Articles | Volume 21, issue 20
https://doi.org/10.5194/bg-21-4681-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4681-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Medhavi Pandey
CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa 403004, India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
Haimanti Biswas
CORRESPONDING AUTHOR
CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa 403004, India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
Daniel Birgel
Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
Nicole Burdanowitz
Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
Birgit Gaye
Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
Related authors
No articles found.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
Biogeosciences, 22, 5943–5959, https://doi.org/10.5194/bg-22-5943-2025, https://doi.org/10.5194/bg-22-5943-2025, 2025
Short summary
Short summary
Oxygen-minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and the East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Cited articles
Abrantes, F. F. G. and Sancetta, C.: Diatom assemblages in surface sediments reflect coastal upwelling off southern Portugal, Oceanol. Acta, 8, 7–12, 1985.
Agustí, S. and Duarte, C. M.: Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral, Limnol. Oceanogr., 45, 940–947, https://doi.org/10.4319/lo.2000.45.4.0940, 2000.
Alonso-González, I. J., Arístegui, J., Lee, C., Sanchez-Vidal, A., Calafat, A., Fabrés, J., Sangrá, P., Masqué, P., Hernández-Guerra, A., and Benítez-Barrios, V.: Role of slowly settling particles in the ocean carbon cycle, Geophys. Res. Lett., 37, L13608, https://doi.org/10.1029/2010GL043827, 2010.
Andruleit, H., Rogalla, U., and Stäger, S.: From living communities to fossil assemblages: origin and fate of coccolithophores in the northern Arabian Sea, Micropaleontology, 50, 5–21, https://doi.org/10.2113/50.Suppl_1.5, 2004.
Anju, M., Sreeush, M. G., Valsala, V., Smitha, B. R., Hamza, F., Bharathi, G., and Naidu, C. V.: Understanding the role of nutrient limitation on plankton biomass over Arabian Sea via 1-D coupled biogeochemical model and bio-Argo observations, J. Geophys. Res.-Oceans, 125, e2019JC015502, https://doi.org/10.1029/2019JC015502, 2020.
Armbrecht, L. H., Lowe, V., Escutia, C., Iwai, M., McKay, R., and Armand, L. K.: Variability in diatom and silicoflagellate assemblages during mid-Pliocene glacial-interglacial cycles determined in Hole U1361A of IODP Expedition 318, Antarctic Wilkes Land Margin, Mar. Micropaleontol., 139, 28–41, https://doi.org/10.1016/j.marmicro.2017.10.008, 2018.
Banse, K.: Seasonality of phytoplankton chlorophyll in the central and northern Arabian Sea, Deep-Sea Res. Pt. A, 34, 713–723, https://doi.org/10.1016/0198-0149(87)90032-X, 1987.
Banse, K., Naqvi, S. W. A., Narvekar, P. V., Postel, J. R., and Jayakumar, D. A.: Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales, Biogeosciences, 11, 2237–2261, https://doi.org/10.5194/bg-11-2237-2014, 2014.
Barnett, P. R. O., Watson, J., and Connelly, D.: A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments, Oceanol. Acta, 7, 399–408, 1984.
Bauer, S., Hitchcock, G. L., and Olson, D. B.: Influence of monsoonally-forced Ekman dynamics upon surface layer depth and plankton biomass distribution in the Arabian Sea, Deep-Sea Res. Pt. A, 38, 531–553, https://doi.org/10.1016/0198-0149(91)90062-K, 1991.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Bhattathiri, P. M. A., Pant, A., Sawant, S., Gauns, M., Matondkar, S. G. P., and Mohanraju, R.: Phytoplankton production and chlorophyll, Curr. Sci., 71, 857–862, 1996.
Bidle, K. D. and Azam, F.: Accelerated dissolution of diatom silica by marine bacterial assemblages, Nature, 397, 508–512, https://doi.org/10.1038/17351, 1999.
Boyd, P. W. and Newton, P. P.: Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?, Deep-Sea Res. Pt. I, 46, 63–91, https://doi.org/10.1016/S0967-0637(98)00066-1, 1999.
Brassell, S. C., Brereton, R. G., Eglinton, G., Grimalt, J., Liebezeit, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M.: Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data, Org. Geochem., 10, 649–660, https://doi.org/10.1016/S0146-6380(86)80001-8, 1986.
