Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest., Oecologia, 167, 241–252, https://doi.org/10.1007/s00442-011-1966-4, 2011.
Barros, M. G.: Pollination ecology of Tabebuia aurea (Manso) Benth. and Hook. and T. ochracea (Cham.) Standl.(Bignoniaceae) in Central Brazil cerrado vegetation, Rev. Bras. Bot., 24, 255–261, https://doi.org/10.1590/S0100-84042001000300003, 2001.
Basile-Doelsch, I., Balesdent, J., and Rose, J.: Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils?, Environ. Sci. Technol., 49, 3997–3998, https://doi.org/10.1021/acs.est.5b00650, 2015.
Batalha, M. A. and Mantovani, W.: Floristic composition of the cerrado in the Pé-de-Gigante Reserve (Santa Rita do Passa Quatro, southeastern Brazil), Acta Bot. Bras., 15, 289–304, https://doi.org/10.1590/S0102-33062001000300001, 2001.
Bengtsson, M. M., Attermeyer, K., and Catalán, N.: Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems?, Hydrobiologia, 822, 1–17, https://doi.org/10.1007/s10750-018-3672-2, 2018.
Berenstecher, P., Araujo, P. I., and Austin, A. T.: Worlds apart: Location above- or below-ground determines plant litter decomposition in a semi-arid Patagonian steppe, J. Ecol., 109, 2885–2896, https://doi.org/10.1111/1365-2745.13688, 2021.
Boaventura, M. G., Villamil, N., Teixido, A. L., Tito, R., Vasconcelos, H. L., Silveira, F. A. O., and Cornelissen, T.: Revisiting florivory: an integrative review and global patterns of a neglected interaction, New Phytol., 233, 132–144, https://doi.org/10.1111/nph.17670, 2022.
Bonada, N., Cañedo-Argüelles, M., Gallart., F. von Schiller, D., Fortuño, P., Latron, J., Llorens, P., Múrria, C., Soria, M., Vinyoles, D., and Cid, N.: Conservation and management of isolated pools in temporary rivers, Water, 12, 2870, https://doi.org/10.3390/w12102870, 2020.
Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., Death, R. G., Iwata, T., Mathooko, J. M., Mathuriau, C., Gonçalves, J. F., Moretti, M. S., Jinggut, T., Lamothe, S., M'Erimba, C., Ratnarajah, L., Schindler, M. H., Castela, J., Buria, L. M., Cornejo, A., Villanueva, V. D., and West, D. C.: A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration, Ecol. Lett., 14, 289–294, https://doi.org/10.1111/j.1461-0248.2010.01578.x, 2011.
Boyero, L., Pérez, J., López-Rojo, N., Tonin, A. M., Correa-Araneda, F., Pearson, R. G., Bosch, J., Albariño, R. J., Anbalagan, S., Barmuta, L. A., Beesley, L., Burdon, F. J., Caliman, A., Callisto, M., Campbell, I. C., Cardinale, B. J., Casas, J. J., Chará-Serna, A. M., Ciapała, S., Chauvet, E., Colón-Gaud, C., Cornejo, A., Davis, A. M., Degebrodt, M., Dias, E. S., Díaz, M. E., Douglas, M. M., Elosegi, A., Encalada, A. C., de Eyto, E., Figueroa, R., Flecker, A. S., Fleituch, T., Frainer, A., França, J. S., García, E. A., García, G., García, P., Gessner, M. O., Giller, P. S., Gómez, J. E., Gómez, S., Gonçalves, J. F., Graça, M. A. S., Hall, R. O., Hamada, N., Hepp, L. U., Hui, C., Imazawa, D., Iwata, T., Junior, E. S. A., Kariuki, S., Landeira-Dabarca, A., Leal, M., Lehosmaa, K., M'Erimba, C., Marchant, R., Martins, R. T., Masese, F. O., Camden, M., McKie, B. G., Medeiros, A. O., Middleton, J. A., Muotka, T., Negishi, J. N., Pozo, J., Ramírez, A., Rezende, R. S., Richardson, J. S., Rincón, J., Rubio-Ríos, J., Serrano, C., Shaffer, A. R., Sheldon, F., Swan, C. M., Tenkiano, N. S. D., Tiegs, S. D., Tolod, J. R., Vernasky, M., Watson, A., Yegon, M. J., and Yule, C. M.: Latitude dictates plant diversity effects on instream decomposition, Sci. Adv., 7, eabe7860, https://doi.org/10.1126/sciadv.abe7860, 2021.
