Articles | Volume 21, issue 23
https://doi.org/10.5194/bg-21-5495-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5495-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
Thomas Gaiser
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
Jan Vanderborght
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
Andrea Schnepf
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
Felix Bauer
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
Anja Klotzsche
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
Lena Lärm
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
Hubert Hüging
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
Frank Ewert
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Systems Analysis, Eberswalder Straße 84, 15374 Müncheberg, Germany
Related authors
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Marit G. A. Hendrickx, Jan Vanderborght, Pieter Janssens, Sander Bombeke, Evi Matthyssen, Anne Waverijn, and Jan Diels
SOIL, 11, 435–456, https://doi.org/10.5194/soil-11-435-2025, https://doi.org/10.5194/soil-11-435-2025, 2025
Short summary
Short summary
We developed a method to estimate errors in soil moisture measurements using limited sensors and infrequent sampling. By analyzing data from 93 cropping cycles in agricultural fields in Belgium, we identified both systematic and random errors for our sensor setup. This approach reduces the need for extensive sensor networks and is applicable to agricultural and environmental monitoring and ensures more reliable soil moisture data, enhancing water management and improving model predictions.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2025-1166, https://doi.org/10.5194/egusphere-2025-1166, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller
SOIL, 11, 267–285, https://doi.org/10.5194/soil-11-267-2025, https://doi.org/10.5194/soil-11-267-2025, 2025
Short summary
Short summary
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand nutrient distributions in the soil. We utilize, in a long-term field study, geophysical techniques to study soil properties and conditions under different fertilizer treatments. We compared the geophysical response with soil samples and soil sensor data. In particular, electromagnetic induction and electrical resistivity tomography were effective in monitoring changes in nitrate levels over time.
Daniel Leitner, Andrea Schnepf, and Jan Vanderborght
Hydrol. Earth Syst. Sci., 29, 1759–1782, https://doi.org/10.5194/hess-29-1759-2025, https://doi.org/10.5194/hess-29-1759-2025, 2025
Short summary
Short summary
Root water uptake strongly affects plant development and soil water balance. We use novel upscaling methods to develop land surface and crop models from detailed mechanistic models. We examine the mathematics behind this upscaling, pinpointing where errors occur. By simulating different crops and soils, we found that the accuracy loss varies based on root architecture and soil type. Our findings offer insights into balancing model complexity and accuracy for better predictions in agriculture.
Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf
EGUsphere, https://doi.org/10.5194/egusphere-2025-572, https://doi.org/10.5194/egusphere-2025-572, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We developed a multiscale simulation model that combines 3D plant architecture with carbon cycling in the rhizosphere and soil to understand how dry spells impact carbon and water flows, focusing on the activity of the soil microbes. We found that the microbial communities’ characteristics and dry spells’ start dates significantly affect rhizosphere CO2 emissions and carbon cycling. This model can help understand the effects of climate change on plant growth and soil organic matter dynamics.
G. Bareth, C. Hütt, A. Jenal, A. Bolten, I. Kleppert, H. Firl, J. Wolf, and H. Hüging
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1867–1872, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1867-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1867-2023, 2023
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Cited articles
Abdalla, M., Carminati, A., Cai, G., Javaux, M., and Ahmed, M. A.: Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance, Plant. Cell Environ., 44, 425–431, https://doi.org/10.1111/pce.13939, 2021.
Abdalla, M., Ahmed, M. A., Cai, G., Wankmüller, F., Schwartz, N., Litig, O., Javaux, M., and Carminati, A.: Stomatal closure during water deficit is controlled by below-ground hydraulics, Ann. Bot., 129, 161–170, https://doi.org/10.1093/aob/mcab141, 2022.
Ahmed, M. A., Zarebanadkouki, M., Meunier, F., Javaux, M., Kaestner, A., and Carminati, A.: Root type matters: Measurement of water uptake by seminal, crown, and lateral roots in maize, J. Exp. Bot., 69, 1199–1206, https://doi.org/10.1093/jxb/erx439, 2018.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-guidelines for computing crop water requirements, FAO Irrig. Drain. Pap. No. 56, https://doi.org/10.1016/S0141-1187(05)80058-6, 1998.