Briggs, N., Dall'Olmo, G., and Claustre, H.: Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans, Science, 367, 791–793, https://doi.org/10.1126/science.aay1790, 2020.
Buesseler, K. O.: The decoupling of production and particulate export in the surface ocean, Global Biogeochem. Cy., 12, 297–310, https://doi.org/10.1029/97GB03366, 1998.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean, Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Cabrera-Brufau, M., Arin, L., Sala, M. M., Cermeño, P., and Marrasé, C.: Diatom dominance enhances resistance of phytoplanktonic POM to mesopelagic microbial decomposition, Front. Mar. Sci., 8, 683354, https://doi.org/10.3389/fmars.2021.683354, 2021.
Caron, D. A., Michaels, A. F., Swanberg, N. R., and Howse, F. A.: Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda, J. Plankton Res., 17, 103–129, https://doi.org/10.1093/plankt/17.1.103, 1995.
Castañeda, I. S. and Schouten, S.: A review of molecular organic proxies for examining modern and ancient lacustrine environments, Quaternary Sci. Rev., 30, 2851–2891, https://doi.org/10.1016/j.quascirev.2011.07.009, 2011.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.: Remineralization of particulate organic carbon in an ocean oxygen minimum zone, Nat. Commun., 8, 14847, https://doi.org/10.1038/ncomms14847, 2017.
Chowdhury, M., Biswas, H., Mitra, A., Silori, S., Sharma, D., Bandyopadhyay, D., Shaik, A. U. R., Fernandes, V., and Narvekar, J.: Southwest monsoon-driven changes in the phytoplankton community structure in the central Arabian Sea (2017–2018): After two decades of JGOFS, Prog. Oceanogr., 197, 102654, https://doi.org/10.1016/j.pocean.2021.102654, 2021.
Chowdhury, M., Biswas, H., Silori, S., and Sharma, D.: Spatiotemporal variability in phytoplankton size class modulated by summer monsoon wind forcing in the central Arabian Sea, J. Geophys. Res.-Oceans, 129, e2023JC019880, https://doi.org/10.1029/2023JC019880, 2024.
Desikachary, T. V.: Atlas of Diatoms (Marine Diatoms of the Indian Ocean Region), 6, Madras Science Foundation, Madras Fasc, 1–13, 1989.
Ding, Y., Bi, R., Sachs, J., Chen, X., Zhang, H., Li, L., and Zhao, M.: Lipid biomarker production by marine phytoplankton under different nutrient and temperature regimes, Org. Geochem., 131, 34–49, https://doi.org/10.1016/j.orggeochem.2019.01.008, 2019.
Eglinton, T. I. and Eglinton, G.: Molecular proxies for paleoclimatology, Earth Planet. Sc. Lett., 275, 1–16, https://doi.org/10.1016/j.epsl.2008.07.012, 2008.
Engel, A., Wagner, H., Le Moigne, F. A. C., and Wilson, S. T.: Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic, Biogeosciences, 14, 1825–1838, https://doi.org/10.5194/bg-14-1825-2017, 2017.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Findlater, J.: Mean monthly airflow at low levels over the western Indian Ocean (No. 116). HM Stationery Office, Pure Appl. Geophys., 115, 1251–1262, https://doi.org/10.1007/BF00874408, 1971.
Francois, R., Honjo, S., Krishfield, R., and Manganini, S.: Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochem. Cy., 16, 34-1–34-20, https://doi.org/10.1029/2001GB001722, 2002.
García-Oliva, O., Hantzsche, F. M., Boersma, M., and Wirtz, K. W.: Phytoplankton and particle size spectra indicate intense mixotrophic dinoflagellates grazing from summer to winter, J. Plankton Res., 44, 224–240, https://doi.org/10.1093/plankt/fbac013, 2022.
Garrison, D. L., Gowing, M. M., and Hughes, M. P.: Nano-and microplankton in the northern Arabian Sea during the Southwest Monsoon, August–September 1995 A US–JGOFS study, Deep-Sea Res. Pt. II, 45, 2269–2299, https://doi.org/10.1016/S0967-0645(98)00071-X, 1998.