Brant, A. N. and Chen, H. Y. H.: Patterns and Mechanisms of Nutrient Resorption in Plants, CRC Cr. Rev. Plant Sci., 34, 471–486, https://doi.org/10.1080/07352689.2015.1078611, 2015.
Buonaiuto, D. M. and Wolkovich, E. M.: Differences between flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants, J. Ecol., 109, 2922–2933. https://doi.org/10.1111/1365-2745.13708, 2021.
Cebrian, J.: Patterns in the Fate of Production in Plant Communities, Am. Nat., 154, 449–468, https://doi.org/10.1086/303244, 1999.
Cebrian, J. and Lartigue, J.: Patterns of Herbivory and Decomposition in Aquatic and Terrestrial Ecosystems, Ecol. Monogr., 74, 237–259, 2004.
Charnov, E. L.: Optimal foraging, the marginal value theorem, Theor. Popul. Biol., 9, 129–136, https://doi.org/10.1016/0040-5809(76)90040-X, 1976.
Chen, R., Senbayram, M., and Blagodatsky, S.: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories, Glob. Change Biol., 20, 2356–2367, https://doi.org/10.1111/gcb.12475, 2014.
Cheng, W.: Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C-N budgets, Soil Biol. Biochem., 41, 1795–1801, https://doi.org/10.1016/j.soilbio.2008.04.018, 2009.
Conceição, A. A., Alencar, T. G., Souza, J. M., Moura, A. D. C., and Silva, G. A.: Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources, https://doi.org/10.1590/S0102-33062013000400025, 2013.
Connell, J.: On the role of the natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees, in: Dynamics of Population, edited by: Boer, P. J. and Gradwell, G. R., Pudoc, Wageningen, 298–312, 1971.
Cornelissen, J. H. C., Cornwell, W. K., Freschet, G. T., Weedon, J. T., Berg, M. P., and Zanne, A. E.: Coevolutionary legacies for plant decomposition, Trends Ecol. Evol., 38, 44–54, https://doi.org/10.1016/j.tree.2022.07.008, 2023.
Crutsinger, G. M., Sanders, N. J., and Classen, A. T.: Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem, Basic Appl. Ecol., 10, 535–543, https://doi.org/10.1016/j.baae.2008.10.011, 2009.
Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M., and Pérez-Harguindeguy, N.: Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours, Appl. Soil. Ecol., 82, 44–51, https://doi.org/10.1016/j.apsoil.2014.05.004, 2014.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, https://doi.org/10.1038/nature04514, 2006.
Dearden, F. M., Dehlin, H., Wardle, D. A., and Nilsson, M.-C.: Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence, Oikos, 115, 453–462, https://doi.org/10.1111/j.2006.0030-1299.15354.x, 2006.
de Paz, M., Gobbi, M. E., and Raffaele, E.: Fallen fruits stimulate decomposition of leaf litter of dominant species in NW Patagonia shrublands, Plant Soil, 425, 433–440, https://doi.org/10.1007/s11104-018-3590-0, 2018.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies, A review, Agron. Sustain. Dev., 37, 14, https://doi.org/10.1007/s13593-017-0421-2, 2017.