Aparicio-Tejo, P. and Boyer, J. S.: Significance of Accelerated Leaf Senescence at Low Water Potentials for Water Loss and Grain Yield in Maize1, Crop Sci., 23, 1198–1202, https://doi.org/10.2135/cropsci1983.0011183X002300060040x, 1983.
Bauer, F. M., Lärm, L., Morandage, S., Lobet, G., Vanderborght, J., Vereecken, H., and Schnepf, A.: Combining deep learning and automated feature extraction to analyze minirhizotron images: development and validation of a new pipeline, bioRxiv [preprint], https://doi.org/10.1101/2021.12.01.470811, 2021.
Bourbia, I., Pritzkow, C., and Brodribb, T. J.: Herb and conifer roots show similar high sensitivity to water deficit, Plant Physiol., 186, 1908–1918, https://doi.org/10.1093/plphys/kiab207, 2021.
Cai, G., Vanderborght, J., Klotzsche, A., van der Kruk, J., Neumann, J., Hermes, N., and Vereecken, H.: Construction of Minirhizotron Facilities for Investigating Root Zone Processes, Vadose Zone J., 15, 1–13, https://doi.org/10.2136/vzj2016.05.0043, 2016.
Cai, G., Vanderborght, J., Couvreur, V., Mboh, C. M., and Vereecken, H.: Parameterization of Root Water Uptake Models Considering Dynamic Root Distributions and Water Uptake Compensation, Vadose Zone J., 17, 1–21, https://doi.org/10.2136/vzj2016.12.0125, 2017.
Cai, G., Vanderborght, J., Langensiepen, M., Schnepf, A., Hüging, H., and Vereecken, H.: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions, Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, 2018.
Cai, G., Ahmed, M. A., Abdalla, M., and Carminati, A.: Root hydraulic phenotypes impacting water uptake in drying soils, Plant Cell Environ., 45, 650–663, https://doi.org/10.1111/pce.14259, 2022a.
Cai, G., König, M., Carminati, A., Abdalla, M., Javaux, M., Wankmüller, F., and Ahmed, M. A.: Transpiration response to soil drying and vapor pressure deficit is soil texture specific, Plant Soil, 500, 129–145, https://doi.org/10.1007/s11104-022-05818-2, 2022b.
Cai, Q., Zhang, Y., Sun, Z., Zheng, J., Bai, W., Zhang, Y., Liu, Y., Feng, L., Feng, C., Zhang, Z., Yang, N., Evers, J. B., and Zhang, L.: Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize, Biogeosciences, 14, 3851–3858, https://doi.org/10.5194/bg-14-3851-2017, 2017.
Carminati, A. and Javaux, M.: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought, Trends Plant Sci., 25, 868–880, https://doi.org/10.1016/j.tplants.2020.04.003, 2020.
Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., and Holz, M.: Biophysical rhizosphere processes affecting root water uptake, Ann. Bot., 118, 561–571, https://doi.org/10.1093/aob/mcw113, 2016.
Choudhary, S. and Sinclair, T. R.: Hydraulic conductance differences among sorghum genotypes to explain variation in restricted transpiration rates, Funct. Plant Biol., 41, 270–275, https://doi.org/10.1071/FP13246, 2014.
Couvreur, V., Vanderborght, J., Draye, X., and Javaux, M.: Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances, Water Resour. Res., 50, 8891–8906, https://doi.org/10.1002/2014WR015608, 2014.
Daryanto, S., Wang, L., and Jacinthe, P.: Global Synthesis of Drought Effects on Maize and Wheat Production, PLoS One, 11, 1–15, https://doi.org/10.1371/journal.pone.0156362, 2016.
Domec, J. and Pruyn, M. L.: Bole girdling affects metabolic properties and root , trunk and branch hydraulics of young ponderosa pine trees, Tree Physiol., 28, 1493–1504, 2008.
