Articles | Volume 21, issue 24
https://doi.org/10.5194/bg-21-5613-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5613-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Johnathan Daniel Maxey
CORRESPONDING AUTHOR
Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Malaysia
ADS Environmental Services, Kota Kinabalu, Sabah 88400, Malaysia
Neil D. Hartstein
ADS Environmental Services, Kota Kinabalu, Sabah 88400, Malaysia
Hermann W. Bange
Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany
Moritz Müller
Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Malaysia
Related authors
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Guanlin Li, Damian L. Arévalo-Martínez, Riel Carlo O. Ingeniero, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2023-771, https://doi.org/10.5194/egusphere-2023-771, 2023
Preprint archived
Short summary
Short summary
Dissolved carbon monoxide (CO) surface concentrations were first measured at 14 stations in the Ria Formosa Lagoon system in May 2021. Ria Formosa was a source of atmospheric CO. Microbial consumption accounted for 83 % of the CO production. The results of a 48-hour irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022, https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
Short summary
This study presents the first observation of water quality changes over space and time in the coastal systems of Sarawak, Malaysian Borneo, using remote sensing technologies. While our findings demonstrate that the southwestern coast of Sarawak is within local water quality standards, historical patterns of water quality degradation that were detected can help to alert local authorities and enhance management and monitoring strategies of coastal waters in this region.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Abril, G. and Borges, A. V.: Carbon Dioxide and Methane Emissions from Estuaries, in: Greenhouse Gas Emissions-Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments, 187–207, Berlin, Heidelberg: Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-540-26643-3_8, 2004.
Acuña-González, J. A., Vargas-Zamora, J. A., and Córdoba-Muñoz, R.: A snapshot view of some vertical distributions of water parameters at a deep (200 m) station in the fjord-like Golfo Dulce, embayment, Costa Rica, Rev. Biol. Trop., 54, 193–200, ISSN: 0034-7744, 2006.
Amouroux, D., Roberts, G., Rapsomanikis, S., and Andreae, M. O.: Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea, Estuar. Coast. Shelf Sci., 54, 575–587, https://doi.org/10.1006/ecss.2000.0666, 2002.
Andrewartha, J. and Wild-Allen, K.: CSIRO Macquarie Harbour Hydrodynamic and Oxygen Tracer Modelling, Progress report to FRDC 2016/067 Project Steering Committee, 2017.
Arneborg, L., Janzen, C., Liljebladh, B., Rippeth, T. P., Simpson, J. H., and Stigebrandt, A.: Spatial variability of diapycnal mixing and turbulent dissipation rates in a stagnant fjord basin, J. Phys. Oceanogr., 34, 1679–1691, https://doi.org/10.1175/1520-0485(2004)034<1679:SVODMA>2.0.CO;2, 2004.
Austin, W. E. and Inall, M. E.: Deep-water renewal in a Scottish fjord: temperature, salinity and oxygen isotopes, Polar Res., 21, 251–257, https://doi.org/10.3402/polar.v21i2.6485, 2002.
Bange, H. W.: Nitrous oxide and methane in European coastal waters, Estuarine, Coast. Shelf Sci., 70, 361–374, https://doi.org/10.1016/j.ecss.2006.05.042, 2006.
Bange, H. W., Rapsomanikis, S., and Andreae, M. O.: Nitrous oxide in coastal waters, Global Biogeochem. Cy., 10, 197–207, https://doi.org/10.1029/95GB03834, 1996.
Bange, H. W., Bell, T. G., Cornejo, M., Freing, A., Uher, G., Upstill-Goddard, R. C., and Zhang, G. L.: MEMENTO: A proposal to develop a database of marine nitrous oxide and methane measurements, Environ. Chem., 6, 195–197, https://doi.org/10.1071/en09033, 2009 (data available at: https://memento.geomar.de, last access: 9 December 2024).
Bange, H. W., Sim, C. H., Bastian, D., Kallert, J., Kock, A., Mujahid, A., and Müller, M.: Nitrous oxide (N2O) and methane (CH4) in rivers and estuaries of northwestern Borneo, Biogeosciences, 16, 4321–4335, https://doi.org/10.5194/bg-16-4321-2019, 2019.