Djukic, I., kepfer rojas, S., Schmidt, I., Larsen, K., Beier, C., Berg, B., Verheyen, K., Caliman, A., Paquette, A., Gutiérrez, A., Humber, A., Valdecantos, A., Petraglia, A., Alexander, H., Augustaitis, A., Saillard, A., Fernández, A., Sousa, A., Lillebø, A. I., and Tóth, Z.: Early stage litter decomposition across biomes, Sci. Total Environ., 628/629, 1369–1394, https://doi.org/10.1016/j.scitotenv.2018.01.012, 2018.
Epps, K. Y., Comerford, N. B., Reeves James B., I. I. I., Cropper Wendell P., J., and Araujo, Q. R.: Chemical diversity – highlighting a species richness and ecosystem function disconnect, Oikos, 116, 1831–1840, https://doi.org/10.1111/j.0030-1299.2007.15853.x, 2007.
Farjalla, V. F., Marinho, C. C., Faria, B. M., Amado, A. M., Esteves, F. de A., Bozelli, R. L., and Giroldo, D.: Synergy of Fresh and Accumulated Organic Matter to Bacterial Growth, Microb. Ecol., 57, 657–666, https://doi.org/10.1007/s00248-008-9466-8, 2009.
Fassbender, H.: Simultane P-Bestimmung in N-Kjeldahl-Ausfschluß von Bodenproben, Die Phosphorsäure, 30, 44–53, 1973.
Finerty, G. E., de Bello, F., Bílá, K., Berg, M. P., Dias, A. T. C., Pezzatti, G. B., and Moretti, M.: Exotic or not, leaf trait dissimilarity modulates the effect of dominant species on mixed litter decomposition, J. Ecol., 104, 1400–1409, https://doi.org/10.1111/1365-2745.12602, 2016.
Fonte, E. S., Amado, A. M., Meirelles-Pereira, F., Esteves, F. A., Rosado, A. S., and Farjalla, V. F.: The Combination of Different Carbon Sources Enhances Bacterial Growth Efficiency in Aquatic Ecosystems, Microb. Ecol., 66, 871–878, https://doi.org/10.1007/s00248-013-0277-1, 2013.
Freeman, C. E., Worthington, R. D., and Jackson, M. S.: Floral Nectar Sugar Compositions of Some South and Southeast Asian Species, Biotropica, 23, 568–574, https://doi.org/10.2307/2388394, 1991.
Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P., and Aerts, R.: Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits?, New Phytol., 186, 879–889, https://doi.org/10.1111/j.1469-8137.2010.03228.x, 2010.
Freschet, G. T., Aerts, R., and Cornelissen, J. H. C.: A plant economics spectrum of litter decomposability, Funct. Ecol., 26, 56–65, https://doi.org/10.1111/j.1365-2435.2011.01913.x, 2012.
Freschet, G. T., Cornwell, W. K., Wardle, D. A., Elumeeva, T. G., Liu, W., Jackson, B. G., Onipchenko, V. G., Soudzilovskaia, N. A., Tao, J., and Cornelissen, J. H. C.: Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide, J. Ecol., 101, 943–952, https://doi.org/10.1111/1365-2745.12092, 2013.
Galetto, L. and Bernardello, G.: Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators, Ann. Bot., 94, 269–280, https://doi.org/10.1093/aob/mch137, 2004.
García-Palacios, P., Mckie, B. G., Handa, I. T., Frainer, A., and Hättenschwiler, S.: The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes, Funct. Ecol., 30, 819–829, https://doi.org/10.1111/1365-2435.12589, 2016.
Gartner, T. B. and Cardon, Z. G.: Decomposition dynamics in mixed-species leaf litter, Oikos, 104, 230–246, https://doi.org/10.1111/j.0030-1299.2004.12738.x, 2004.
German, D. P., Chacon, S. S., and Allison, S. D.: Substrate concentration and enzyme allocation can affect rates of microbial decomposition, Ecology, 92, 1471–1480, https://doi.org/10.1890/10-2028.1, 2011.
Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., and Hättenschwiler, S.: Diversity meets decomposition, Trends Ecol. Evol., 25, 372–380, https://doi.org/10.1016/j.tree.2010.01.010, 2010.
Goering, H. K. and Van Soest, P. J.: Forage fiber analysis (Apparatus, reagents, procedures and some applications), 379 pp., 1970.
Graça, M., Bärlocher, F., and Gessner, M.: Methods to Study Litter Decomposition, Springer Dordrecht, 329 pp., https://doi.org/10.1007/1-4020-3466-0, 2005.
GraphPad: version 6.0.0. for Windows, GraphPad Software, Boston, Massachusetts USA, https://www.graphpad.com (last access: 5 July 2024), 2019.
Gripp, A. R., Esteves, F. de A., Carneiro, L. S., Guariento, R. D., Figueiredo-Barros, M. P., Coq, S., Milcu, A., and Caliman, A.: Weak to no effects of litter biomass and mixing on litter decomposition in a seasonally dry tropical forest, Pedobiologia, 68, 20–23, https://doi.org/10.1016/j.pedobi.2018.02.003, 2018.
Guenet, B., Danger, M., Abbadie, L., and Lacroix, G.: Priming effect: Bridging the gap between terrestrial and aquatic ecology, Ecology, 91, 2850–2861, https://doi.org/10.1890/09-1968.1, 2010.
Hambäck, P. A. and Englund, G.: Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited, Ecol. Lett., 8, 1057–1065, https://doi.org/10.1111/j.1461-0248.2005.00811.x, 2005.
Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., McKie, B. G., Malmqvist, B., Peeters, E. T. H. M., Scheu, S., Schmid, B., van Ruijven, J., Vos, V. C. A., and Hättenschwiler, S.: Consequences of biodiversity loss for litter decomposition across biomes, Nature, 509, 218–21, https://doi.org/10.1038/nature13247, 2014.
Hättenschwiler, S. and Gasser, P.: Soil animals alter plant litter diversity effects on decomposition, P. Natl. Acad. Sci. USA, 102, 1519–1524, https://doi.org/10.1073/pnas.0404977102, 2005.
Hättenschwiler, S. and Jørgensen, H. B.: Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest, J. Ecol., 98, 754–763, https://doi.org/10.1111/j.1365-2745.2010.01671.x, 2010.
Hättenschwiler, S., Tiunov, A., and Scheu, S.: Biodiversity and litter deomposition in terrestrial ecosystems, Annu. Rev. Ecol. Evol., 36, 191–218, https://doi.org/10.1146/annurev.ecolsys.36.112904.151932, 2005.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hill, S. K., Hale, R. L., Grinath, J. B., Folk, B. T., Nielson, R., and Reinhardt, K.: Looking beyond leaves: variation in nutrient leaching potential of seasonal litterfall among different species within an urban forest, Urban Ecosyst., 25, 1097–1109, https://doi.org/10.1007/s11252-022-01217-8, 2022.
Hou, S.-L. and Lü, X.-T.: Mixing effects of litter decomposition at plant organ and species levels in a temperate grassland, Plant Soil, 459, 387–396, https://doi.org/10.1007/s11104-020-04773-0, 2021.
Jackson, B. G., Peltzer, D. A., and Wardle, D. A.: Are functional traits and litter decomposability coordinated across leaves, twigs and wood? A test using temperate rainforest tree species, Oikos, 122, 1131–1142, https://doi.org/10.1111/j.1600-0706.2012.00056.x, 2013.
Janzen, D.: Herbivores and number of tree species in tropical forests, Am. Nat., 104, 501–528, https://doi.org/10.1086/282687, 1970.
Jolliffe, P. A.: The replacement series, J. Ecol., 88, 371–385, https://doi.org/10.1046/j.1365-2745.2000.00470.x, 2000.