Draye, X., Kim, Y., Lobet, G., and Javaux, M.: Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils, J. Exp. Bot., 61, 2145–2155, https://doi.org/10.1093/jxb/erq077, 2010.
Dynamax: Dynagage Sap Flow Sensor User Manual, 106, https://www.dynamax.com (last access: 3 May 2015), 2005.
Fang, J. and Su, Y.: Effects of Soils and Irrigation Volume on Maize Yield, Irrigation Water Productivity, and Nitrogen Uptake, Sci. Rep., 9, 1–11, https://doi.org/10.1038/s41598-019-41447-z, 2019.
Frensch, J. and Steudle, E.: Axial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.), Plant Physiol., 91, 719–726, 1989.
Gallardo, M., Eastham, J., Gregory, P. J., and Turner, N. C.: A comparison of plant hydraulic conductances in wheat and lupins, J. Exp. Bot., 47, 233–239, https://doi.org/10.1093/jxb/47.2.233, 1996.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., and Cochard, H.: Iso/Anisohydry: A Plant–Environment Interaction Rather Than a Simple Hydraulic Trait, Trends Plant Sci., 23, 112–120, https://doi.org/10.1016/j.tplants.2017.11.002, 2018.
Hopmans, J. W. and Bristow, K. L.: Current Capabilities and Future Needs of Root Water and Nutrient Uptake Modeling, Adv. Agron., 77, 103–183, https://doi.org/10.1016/S0065-2113(02)77014-4, 2002.
Hubbard, R. M., Ryan, M. G., Stiller, V., and Sperry, J. S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine, Plant Cell Environ., 24, 113–121, https://doi.org/10.1046/j.1365-3040.2001.00660.x, 2001.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability, in: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Jorda, H., Ahmed, M. A., Javaux, M., Carminati, A., Duddek, P., Vetterlein, D., and Vanderborght, J.: Field scale plant water relation of maize (Zea mays) under drought – impact of root hairs and soil texture, Plant Soil, 478, 59–84, https://doi.org/10.1007/s11104-022-05685-x, 2022.
Koehler, T., Moser, D. S., Botezatu, Á., Murugesan, T., Kaliamoorthy, S., Zarebanadkouki, M., Bienert, M. D., Bienert, G. P., Carminati, A., Kholová, J., and Ahmed, M.: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit, Plant Soil, 478, 43–58, https://doi.org/10.1007/s11104-022-05656-2, 2022.
Lärm, L., Bauer, F. M., Hermes, N., van der Kruk, J., Vereecken, H., Vanderborght, J., Nguyen, T. H., Lopez, G., Seidel, S. J., Ewert, F., Schnepf, A., and Klotzsche, A.: Multi-year belowground data of minirhizotron facilities in Selhausen, Sci. Data, 10, 1–15, https://doi.org/10.1038/s41597-023-02570-9, 2023.
Li, X., Sinclair, T. R., and Bagherzadi, L.: Hydraulic Conductivity Changes in Soybean Plant-Soil System with Decreasing Soil Volumetric Water Content, J. Crop Improv., 30, 713–723, https://doi.org/10.1080/15427528.2016.1231729, 2016.
Meunier, F., Zarebanadkouki, M., Ahmed, M. A., Carminati, A., Couvreur, V., and Javaux, M.: Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions, J. Plant Physiol., 227, 31–44, https://doi.org/10.1016/j.jplph.2017.12.019, 2018.
Morandage, S., Vanderborght, J., Zörner, M., Cai, G., Leitner, D., Vereecken, H., and Schnepf, A.: Root architecture development in stony soils, Vadose Zone J., (April), 20, e20133, https://doi.org/10.1002/vzj2.20133, 2021.
Müllers, Y., Postma, J. A., Poorter, H., and van Dusschoten, D.: Stomatal conductance tracks soil-to-leaf hydraulic conductance in faba bean and maize during soil drying, Plant Physiol., 190, 2279–2294, https://doi.org/10.1093/plphys/kiac422, 2022.