Gauns, M., Madhupratap, M., Ramaiah, N., Jyothibabu, R., Fernandes, V., Paul, J. T., and Kumar, S. P.: Comparative accounts of biological productivity characteristics and estimates of carbon fluxes in the Arabian Sea and the Bay of Bengal, Deep-Sea Res. Pt. II, 52, 2003–2017, https://doi.org/10.1016/j.dsr2.2005.05.009, 2005.
Glibert, P. M., Wilkerson, F. P., Dugdale, R. C., Raven, J. A., Dupont, C. L., Leavitt, P. R., Parker, A. E., Burkholder, J. M., and Kana, T. M.: Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions, Limnol. Oceanogr., 61, 165–197, https://doi.org/10.1002/lno.10203, 2016.
Gupta, S. M.: Orbital frequencies in radiolarian assemblages of the central Indian Ocean: implications on the Indian summer monsoon, Palaeogeogr. Palaeocl., 197, 97–112, https://doi.org/10.1016/S0031-0182(03)00388-2, 2003.
Haake, B., Ittekkot, V., Rixen, T., Ramaswamy, V., Nair, R. R., and Curry, W. B.: Seasonality and interannual variability of particle fluxes to the deep Arabian Sea, Deep-Sea Res. Pt. I, 40, 1323–1344, https://doi.org/10.1016/0967-0637(93)90114-I, 1993.
Hansen, B., Bjornsen, P. K., and Hansen, P. J.: The size ratio between planktonic predators and their prey, Limnol. Oceanogr., 39, 395–403, https://doi.org/10.4319/lo.1994.39.2.0395, 1994.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and Simmons, A: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, L., Liu, Y., Xiao, X., Gong, X., Zou, J., Bai, Y., Gorbarenko, S., Fahl, K., Stein, R., and Shi, X.: Sedimentary records of bulk organic matter and lipid biomarkers in the Bering Sea: A centennial perspective of sea-ice variability and phytoplankton community, Mar. Geol., 429, 106308, https://doi.org/10.1016/j.margeo.2020.106308, 2020.
Iversen, M. H.: Carbon Export in the Ocean: A Biologist's Perspective, Annu. Rev. Mar. Sci., 15, 357–381, https://doi.org/10.1146/annurev-marine-032122-035153, 2023.
Iversen, M. H., Pakhomov, E. A., Hunt, B. P., Van der Jagt, H., Wolf-Gladrow, D., and Klaas, C.: Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean, Deep-Sea Res. Pt. II, 138, 116–125, https://doi.org/10.1016/j.dsr2.2016.12.004, 2017.
Jaramillo-Madrid, A. C., Ashworth, J., Fabris, M., and Ralph, P. J.: Phytosterol biosynthesis and production by diatoms (Bacillariophyceae), Phytochemistry, 163, 46–57, https://doi.org/10.1016/j.phytochem.2019.03.018, 2019.
Jaramillo-Madrid, A. C., Ashworth, J., and Ralph, P. J.: Levels of Diatom Minor Sterols Respond to Changes in Temperature and Salinity, J. Mar. Sci. Eng., 8, 85, https://doi.org/10.3390/jmse8020085, 2020.
Jansen, S.: Copepods grazing on Coscinodiscus wailesii: a question of size?, Helgoland Mar. Res., 62, 251–255, https://doi.org/10.1007/s10152-008-0113-z, 2008.
Kohlbach, D., Hop, H., Wold, A., Schmidt, K., Smik, L., Belt, S. T., Keck, Al-Habahbeh, A., Woll, M., Graeve, M., Dąbrowska, A. M., Tatarek, A., Atkinson, A., and Assmy, P.: Multiple Trophic Markers Trace Dietary Carbon Sources in Barents Sea Zooplankton During Late Summer, Front. Mar. Sci., 7, 610248, https://doi.org/10.3389/fmars.2020.610248, 2021.
Keil, R. G., Neibauer, J. A., Biladeau, C., van der Elst, K., and Devol, A. H.: A multiproxy approach to understanding the ”enhanced” flux of organic matter through the oxygen-deficient waters of the Arabian Sea, Biogeosciences, 13, 2077–2092, https://doi.org/10.5194/bg-13-2077-2016, 2016.