Jones, A. R., Dalal, R. C., Gupta, V. V. S. R., Schmidt, S., Allen, D. E., Jacobsen, G. E., Bird, M., Grandy, A. S., and Sanderman, J.: Molecular complexity and diversity of persistent soil organic matter, Soil Biol. Biochem., 184, 109061, https://doi.org/10.1016/j.soilbio.2023.109061, 2023.
Kaspari, M., Garcia, M. N., Harms, K. E., Santana, M., Wright, S. J., and Yavitt, J. B.: Multiple nutrients limit litterfall and decomposition in a tropical forest, Ecol. Lett., 11, 35–43, https://doi.org/10.1111/j.1461-0248.2007.01124.x, 2008.
Kaspari, M., Yanoviak, S. P., Dudley, R., Yuan, M., and Clay, N. A.: Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest, P. Natl. Acad. Sci. USA, 106, 19405–19409, https://doi.org/10.1073/pnas.0906448106, 2009.
Kuzyakov, Y.: Review: Factors affecting rhizosphere priming effects, J. Plant Nutr. Soil Sci., 165, 382–396, 2002.
Kuzyakov, Y.: Priming effects: Interactions between living and dead organic matter, Soil Biol. Biochem., 42, 1363–1371, https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in soil: Concept and review, Soil Biol. Biochem., 83, 184–199, https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Lecerf, A., Marie, G., Kominoski, J. S., LeRoy, C. J., Bernadet, C., and Swan, C. M.: Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition, Ecology, 92, 160–169, https://doi.org/10.1890/10-0315.1, 2011.
Liu, J., Liu, X., Song, Q., Compson, Z. G., LeRoy, C. J., Luan, F., Wang, H., Hu, Y., and Yang, Q.: Synergistic effects: a common theme in mixed-species litter decomposition, New Phytol., 227, 757–765, https://doi.org/10.1111/nph.16556, 2020.
Loreau, M.: Separating Sampling and Other Effects in Biodiversity Experiments, Oikos, 82, 600–602, https://doi.org/10.2307/3546381, 1998.
Lorenzi, H.: Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, Instituto Plantarum de Estudos da Flora, 352 pp., ISBN: 8586714518, 1992.
Madritch, M. D. and Hunter, M. D.: Phenotypic diversity and litter chemistry affect nutrient dynamics during litter decomposition in a two species mix, Oikos, 105, 125–131, https://doi.org/10.1111/j.0030-1299.2004.12760.x, 2004.
Makkonen, M., Berg, M. P., Handa, I. T., H??ttenschwiler, S., van Ruijven, J., van Bodegom, P. M., and Aerts, R.: Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient, Ecol. Lett., 15, 1033–1041, https://doi.org/10.1111/j.1461-0248.2012.01826.x, 2012.
Makkonen, M., Berg, M. P., van Logtestijn, R. S. P., van Hal, J. R., and Aerts, R.: Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory, Oikos, 122, 987–997, https://doi.org/10.1111/j.1600-0706.2012.20750.x, 2013.
Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biol. Biochem., 41, 1355–1379, https://doi.org/10.1016/j.soilbio.2009.02.031, 2009.
Mccall, A. and Irwin, R.: Florivory: The intersection of pollination and herbivory, Ecol. Lett., 9, 1351–1365, https://doi.org/10.1111/j.1461-0248.2006.00975.x, 2007.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems, Ecosystems, 6, 301–312, https://doi.org/10.1007/s10021-003-0161-9, 2003.
Migliorini, G. H., Srivastava, D. S., and Romero, G. Q.: Leaf litter traits drive community structure and functioning in a natural aquatic microcosm, Freshwater Biol., 63, 341–352, https://doi.org/10.1111/fwb.13072, 2018.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Morris, D. L.: Quantitative determination of carbohydrates with Dreywood's anthrone reagent, Science, 107, 111–114, 1948.