Nguyen, T. H., Langensiepen, M., Vanderborght, J., Hüging, H., Mboh, C. M., and Ewert, F.: Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat, Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, 2020.
Nguyen, T. H., Langensiepen, M., Hueging, H., Gaiser, T., Seidel, S. J., and Ewert, F.: Expansion and evaluation of two coupled root–shoot models in simulating CO2 and H2O fluxes and growth of maize, Vadose Zone J., 21, 1–31, https://doi.org/10.1002/vzj2.20181, 2022a.
Nguyen, T. H., Langensiepen, M., Gaiser, T., Webber, H., Ahrends, H., Hueging, H., and Ewert, F.: Responses of winter wheat and maize to varying soil moisture: From leaf to canopy, Agr. Forest Meteorol., 314, 108803, https://doi.org/10.1016/j.agrformet.2021.108803, 2022b.
Nguyen, T., Lopez, G., Seidel, S., Lärm, Lena, Bauer, Felix, Klotzsche, Anja, Schnepf, A., Gaiser, T., Hüging, H., and Ewert, F.: Multi-year aboveground data of minirhizotron facilities in Selhausen, TERENO [data set], https://doi.org/10.34731/1a9s-ax66, 2024.
Ordóñez, R. A., Archontoulis, S. V., Martinez-Feria, R., Hatfield, J. L., Wright, E. E., and Castellano, M. J.: Root to shoot and carbon to nitrogen ratios of maize and soybean crops in the US Midwest, Eur. J. Agron., 120, 126130, https://doi.org/10.1016/j.eja.2020.126130, 2020.
Ranawana, S. R. W. M. C. J. K., Siddique, K. H. M., Palta, J. A., Stefanova, K., and Bramley, H.: Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat, Funct. Plant Biol., 48, 839–850, https://doi.org/10.1071/FP20392, 2021.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org (last access: 8 December 2024), 2022.
Richards, R. A., Rebetzke, G. J., Condon, A. G., and van Herwaarden, A. F.: Breeding Opportunities for Increasing the Efficiency of Water Use and Crop Yield in Temperate Cereals, Crop Sci., 42, 111–121, https://doi.org/10.2135/cropsci2002.1110, 2002.
Rodriguez-Dominguez, C. M. and Brodribb, T. J.: Declining root water transport drives stomatal closure in olive under moderate water stress, New Phytol., 225, 126–134, https://doi.org/10.1111/nph.16177, 2020.
Scharwies, J. D. and Dinneny, J. R.: Water transport, perception, and response in plants, J. Plant Res., 132, 311–324, https://doi.org/10.1007/s10265-019-01089-8, 2019.
Sinclair, T. R. and Ludlow, M. M.: Influence of soil water supply on the plant water balance of four tropical grain legumes, Aust. J. Plant Physiol., 13, 329–341, 1986.
Stadler, A., Rudolph, S., Kupisch, M., Langensiepen, M., van der Kruk, J., and Ewert, F.: Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements, Eur. J. Agron., 64, 8–20, https://doi.org/10.1016/j.eja.2014.12.004, 2015.
Sulis, M., Couvreur, V., Keune, J., Cai, G., Trebs, I., Junk, J., Shrestha, P., Simmer, C., Kollet, S. J., Vereecken, H., and Vanderborght, J.: Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations, Agr. Forest Meteorol., 269–270, 28–45, https://doi.org/10.1016/j.agrformet.2019.01.034, 2019.
Sunita, C., Sinclair, T. R., Messina, C. D., and Cooper, M.: Hydraulic conductance of maize hybrids differing in transpiration response to vapor pressure deficit, Crop Sci., 54, 1147–1152, https://doi.org/10.2135/cropsci2013.05.0303, 2014.
Tardieu, F.: Too many partners in root – shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal, New Phytol., 212, 802–804, 2016.