Bange, H. W., Mongwe, P., Shutler, J. D., Arévalo-Martínez, D. L., Bianchi, D., Lauvset, S. K., Liu, C., Löscher, C. R., Martins, H., Rosentreter, J. A., Schmale, O., Steinhoff, T., Upstill-Goddard, R. C., Wanninkhof, R., Wilson, S. T., and Xie, H.: Advances in understanding of air–sea exchange and cycling of greenhouse gases in the upper ocean, Elementa: Science of the Anthropocene, 12, 1, https://doi.org/10.1525/elementa.2023.00044, 2024.
Bastian, D.: N2O und CH4 Verteilung in Ästuaren und Flüssen im Nordwesten von Borneo, BSc thesis, Kiel University, Kiel, 50 pp., 2017.
Baulch, H. M., Schiff, S. L., Maranger, R., and Dillon, P. J.: Nitrogen enrichment and the emission of nitrous oxide from streams, Global Biogeochem. Cy., 25, GB4013, https://doi.org/10.1029/2011GB004047, 2011.
Beaulieu, J. J., Shuster, W. D., and Rebholz, J. A.: Controls on gas transfer velocities in a large river, J. Geophys. Res.-Biogeo., 117, G02007, https://doi.org/10.1029/2011JG001794, 2012.
Bennett, J. C., Ling, F. L. N., Graham, B., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Post, D. A., Gaynor, S. M. and Bindoff, N. L.: Climate Futures for Tasmania: water and catchments technical report, Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, ISBN 978-1-921197-06-8, 2010.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean interface, Org. Geochem., 115, 138–155, https://doi.org/10.1016/j.orggeochem.2017.09.008, 2018.
Bianchi, T. S., Arndt, S., Austin, W. E., Benn, D. I., Bertrand, S., Cui, X., Faust, J., Koziorowska-Makuch, K., Moy, C., Savage, C., Smeaton, C., Smith, R., and Syvitski, J.: Fjords as aquatic critical zones (ACZs), Earth-Sci. Rev., 203, 103145, https://doi.org/10.1016/j.earscirev.2020.103145, 2020.
Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High resolution measurements of nitrous oxide (N2O) in the Elbe estuary, Front. Mar. Sci., 4, 162, https://doi.org/10.3389/fmars.2017.00162, 2017.
Breider, F., Yoshikawa, C., Makabe, A., Toyoda, S., Wakita, M., Matsui, Y., Kawagucci, S., Fujiki, T., Harada, N., and Yoshida, N.: Response of N2O production rate to ocean acidification in the western North Pacific, Nat. Clim. Change, 9, 954–958, https://doi.org/10.1038/s41558-019-0605-7, 2019.
Brettar, I. and Rheinheimer, G.: Denitrification in the Central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic-anoxic interface, Mar. Ecol. Prog. Ser., 77, 157–169, http://www.jstor.org/stable/24826569, 1991.
Bourbonnais, A., Lehmann, M. F., Hamme, R. C., Manning, C. C., and Juniper, S. K.: Nitrate elimination and regeneration as evidenced by dissolved inorganic nitrogen isotopes in Saanich Inlet, a seasonally anoxic fjord, Mar. Chem., 157, 194–207, https://doi.org/10.1016/j.marchem.2013.09.006, 2013.
Capelle, D. W., Hawley, A. K., Hallam, S. J., and Tortell, P. D.: A multi-year time-series of N2O dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia, Limnol. Oceanogr., 63, 524–539, https://doi.org/10.1002/lno.10645, 2018.
Carpenter, P. D., Butler, E. C. V., Higgins, H. W., Mackey, D. J., and Nichols, P. D.: Chemistry of trace elements, humic substances and sedimentary organic matter in Macquarie Harbour, Tasmania, Mar. Freshwater Res., 42, 625–654, https://doi.org/10.1071/MF9910625, 1991.