Njoroge, D. M., Chen, S.-C., Zuo, J., Dossa, G. G. O., and Cornelissen, J. H. C.: Soil fauna accelerate litter mixture decomposition globally, especially in dry environments, J. Ecol., 110, 659–672, https://doi.org/10.1111/1365-2745.13829, 2022.
Njoroge, D. M., Dossa, G. G. O., Ye, L., Lin, X., Schaefer, D., Tomlinson, K., Zuo, J., and Cornelissen, J. H. C.: Fauna access outweighs litter mixture effect during leaf litter decomposition, Sci. Total Environ., 860, 160190, https://doi.org/10.1016/j.scitotenv.2022.160190, 2023.
Olson, M. E. and Pittermann, J.: Cheap and attractive: water relations and floral adaptation, New Phytol., 223, 8–10, https://doi.org/10.1111/nph.15839, 2019.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V, Conti, G., Staver, A. C., Aquino, S., and Cornelissen, J. H. C.: New handbook for standardised measurement of plant functional traits worldwide, Aust. J. Bot., 61, 167–234, 2013.
Porre, R. J., van der Werf, W., De Deyn, G. B., Stomph, T. J., and Hoffland, E.: Is litter decomposition enhanced in species mixtures? A meta-analysis, Soil Biol. Biochem., 145, 107791, https://doi.org/10.1016/j.soilbio.2020.107791, 2020.
Rezende, R., R.S. Correia, P., Goncalves Jr, J., and Santos, A.: Organic matter dynamics in a savanna transition riparian zone: Input of plant reproductive parts increases leaf breakdown process, J. Limnol., 76, 514–523, https://doi.org/10.4081/jlimnol.2017.1601, 2017.
Ribeiro, S. P. and Brown, V. K.: Prevalence of monodominant vigorous tree populations in the tropics: herbivory pressure on Tabebuia species in very different habitats, J. Ecol., 94, 932–941, https://doi.org/10.1111/j.1365-2745.2006.01133.x, 2006.
Robertson, G. P., Coleman, D., Bledsoe, C. S., and Sollins, P.: Standard soil methods for long-term ecological research, 462 pp., ISBN: 9780195120837, 1999.
Roddy, A. B., Jiang, G.-F., Cao, K., Simonin, K. A., and Brodersen, C. R.: Hydraulic traits are more diverse in flowers than in leaves, New Phytol., 223, 193–203, https://doi.org/10.1111/nph.15749, 2019.
Santos e Silva, C. M., Lúcio, P. S., and Spyrides, M. H. C.: Distribuição espacial da precipitação sobre o Rio Grande do Norte: estimativas via satélites e medidas por pluviômetros, Rev. Bras. Meteorol., 27, 337–346, https://doi.org/10.1590/S0102-77862012000300008, 2012.
Sarruge, J. and Haag, H. P.: Análise química das plantas., 56 pp., ESALQ, 1974.
Sayer, E. J., Powers, J. S., and Tanner, E. V. J.: Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere, PLoS One, 2, e1299, https://doi.org/10.1371/journal.pone.0001299, 2007.
Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 169–172, https://doi.org/10.1038/35102500, 2001.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model, Soil Biol. Biochem., 35, 549–563, https://doi.org/10.1016/S0038-0717(03)00015-4, 2003.
Schindler, M. and Gessner, M. O.: Functional leaf traits and biodiversity effects on litter decomposition in a stream, Ecology, 90, 1641–1649, https://doi.org/10.1890/0012-9658-91.6.1869, 2009.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Schmitt, L. and Perfecto, I.: Who gives a flux? Synchronous flowering of Coffea arabica accelerates leaf litter decomposition, Ecosphere, 11, e03186, https://doi.org/10.1002/ecs2.3186, 2020.
Smith, V. C. and Bradford, M. A.: Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters?, Oikos, 102, 235–242, https://doi.org/10.1034/j.1600-0706.2003.12503.x, 2003.