Tardieu, F. and Simonneau, T.: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours, J. Exp. Bot., 49, 419–432, https://doi.org/10.1093/jxb/49.Special_Issue.419, 1998.
Tardieu, F., Draye, X., and Javaux, M.: Root Water Uptake and Ideotypes of the Root System: Whole-Plant Controls Matter, Vadose Zone J., 16, 1–10, https://doi.org/10.2136/vzj2017.05.0107, 2017.
TERENO: Data Discovery Portal, TERENO, https://www.tereno.net/ddp/dispatch?searchparams=freetext-Selhausen, last access: October 2020.
Trillo, N. and Fernández, R. J.: Wheat plant hydraulic properties under prolonged experimental drought: Stronger decline in root-system conductance than in leaf area, Plant Soil, 277, 277–284, https://doi.org/10.1007/s11104-005-7493-5, 2005.
Tsuda, M. and Tyree, M. T.: Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum, Tree Physiol., 17, 351–357, 1997.
Vadez, V.: Root hydraulics: The forgotten side of roots in drought adaptation, F. Crop. Res., 165, 15–24, 2014.
Vadez, V., Choudhary, S., Kholová, J., Hash, C. T., Srivastava, R., Kumar, A. A., Prandavada, A., and Anjaiah, M.: Transpiration efficiency: Insights from comparisons of C4cereal species, J. Exp. Bot., 72, 5221–5234, https://doi.org/10.1093/jxb/erab251, 2021.
Vanderborght, J., Graf, A., Steenpass, C., Scharnagl, B., Prolingheuer, N., Herbst, M., Franssen, H. H., and Vereecken, H.: Within-Field Variability of Bare Soil Evapora O on Derived from Eddy Covariance Measurements, Vadose Zone J., 9, 943–954, https://doi.org/10.2136/vzj2009.0159, 2010.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and Young, I. M.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, vzj2015.09.0131, https://doi.org/10.2136/vzj2015.09.0131, 2016.
Vetterlein, D., Phalempin, M., Lippold, E., Schlüter, S., Schreiter, S., Ahmed, M. A., Carminati, A., Duddek, P., Jorda, H., Bienert, G. P., Bienert, M. D., Tarkka, M., Ganther, M., Oburger, E., Santangeli, M., Javaux, M., and Vanderborght, J.: Root hairs matter at field scale for maize shoot growth and nutrient uptake, but root trait plasticity is primarily triggered by texture and drought, Plant Soil, 478, 119–141, https://doi.org/10.1007/s11104-022-05434-0, 2022.
Vitale, L., Di Tommasi, P., Arena, C., Fierro, A., Virzo De Santo, A., and Magliulo, V.: Effects of water stress on gas exchange of field grown Zea mays L. in Southern Italy: An analysis at canopy and leaf level, Acta Physiol. Plant., 29, 317–326, https://doi.org/10.1007/s11738-007-0041-6, 2007.
Wang, N., Gao, J., and Zhang, S.: Overcompensation or limitation to photosynthesis and root hydraulic conductance altered by rehydration in seedlings of sorghum and maize, Crop J., 5, 337–344, https://doi.org/10.1016/j.cj.2017.01.005, 2017.
Welcker, C., Sadok, W., Dignat, G., Renault, M., Salvi, S., Charcosset, A., and Tardieu, F.: A common genetic determinism for sensitivities to soil water deficit and evaporative demand: Meta-analysis of quantitative trait loci and introgression lines of maize, Plant Physiol., 157, 718–729, https://doi.org/10.1104/pp.111.176479, 2011.
Zhuang, J., Jin, Y., and Miyazaki, T.: Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept, Soil Sci., 166, 308–321, 2001.
Zwieniecki, M. A., Melcher, P. J., Boyce, C. K., Sack, L., and Holbrook, N. M.: Hydraulic architecture of leaf venation in Laurus nobilis L., Plant, Cell Environ., 25, 1445–1450, https://doi.org/10.1046/j.1365-3040.2002.00922.x, 2002.
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and...
Altmetrics
Final-revised paper
Preprint