Kemp, A. E., Pearce, R. B., Grigorov, I., Rance, J., Lange, C. B., Quilty, P., and Salter, I.: Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans, Global Biogeochem. Cy., 20, GB4S04, https://doi.org/10.1029/2006GB002698, 2006.
Krause, J. W., Schulz, I. K., Rowe, K. A., Dobbins, W., Winding, M. H., Sejr, M. K., Duarte, C. M., and Agustí, S.: Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom, Sci. Rep., 9, 8149, https://doi.org/10.1038/s41598-019-44587-4, 2019.
Landry, M. R., Brown, S. L., Campbell, L., Constantinou, J., and Liu, H.: Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing, Deep-Sea Res. Pt. II, 45, 2353–2368, https://doi.org/10.1016/S0967-0645(98)00074-5, 1998.
Latasa, M. and Bidigare, R. R.: A comparison of phytoplankton populations of the Arabian Sea during the Spring Intermonsoon and Southwest Monsoon of 1995 as described by HPLC-analyzed pigments, Deep-Sea Res. Pt. II, 45, 2133–2170, https://doi.org/10.1016/S0967-0645(98)00066-6, 1998.
Le Moigne, F. A.: Pathways of organic carbon downward transport by the oceanic biological carbon pump, Front. Mar. Sci., 6, 634, https://doi.org/10.3389/fmars.2019.00634, 2019.
Lewin, J. C.: The dissolution of silica from diatom walls, Geochim. Cosmochim. Ac., 21, 182–198, https://doi.org/10.1016/S0016-7037(61)80054-9, 1961.
Liu, D., Shen, X., Di, B., Shi, Y., Keesing, J. K., Wang, Y., and Wang, Y.: Palaeoecological analysis of phytoplankton regime shifts in response to coastal eutrophication, Mar. Ecol.-Prog. Ser., 475, 1–14, https://doi.org/10.3354/meps10234, 2013.
Liu, T., Qiu, Y., Lin, X., Ni, X., Wang, L., Li, H., and Jing, C.: Dissolved oxygen recovery in the oxygen minimum zone of the Arabian Sea in recent decade as observed by BGC-argo floats, Geophys. Res. Lett., 51, e2024GL108841, https://doi.org/10.1029/2024GL108841, 2024
Löder, M. G., Meunier, C., Wiltshire, K. H., Boersma, M., and Aberle, N.: The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea, Mar. Biol., 158, 1551–1580, https://doi.org/10.1007/s00227-011-1670-2, 2011.
Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., and Ramaiah, N.: Mechanism of the biological response to winter cooling in the northeastern Arabian Sea, Nature, 384, 549–552, https://doi.org/10.1038/384549a0, 1996.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg, E. P., and Lampitt, R. S.: Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean, P. Natl. Acad. Sci. USA, 112, 1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
McCreary, J. P., Murtugudde, R., Vialard, J., Vinayachandran, P. N., Wiggert, J. D., Hood, R. R., Shankar, D., and Shetye, S.: Biophysical processes in the Indian Ocean, in: Indian Ocean biogeochemical processes and ecological variability, edited by: Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H., and Smith, S. L., John Wiley & Sons, USA, Vol. 185, 9–32, https://doi.org/10.1029/2008GM000768, 2009.
Mergulhao, L. P., Mohan, R., Murty, V. S. N., Guptha, M. V. S., and Sinha, D. K.: Coccolithophores from the central Arabian Sea: Sediment trap results, J. Earth Syst. Sci., 115, 415–428, https://doi.org/10.1007/BF02702870, 2006.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250, https://doi.org/10.1016/S0146-6380(97)00049-1, 1997.
Moriceau, B., Iversen, M. H., Gallinari, M., Evertsen, A. J. O., Le Goff, M., Beker, B., Boutorh, J., Corvaisier, R., Coffineau, N., Donval, A., and Giering, S. L.: Copepods boost the production but reduce the carbon export efficiency by diatoms, Front. Mar. Sci., 5, 82, https://doi.org/10.3389/fmars.2018.00082, 2018.
Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohmann, G.: Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach, Earth Planet. Sc. Lett., 306, 137–148, https://doi.org/10.1016/j.epsl.2011.04.011, 2011.