Stamp, N.: Out Of The Quagmire Of Plant Defense Hypotheses, Q. Rev. Biol., 78, 23–55, https://doi.org/10.1086/367580, 2003.
Swan, C. M. and Palmer, M. A.: Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter, Oecologia, 149, 107–114, https://doi.org/10.1007/s00442-006-0436-x, 2006.
Swift, M. J., Heal, O. W., Anderson, J. M., and Anderson, J. M.: Decomposition in terrestrial ecosystems, University of California Press, ISBN: 0520040015, 9780520040014, 1979.
Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., Ren, W., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions, Global Biogeochem. Cy., 29, 775–792, https://doi.org/10.1002/2014GB005021, 2015.
Tiegs, S. D., Costello, D. M., Isken, M. W., et al.: Global patterns and drivers of ecosystem functioning in rivers and riparian zones, Sci. Adv., 5, eaav0486, https://doi.org/10.1126/sciadv.aav0486, 2019.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., Leigh McCallister, S., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Von Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Tyler, G.: Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest, Forest Ecol. Manag., 206, 167–177, https://doi.org/10.1016/j.foreco.2004.10.065, 2005.
Uriarte, M., Turner, B. L., Thompson, J., and Zimmerman, J. K.: Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach, Ecol. Appl., 25, 2022–2034, https://doi.org/10.1890/15-0112.1, 2015.
Van Handel, E.: Direct microdetermination of sucrose, Anal. Biochem., 22, 280–283, 1968.
Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., Livingstone, S. W., and Mouillot, D.: Functional Rarity: The Ecology of Outliers, Trends Ecol. Evol., 32, 356–367, https://doi.org/10.1016/j.tree.2017.02.002, 2017.
Wang, J., Liu, L., Wang, X., and Chen, Y.: The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation, Glob. Change Biol., 21, 2095–2104, https://doi.org/10.1111/gcb.12812, 2015.
Wang, J., Xu, B., Wu, Y., Gao, J., and Shi, F.: Flower litters of alpine plants affect soil nitrogen and phosphorus rapidly in the eastern Tibetan Plateau, Biogeosciences, 13, 5619–5631, https://doi.org/10.5194/bg-13-5619-2016, 2016.
Wang, L., Zhou, Y., Chen, Y., Xu, Z., Zhang, J., Liu, Y., and Joly, F.-X.: Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition, Soil Biol. Biochem., 168, 108632, https://doi.org/10.1016/j.soilbio.2022.108632, 2022.
Whigham, A. E.: Senescent Neotropical flowers (Lecythidaceae) offer a rich nutrient source to ground-foraging arthropods, J. Torrey Bot. Soc., 140, 31–40, https://doi.org/10.3159/TORREY-D-12-00028.1, 2013.
Zar, J. H.: Comparing simple linear regression equations, in: Biostatistical Analysis, 2nd Edn., Englewood Cliffs N.J., Prentice-Hall, ISBN: 0321656865, 1984.
Zhang, X., Zhang, Y., Jiang, S., Song, C., Zhang, J., and Mao, R.: Dominant species and evenness level co-regulate litter mixture decomposition in a boreal peatland, Plant Soil, 474, 423–436, https://doi.org/10.1007/s11104-022-05346-z, 2022.
Zhao, W., van Logtestijn, R. S. P., van Hal, J. R., Dong, M., and Cornelissen, J. H. C.: Non-additive effects of leaf and twig mixtures from different tree species on experimental litter-bed flammability, Plant Soil, 436, 311–324, https://doi.org/10.1007/s11104-019-03931-3, 2019.
Zheng, X., Lin, S., Fu, H., Wan, Y., and Ding, Y.: The Bamboo Flowering Cycle Sheds Light on Flowering Diversity, Front. Plant Sci., 11, https://doi.org/10.3389/fpls.2020.00381, 2020.
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Flowers are ephemeral organs for reproduction, and their litter is functionally different from...
Altmetrics
Final-revised paper
Preprint