Chen, C., Pan, J., Xiao, S., Wang, J., Gong, X., Yin, G., Hou, L., Liu, M., and Zheng, Y.: Microplastics alter nitrous oxide production and pathways through affecting microbiome in estuarine sediments, Water Res., 221, 118733, https://doi.org/10.1016/j.watres.2022.118733, 2022.
Chen, J., Wells, N. S., Erler, D. V., and Eyre, B. D.: Land-use intensity increases benthic N2O emissions across three sub-tropical estuaries, J. Geophys. Res.-Biogeo., 127, e2022JG006899, https://doi.org/10.1029/2022JG006899, 2022.
Codispoti, L. A., Yoshinari, T., and Devol, A. H.: Suboxic respiration in the oceanic water column, Respiration in Aquatic Ecosystems, 225–247, https://doi.org/10.1093/acprof:oso/9780198527084.001.0001, 2005.
Cohen, Y.: Consumption of dissolved nitrous oxide in an anoxic basin, Saanich Inlet, British Columbia, Nature, 272, 5650, 235–237, https://doi.org/10.1038/272235a0, 1978.
Cresswell, G. R., Edwards, R. J., and Barker, B. A.: Macquarie Harbour, Tasmania-seasonal oceanographic surveys in 1985, University of Tasmania Journal contribution, https://doi.org/10.26749/rstpp.123.63, 1989.
Da Silva, R. R. P., White, C. A., Bowman, J. P., Bodrossy, L., Bissett, A., Revill, A., Eriksen, R., and Ross, D. J.: Network and Machine Learning Analyses of Estuarine Microbial Communities Along a Freshwater-Marine Mixed Gradient, Estuarine, Coast. Shelf Sci., 277, 108026, https://doi.org/10.1016/J.ecss.2022.108026, 2022.
de Bie, M. J. M.: Factors controlling nitrification and nitrous oxide production in the Schelde estuary, Doctoral dissertation, Yerseke, Netherlands Institute of Ecology (NIOO-CEMO), 2002.
Dey, R., Lewis, S. C., Arblaster, J. M., and Abram, N. J.: A review of past and projected changes in Australia's rainfall, Wiley Interdisciplinary Reviews: Climate Change, 10, e577, https://doi.org/10.1002/wcc.577, 2019.
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12–614, https://doi.org/10.1002/2016GL071930, 2016.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., Sun, Y.: Human Influence on the Climate System, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423–552, https://doi.org/10.1017/9781009157896.005, 2021.
Farías, L., Bello, E., Arancibia, G., and Fernandez, J.: Distribution of dissolved methane and nitrous oxide in Chilean coastal systems of the Magellanic Sub-Antarctic region (50° – 55° S), Estuar. Coast. Shelf Sci., 215, 225–240, https://doi.org/10.1016/j.ecss.2018.10.020, 2018.
Fer, I.: Scaling turbulent dissipation in an Arctic fjord, Deep-Sea Res. Pt. II, 53, 77–95, https://doi.org/10.1016/j.dsr2.2006.01.003, 2006.
Forster P., Storelvmo T., Armour K., Collins W., Dufresne J.-L., Frame D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M.: The earth's energy budget, climate feedbacks, and climate sensitivity In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423–552, https://doi.org/10.1017/9781009157896.009, 2021.
Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, 2020.
Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J.: Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean, Biogeosciences, 7, 2283–2296, https://doi.org/10.5194/bg-7-2283-2010, 2010.
Gillibrand, P. A., Cage, A. G., and Austin, W. E. N.: A preliminary investigation of basin water response to climate forcing in a Scottish fjord: evaluating the influence of the NAO, Cont. Shelf Res., 25, 571–587, https://doi.org/10.1016/j.csr.2004.10.011, 2005.
Grose, M. R., Barnes-Keoghan, I., Corney S. P., White C. J., Holz, G. K., Bennett, J. B., Gaynor, S. M., and Bindof, N. L.: Climate Futures for Tasmania: general climate impacts technical report, Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, ISBN 978-1-921197-05-5, 2010.