Nair, R. R., Ittekkot, V., Manganini, S. J., Ramaswamy, V., Haake, B., Degens, E. T., Desai, B. T., and Honjo, S.: Increased particle flux to the deep ocean related to monsoons, Nature, 338, 749–751, https://doi.org/10.1038/338749a0, 1989.
Nomaki, H., Rastelli, E., Ogawa, N. O., Matsui, Y., Tsuchiya, M., Manea, E., Corinaldesi, C., Hirai, M., Ohkouchi, N., Danovaro, R., and Nunoura, T.: In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change, Glob. Change Biol., 27, 6139–6155, https://doi.org/10.1111/gcb.15882, 2021.
Pandey, M. and Biswas, H.: An account of the key diatom frustules from the surface sediments of the Central and Eastern Arabian Sea and their biogeochemical significance., EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-131, https://doi.org/10.5194/egusphere-egu23-131, 2023.
Pandey, M., Biswas, H., and Chowdhury, M.: Interlinking diatom frustule diversity from the abyss of the central Arabian Sea to surface processes: physical forcing and oxygen minimum zone, Environ. Monit. Assess., 195, 161, https://doi.org/10.1007/s10661-022-10749-7, 2023.
Pandey, M., Biswas, H., Birgel, D., Burdanowitz, N., and Gaye, B.: Understanding biological carbon pump in the central Arabian Sea using phytoplankton biomarkers and diatom frustules from surface sediments, Mendeley Data, V1, https://doi.org/10.17632/xm4nxzdxb2.1, 2024.
Peng, P., Bi, R., Sachs, J. P., Shi, J., Luo, Y., Chen, W., Huh, C. A., Yu, M., Cao, Y., Wang, Y., and Cao, Z.: Phytoplankton community changes in a coastal upwelling system during the last century, Global Planet. Change, 224, 104101, https://doi.org/10.1016/j.gloplacha.2023.104101, 2023.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature, 330, 367–369, https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochim. Cosmochim. Ac., 52, 2303–2310, https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Prahl, F. G., Dymond, J., and Sparrow, M. A.: Annual biomarker record for export production in the central Arabian Sea, Deep-Sea Res. Pt. II, 47, 1581–1604, https://doi.org/10.1016/S0967-0645(99)00155-1, 2000.
Prasanna Kumar, S. and Narvekar, J.: Seasonal variability of the mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity, Deep-Sea Res. Pt. II, 52, 1848–1861, https://doi.org/10.1016/j.dsr2.2005.06.002, 2005.
Prasanna Kumar, S., Madhupratap, M., Kumar, M. D., Gauns, M., Muraleedharan, P. M., Sarma, V. V. S. S., and De Souza, S. N.: Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea, J. Earth Syst. Sci., 109, 433–441, https://doi.org/10.1007/BF02708331, 2000.
Prasanna Kumar, S., Ramaiah, N., Gauns, M., Sarma, V. V. S. S., Muraleedharan, P. M., Raghukumar, S., Kumar, M. D., and Madhupratap, M.: Physical forcing of biological productivity in the Northern Arabian Sea during the Northeast Monsoon, Deep-Sea Res. Pt. II, 48, 1115–1126, https://doi.org/10.1016/S0967-0645(00)00133-8, 2001.
Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., and Moriceau, B.: Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump, Global Biogeochem. Cy., 20, https://doi.org/10.1029/2006GB002688, 2006.
Rixen, T., Gaye, B., and Emeis, K. C.: The monsoon, carbon fluxes, and the organic carbon pump in the northern Indian Ocean, Prog. Oceanogr., 175, 24–39, https://doi.org/10.1016/j.pocean.2019.03.001, 2019a.
Rixen, T., Gaye, B., Emeis, K.-C., and Ramaswamy, V.: The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean, Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, 2019b.
Rodríguez-Miret, X., del Carmen Trapote, M., Sigró, J., and Vegas-Vilarrúbia, T.: Diatom responses to warming, heavy rains and human impact in a Mediterranean lake since the preindustrial period, Sci. Total Environ., 884, 163685, https://doi.org/10.1016/j.scitotenv.2023.163685, 2023.
Roubeix, V., Becquevort, S., and Lancelot, C.: Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems, Biogeochemistry, 88, 47–62, https://doi.org/10.1007/s10533-008-9193-8, 2008.
Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Kumar, S. P., Ravichandran, M., Vichi, M., and Levy, M.: A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean, Geophys. Res. Lett., 43, 826–833, https://doi.org/10.1002/2015GL066979, 2016.
Ryderheim, F., Grønning, J., and Kiørboe, T.: Thicker shells reduce copepod grazing on diatoms, Limnol. Oceanogr. Lett., 7, 435–442, https://doi.org/10.1002/lol2.10243, 2022.
Sawant, S. and Madhupratap, M.: Seasonality and composition of phytoplankton, Curr. Sci., 71, 869–873, 1996.
Schiebel, R., Zeltner, A., Treppke, U. F., Waniek, J. J., Bollmann, J., Rixen, T., and Hemleben, C.: Distribution of diatoms, coccolithophores and planktic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea, Mar. Micropaleontol., 51, 345–371, https://doi.org/10.1016/j.marmicro.2004.02.001, 2004.
Schubert, C. J., Villanueva, J., Calvert, S. E., Cowie, G. L., Von Rad, U., Schulz, H., Berner, U., and Erlenkeuser, H.: Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years, Nature, 394, 563–566, https://doi.org/10.1038/29047, 1998.
Schulte, S., Rostek, F., Bard, E., Rullkötter, J., and Marchal, O.: Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea, Earth Planet. Sc. Lett., 173, 205–221, https://doi.org/10.1016/S0012-821X(99)00232-0, 1999.
Schulte, S., Mangelsdorf, K., and Rullkötter, J.: Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry, Org. Geochem., 31, 1005–1022, https://doi.org/10.1016/S0146-6380(00)00108-X, 2000.
Sharma, S., Ha, K.-J., Yamaguchi, R., Rodgers, K. B., Timmermann, A., and Chung, E.: Future Indian Ocean warming patterns, Nat. Commun., 14, 1789, https://doi.org/10.1038/s41467-023-37435-7, 2023.
Silori, S., Sharma, D., Chowdhury, M., Biswas, H., Cardinal, D., and Mandeng-Yogo, M.: Particulate organic matter dynamics and its isotopic signatures (δ13CPOC and δ15NPN) in relation to physical forcing in the central Arabian Sea during SW monsoon (2017–2018), Sci. Total Environ., 785, 147326, https://doi.org/10.1016/j.scitotenv.2021.147326, 2021.
Singh, U. B. and Ahluwalia, A. S.: Microalgae: a promising tool for carbon sequestration, Mitigation and Adaptation Strategies for Global Change, 18, 73–95, https://doi.org/10.1007/s11027-012-9393-3, 2013.
Smayda, T. J. and Reynolds, C. S.: Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms, J. Plankton Res., 23, 447–461, https://doi.org/10.1093/plankt/23.5.447, 2001.
Smetacek, V. S.: Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance, Mar. Biol., 84, 239–251, https://doi.org/10.1007/BF00392493, 1985.
Smith, S., Roman, M., Prusova, I., Wishner, K., Gowing, M., Codispoti, L. A., Barber, R., Marra, J., and Flagg, C.: Seasonal response of zooplankton to monsoonal reversals in the Arabian Sea, Deep-Sea Res. Pt. II, 45, 2369–2403, https://doi.org/10.1016/S0967-0645(98)00075-7, 1998.
Sonzogni, C., Bard, E., Rostek, F., Lafont, R., Rosell-Mele, A., and Eglinton, G.: Core-top calibration of the alkenone index vs sea surface temperature in the Indian Ocean, Deep-Sea Res. Pt. II, 44, 1445–1460, https://doi.org/10.1016/S0967-0645(97)00010-6, 1997.
Stoecker, D. K.: Mixotrophy among Dinoflagellates 1, J. Eukaryot. Microbiol., 46, 397–401, https://doi.org/10.1111/j.1550-7408.1999.tb04619.x, 1999.
Stoecker, D. K., Hansen, P. J., Caron, D. A., and Mitra, A.: Mixotrophy in the marine plankton, Annu. Rev. Mar. Sci., 9, 311–335, https://doi.org/10.1146/annurev-marine-010816-060617, 2017.