Hartstein, N. D., Maxey, J. D., Loo, J. C. H., and Then, A. Y. H.: Drivers of deep water renewal in Macquarie Harbour, Tasmania, J. Mar. Syst., 199, 103226, https://doi.org/10.1016/j.jmarsys.2019.103226, 2019.
Hashimoto, L. K., Kaplan, W. A., Wofsy, S. C., and McElroy, M. B.: Transformations of fixed nitrogen and N2O in the Cariaco Trench, Deep-Sea Res. Part I, 30, 575–590, https://doi.org/10.1016/0198-0149(83)90037-7, 1983.
Hendzel, L. L., Matthews, C. J. D., Venkiteswaran, J. J., St. Louis, V. L., Burton, D., Joyce, E. M., and Bodaly, R. A.: Nitrous oxide fluxes in three experimental boreal forest reservoirs, Environ. Sci. Technol., 39, 4353–4360, https://doi.org/10.1021/es049443j, 2005.
Huang, Y., Song, B., Zhang, Q., Park, Y., Wilson, S. J., Tobias, C. R., and An, S.: Seawater intrusion effects on nitrogen cycling in the regulated Nakdong River Estuary, South Korea, Front. Mar. Sci., 11, 1369421, https://doi.org/10.3389/fmars.2024.1369421, 2024.
Inall, M. E. and Gillibrand, P. A.: The physics of mid-latitude fjords: a review, Geological Society, London, Special Publications, 344, 17–33, https://doi.org/10.1144/SP344.3, 2010.
Ji, Q., Jameson, B. D., Juniper, S. K., and Grundle, D. S.: Temporal and vertical oxygen gradients modulate nitrous oxide production in a seasonally anoxic fjord: Saanich Inlet, British Columbia, J. Geophys. Res.-Biogeo., 125, e2020JG005631, https://doi.org/10.1029/2020JG005631, 2020.
Kallert, J.: Verteilung von Lachgas (N2O) und Methan (CH4) im Fluss Rajang (Malaysia), Bachelor thesis, Christian-Albrecht-University, Kiel, https://oceanrep.geomar.de/id/eprint/40913/ (last access: 8 June 2023), 2017.
Ku, H. H.: Notes on the use of propagation of error formulas, J. Res. Nat. Bur. Stand., 70, https://doi.org/10.6028/jres.070C.025, 1966.
Kuypers, M. M. M., Marchant, H. K., and Kartal, B.: The microbial nitrogen-cycling network, Nat. Rev. Microb., 16, 263–276, https://doi.org/10.1038/nrmicro.2018.9, 2018.
Laffoley, D. and Baxter, J. M.: Ocean deoxygenation: Everyone's problem: Causes, impacts, consequences and solutions: Summary for Policy Makers, International Union for Conservation of Nature (IUCN), https://doi.org/10.2305/IUCN.CH.2019.13.en, 2019.
Li, Y., Yang, L., Jian, L., Wangwang, Y., Jiexia, Z., and Liyang, Z.: Sources and sinks of N2O in the subtropical Jiulong River Estuary, Southeast China, Front. Mar. Sci., 10, 1138258, https://doi.org/10.3389/fmars.2023.1138258, 2023.
Limburg, K. E., Breitburg, D., Swaney, D. P., and Jacinto, G.: Ocean deoxygenation: A primer, One Earth 2, 24–29, https://doi.org/10.1016/j.oneear.2020.01.001, 2020.
Ma, X., Lennartz, S. T., and Bange, H. W.: A multi-year observation of nitrous oxide at the Boknis Eck Time Series Station in the Eckernförde Bay (southwestern Baltic Sea), Biogeosciences, 16, 4097–4111, https://doi.org/10.5194/bg-16-4097-2019, 2019.
Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C., and Santos, I. R.: Pristine mangrove creek waters are a sink of nitrous oxide, Sci. Rep., 6, 25701, https://doi.org/10.1038/srep25701, 2016.
Manning, C. C., Hamme, R. C., and Bourbonnais, A.: Impact of deep-water renewal events on fixed nitrogen loss from seasonally-anoxic Saanich Inlet, Mar. Chem., 122, 1–10, https://doi.org/10.1016/j.marchem.2010.08.002, 2010.
Maxey, J. D., Hartstein, N. D., Penjinus, D., and Kerroux, A.: Simple quality control technique to identify dissolved oxygen diffusion issues with biochemical oxygen demand bottle incubations, Borneo Journal of Marine Science and Aquaculture (BJoMSA), 1, 75–79 https://doi.org/10.51200/bjomsa.v1i0.995, 2017.
Maxey, J. D., Hartstein, N. D., Then, A. Y. H., and Barrenger, M.: Dissolved oxygen consumption in a fjord-like estuary, Macquarie Harbour, Tasmania, Estuar. Coast. Shelf Sci., 246, 107016, https://doi.org/10.1016/j.ecss.2020.107016, 2020.
Maxey, J. D., Hartstein, N. D., Mujahid, A., and Müller, M.: The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data, Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, 2022.
McMahon, P. B. and Dennehy, K. F.: N2O emissions from a nitrogen-enriched river, Environ. Sci. Technol., 33, 21–25, https://doi.org/10.1021/es980645n, 1999.
Michiels, C. C., Huggins, J. A., Giesbrecht, K. E., Spence, J. S., Simister, R. L., Varela, D. E., Hallam, S. J., and Crowe, S. A.: Rates and pathways of N2 production in a persistently anoxic fjord: Saanich Inlet, British Columbia, Front. Mar. Sci., 6, 27, https://doi.org/10.3389/fmars.2019.00027, 2019.
Mickett, J. B., Gregg, M. C., and Seim, H. E.: Direct measurements of diapycnal mixing in a fjord reach–Puget Sound's Main Basin, Estuar. Coast. Shelf Sci., 59, 539–558, https://doi.org/10.1016/j.ecss.2003.10.009, 2004.
Murray, R., Erler, D. V., Rosentreter, J., Wells, N. S., and Eyre, B. D.: Seasonal and spatial controls on N2O concentrations and emissions in low-nitrogen estuaries: Evidence from three tropical systems, Mar. Chem., 221, 103779, https://doi.org/10.1016/j.marchem.2020.103779, 2020.
Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in estuarine environments: response to global change, Glob. Change Biol., 21, 3219–3245, https://doi.org/10.1111/gcb.12923, 2015.
Musenze, R. S., Werner, U., Grinham, A., Udy, J., and Yuan, Z.: Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia), Sci. Total Environ., 472, 719–729, https://doi.org/10.1016/j.scitotenv.2013.11.085, 2014.
Mwanake, R. M., Gettel, G. M., Aho, K. S., Namwaya, D. W., Masese, F. O., Butterbach-Bahl, K., and Raymond, P. A.: Land Use, Not Stream Order, Controls N2O Concentration and Flux in the Upper Mara River Basin, Kenya, J. Geophys. Res.-Biogeo., 124, 3491–3506, https://doi.org/10.1029/2019JG005063, 2019.
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J, Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.018, 2013.
Myllykangas, J.-P., Jilbert, T., Jakobs, G., Rehder, G., Werner, J., and Hietanen, S.: Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea, Earth Syst. Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, 2017.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In Situ Evaluation of Air-Sea Gas Exchange Parameterizations Using Novel Conservative and Volatile Tracers, Global Biogeochem. Cy., 14, 373–387, https://doi.org/10.1029/1999GB900091, 2000.
Orif, M. I., Yasar N. K., Radwan K. A., and Sudheesh, V.: Deoxygenation turns the coastal Red Sea lagoons into sources of nitrous oxide, Mar, Pollut, Bull., 189, 114806, https://doi.org/10.1016/j.marpolbul.2023.114806, 2023.
Osborn, T. R.: Estimates of The Local Rate of Vertical Diffusion from Dissipation Measurements, J. Phys. Oceanogr., 10, 83–89, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980
Raes, E. J., Bodrossy, L., Van de Kamp, J., Holmes, B., Hardman-Mountford, N., Thompson, P. A., McInnes, A. S., and Waite, A. M.: Reduction of the powerful greenhouse gas N2O in the South-Eastern Indian Ocean, PLoS One, 11, 1, https://doi.org/10.1371/journal.pone.0145996, 2016.