Swanberg, N. R. and Anderson, O. R.: The nutrition of radiolarians: Trophic activity of some solitary Spumellaria 1, Limnol. Oceanogr., 30, 646–652, https://doi.org/10.4319/lo.1985.30.3.0646, 1985.
Taipale, S. J., Hiltunen, M., Vuorio, K., and Peltomaa, E.: Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton, Front. Plant Sci., 7, 212, https://doi.org/10.3389/fpls.2016.00212, 2016.
Tarran, G. A., Burkill, P. H., Edwards, E. S., and Woodward, E. M. S.: Phytoplankton community structure in the Arabian Sea during and after the SW monsoon, 1994, Deep-Sea Res. Pt. II, 46, 655–676, https://doi.org/10.1016/S0967-0645(98)00122-2, 1999.
Ter Braak, C. J. and Smilauer, P.: CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5), https://www.canoco.com (last access: 20 September 2023), 2002.
Tomas, C. R. (Ed.): Identifying marine phytoplankton, Elsevier, ISBN 0080534422, 1997.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., and Jahn, O.: Influence of diatom diversity on the ocean biological carbon pump, Nat. Geosci., 11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018.
Vallivattathillam, P., Lachkar, Z., and Leìvy, M.: Shrinking of the Arabian Sea oxygen minimum zone with climate change projected with a downscaled model, Front. Mar. Sci., 10, 1123739, https://doi.org/10.3389/fmars.2023.1123739, 2023.
Véron, B., Dauguet, J. C., and Billard, C.: Sterolic biomarkers in marine phytoplankton. II. Free and conjugated sterols of seven species used in mariculture, J. Phycol., 34, 273–279, https://doi.org/10.1046/j.1529-8817.1998.340273.x, 1998.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in: The carbon cycle and atmospheric CO2: Natural variations Archean to present, edited by: Sundquist, E. T. and Broecker, W. S., Vol. 32, John Wiley & Sons, USA, 99–110, https://doi.org/10.1029/GM032p0099, 1985.
Volkman, J.: Sterols in microorganisms, Appl. Microbiol. Biot., 60, 495–506, https://doi.org/10.1007/s00253-002-1172-8, 2003.
Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., and Gelin, F.: Microalgal biomarkers: a review of recent research developments, Org. Geochem., 29, 1163–1179, https://doi.org/10.1016/S0146-6380(98)00062-X, 1998.
Wakeham, S. G., Peterson, M. L., Hedges, J. I., and Lee, C.: Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean, Deep-Sea Res. Pt. II, 49, 2265–2301, https://doi.org/10.1016/S0967-0645(02)00037-1, 2002.
Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A., and Jayakumar, A.: Denitrification as the dominant nitrogen loss process in the Arabian Sea, Nature, 461, 78–81, https://doi.org/10.1038/nature08276, 2009.
Wishner, K. F., Gowing, M. M., and Gelfman, C.: Mesozooplankton biomass in the upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns, and relationship to oxygen gradients, Deep-Sea Res. Pt. II, 45, 2405–2432, https://doi.org/10.1016/S0967-0645(98)00078-2, 1998.
Wittenborn, A. K., Schmale, O., and Thiel, V.: Zooplankton impact on lipid biomarkers in water column vs. surface sediments of the stratified Eastern Gotland Basin (Central Baltic Sea), Plos one, 15, e0234110, https://doi.org/10.1371/journal.pone.0234110, 2020.
Xiong, W., Mei, X., Meng, X., Chen, H., and Yang, H.: Phytoplankton biomarkers in surface sediments from Liaodong Bay and their potential as indicators of primary productivity, Mar. Pollut. Bull., 159, 111536, https://doi.org/10.1016/j.marpolbul.2020.111536, 2020.
Zúñiga, D., Sanchez-Vidal, A., Flexas, M. D. M., Carroll, D., Rufino, M. M., Spreen, G., Calafat, A., and Abrantes, F.: Sinking diatom assemblages as a key driver for deep carbon and silicon export in the Scotia Sea (Southern Ocean), Front. Earth Sci., 9, 579198, https://doi.org/10.3389/feart.2021.579198, 2021.
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that...
Altmetrics
Final-revised paper
Preprint