Raymond, P. A. and Cole, J. J.: Gas exchange in rivers and estuaries: Choosing a gas transfer velocity, Estuaries, 24, 312–317, https://doi.org/10.2307/1352954, 2001.
Reading, M. J.: Aquatic nitrous oxide dynamics from rivers to reefs, Doctoral dissertation, Southern Cross University, https://doi.org/10.25918/thesis.197, 2022.
Reading, M. J., Santos, I. R., Maher, D. T., Jeffrey, L. C., and Tait, D. R.: Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations, Estuar. Coast. Shelf Sci., 194, 66–76, https://doi.org/10.1016/j.ecss.2017.05.017, 2017.
Reading, M. J., Tait, D. R., Maher, D. T., Jeffrey, L. C., Looman, A., Holloway, C., Shishaye, H. A., Barron, S., and Santos, I. R.: Land use drives nitrous oxide dynamics in estuaries on regional and global scales, Limnol. Oceanogr., 65, 1903–1920, https://doi.org/10.1002/lno.11426, 2020.
Resplandy, L., Hogikyan, A., Müller, J. D., Najjar, R. G., Bange, H. W., Bianchi, D., Weber, T., Cai, W.-J., Doney, S. C., Fennel, K., Gehlen, M., Hauck, J., Lacroix, F., Landschützer, P., Le Quéré, C., Roobaert, A., Schwinger, J., Berthet, S., Bopp, L., Chau, T. T. T., Dai, M., Gruber, N., Ilyina, T., Kock, A., Manizza, M., Lachkar, Z., Laruelle, G. G., Liao, E., Lima, I. D., Nissen, C., Rödenbeck, C., Séférian, R., Toyama, K., Tsujino, H., and Regnier, P.: A synthesis of global coastal ocean greenhouse gas fluxes, Global Biogeochem. Cy., 38, e2023GB007803, https://doi.org/10.1029/2023GB007803, 2024.
Robinson, A. D., Nedwell, D. B., Harrison, R. M., and Ogilvie, B. G.: Hypernutrified estuaries as sources of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK, Mar. Ecol. Prog. Ser., 164, 59–71, https://doi.org/10.3354/meps164059, 1998.
Rönner, U.: Distribution, production and consumption of nitrous oxide in the Baltic Sea, Geochim. Cosmochim. Ac., 47, 2179–2188, https://doi.org/10.1016/0016-7037(83)90041-8, 1983.
Rosentreter, J. A., Wells, N. S., Ulseth, A. J., and Eyre, B. D.: Divergent gas transfer velocities of CO2, CH4, and N2O over spatial and temporal gradients in a subtropical estuary, J. Geophys. Res.-Biogeo., 126, e2021JG006270, https://doi.org/10.1029/2021JG006270, 2021.
Rosentreter, J. A., Laruelle, G. G., Bange, H. W., Bianchi, T. S., Busecke, J. J., Cai, W. J., Eyre, B. D., Forbrich, I., Kwon, E. Y., Maavara, T., and Moosdorf, N.: Coastal vegetation and estuaries are collectively a greenhouse gas sink, Nat. Clim. Change, 13, 579–587, https://doi.org/10.1038/s41558-023-01682-9, 2023.
Sánchez-Rodríguez, J., Sierra, A., Jiménez-López, D., Ortega, T., Gómez-Parra, A., and Forja, J.: Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary, Sci. Total Environ., 805, 150193, https://doi.org/10.1016/j.scitotenv.2021.150193, 2022.
Schulz, G., Sanders, T., Voynova, Y. G., Bange, H. W., and Dähnke, K.: Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary, Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, 2023.
Seitzinger, S. P., Kroeze, C., and Styles, R. V.: Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects, Chemosphere-Global Change Science, 2, 267–279, https://doi.org/10.1016/S1465-9972(00)00015-5, 2000.
Sierra, A., Jiménez-López, D., Ortega, T., Gómez-Parra, A., and Forja, J.: Factors controlling the variability and emissions of greenhouse gases (CO2, CH4 and N2O) in three estuaries of the Southern Iberian Atlantic Basin during July 2017, Mar. Chem., 226, 103867, https://doi.org/10.1016/j.marchem.2020.103867, 2020.
Salamena, G. G., Whinney, J. C., Heron, S. F., and Ridd, P. V.: Internal tidal waves and deep-water renewal in a tropical fjord: Lessons from Ambon Bay, eastern Indonesia. Estuarine, Coast. Shelf Sc., 253, 107291, https://doi.org/10.1016/j.ecss.2021.107291, 2021.
Salamena, G. G., Whinney, J. C., Heron, S. F., and Ridd, P. V.: Frontogenesis and estuarine circulation at the shallow sill of a tropical fjord: Insights from Ambon Bay, eastern Indonesia, Regional Studies in Marine Science, 56, 102696, https://doi.org/10.1016/j.rsma.2022.102696, 2022.
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High rates of organic carbon burial in fjord sediments globally, Nat. Geosci., 8, 450–453, https://doi.org/10.1038/ngeo2421, 2015.
Stow, C. A., Walker, J. T., Cardoch, L., Spence, P., and Geron, C.: N2O emissions from streams in the Neuse River watershed, North Carolina, Environ. Sci. Technol., 39, 6999–7004, https://doi.org/10.1021/es0500355, 2005.
Sturm, K., Werner, U., Grinham, A., and Yuan, Z.: Tidal variability in methane and nitrous oxide emissions along a subtropical estuarine gradient, Estuar. Coast. Shelf Sci., 192, 159–169, https://doi.org/10.1016/j.ecss.2017.04.027, 2017.
Suntharalingam, P. and Sarmiento, J. L.: Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circulation model, Global Biogeochem. Cy., 14, 429–454, https://doi.org/10.1029/1999GB900032, 2000.
Tait, D. R., Maher, D. T., Wong, W., Santos, I. R., Sadat-Noori, M., Holloway, C., and Cook, P. L. M.: Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ringdown spectroscopy observations, Environ. Sci. Technol., 51, 13771–13778, https://doi.org/10.1021/acs.est.7b04627, 2017.
Tang, W., Talbott, J., Jones, T., and Ward, B. B.: Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions, Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, 2024.
Teasdale, P. R., Apte, S. C., Ford, P. W., Batley, G. E., and Koehnken, L.: Geochemical cycling and speciation of copper in waters and sediments of Macquarie Harbour, Western Tasmania, Estuar. Coast. Shelf Sci., 57, 475–487, https://doi.org/10.1016/S0272-7714(02)00381-5, 2003.
Testa, J. M., Carstensen, J., Laurent, A., and Li, M.: Hypoxia and Climate Change in Estuaries, In Climate Change and Estuaries, 143–170, CRC Press, ISBN 9781003126096, 2023.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks, Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Tian, H., Pan, N., Thompson, R. L., Canadell, J. G., Suntharalingam, P., Regnier, P., Davidson, E. A., Prather, M., Ciais, P., Muntean, M., Pan, S., Winiwarter, W., Zaehle, S., Zhou, F., Jackson, R. B., Bange, H. W., Berthet, S., Bian, Z., Bianchi, D., Bouwman, A. F., Buitenhuis, E. T., Dutton, G., Hu, M., Ito, A., Jain, A. K., Jeltsch-Thömmes, A., Joos, F., Kou-Giesbrecht, S., Krummel, P. B., Lan, X., Landolfi, A., Lauerwald, R., Li, Y., Lu, C., Maavara, T., Manizza, M., Millet, D. B., Mühle, J., Patra, P. K., Peters, G. P., Qin, X., Raymond, P., Resplandy, L., Rosentreter, J. A., Shi, H., Sun, Q., Tonina, D., Tubiello, F. N., van der Werf, G. R., Vuichard, N., Wang, J., Wells, K. C., Western, L. M., Wilson, C., Yang, J., Yao, Y., You, Y., and Zhu, Q.: Global nitrous oxide budget (1980–2020), Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, 2024.
Usui, T., Koike, I., and Ogura, N.: N2O production, nitrification and denitrification in an estuarine sediment, Estuar. Coast. Shelf Sci., 52, 769–781, https://doi.org/10.1006/ecss.2000.0765, 2001.
Walinsky, S. E., Prahl, F. G., Mix, A. C., Finney, B. P., Jaeger, J. M., and Rosen, G. P.: Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska, Cont. Shelf Res., 29, 1565–1579, https://doi.org/10.1016/j.csr.2009.04.006, 2009.
Walter, S., Bange, H. W., and Wallace, D. W.: Nitrous oxide in the surface layer of the tropical North Atlantic Ocean along a west to east transect, Geophys. Res. Lett., 31, L23S07, https://doi.org/10.1029/2004GL019937, 2004.
Walter, S., Breitenbach, U., Bange, H. W., Nausch, G., and Wallace, D. W. R.: Distribution of N2O in the Baltic Sea during transition from anoxic to oxic conditions, Biogeosciences, 3, 557–570, https://doi.org/10.5194/bg-3-557-2006, 2006.
Wan, X. S., Lin, H., Ward, B. B., Kao, S., and Dai M.: Significant seasonal N2O dynamics revealed by multi-year observations in the Northern South China Sea, Global Biogeochem. Cy., 36, e2022GB007333, https://doi.org/10.1029/2022GB007333, 2022.
Wan, X. S., Sheng, H. X., Liu, L., Shen, H., Tang, W., Zou, W., Xu, M. N., Zheng, Z., Tan, E., Chen, M., and Zhang, Y.: Particle-Associated Denitrification is the Primary Source of N2O In Oxic Coastal Waters, Nat. Commun., 14, 8280, https://doi.org/10.1038/s41467-023-43997-3, 2023.
Wanninkhof, R.: Relationship Between Wind Speed and Gas Exchange Over the Ocean Revisited, Limnol. Oceanogr. Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Wells, N. S., Maher, D. T., Erler, D. V., Hipsey, M., Rosentreter, J. A., and Eyre, B. D.: Estuaries as sources and sinks of N2O across a land use gradient in subtropical Australia, Global Biogeochem. Cy., 32, 877–894, https://doi.org/10.1029/2017GB005826, 2018.
Willis, M.: TasCatch Variation 2 – Surface Water Models (Document ID Number WR 2008/005), Department of Primary Industries and Water, Hydro Tasmania Consulting, https://nre.tas.gov.au/Documents/Savage_TasCatch2_Report_Final1-1.pdf (last access: 1 November 2024), 2008.
Wilson, S. T., Bange, H. W., Arévalo-Martínez, D. L., Barnes, J., Borges, A. V., Brown, I., Bullister, J. L., Burgos, M., Capelle, D. W., Casso, M., de la Paz, M., Farías, L., Fenwick, L., Ferrón, S., Garcia, G., Glockzin, M., Karl, D. M., Kock, A., Laperriere, S., Law, C. S., Manning, C. C., Marriner, A., Myllykangas, J.-P., Pohlman, J. W., Rees, A. P., Santoro, A. E., Tortell, P. D., Upstill-Goddard, R. C., Wisegarver, D. P., Zhang, G.-L., and Rehder, G.: An intercomparison of oceanic methane and nitrous oxide measurements, Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, 2018.
Wilson, S. T., Al-Haj, A. N., Bourbonnais, A., Frey, C., Fulweiler, R. W., Kessler, J. D., Marchant, H. K., Milucka, J., Ray, N. E., Suntharalingam, P., Thornton, B. F., Upstill-Goddard, R. C., Weber, T. S., Arévalo-Martínez, D. L., Bange, H. W., Benway, H. M., Bianchi, D., Borges, A. V., Chang, B. X., Crill, P. M., del Valle, D. A., Farías, L., Joye, S. B., Kock, A., Labidi, J., Manning, C. C., Pohlman, J. W., Rehder, G., Sparrow, K. J., Tortell, P. D., Treude, T., Valentine, D. L., Ward, B. B., Yang, S., and Yurganov, L. N.: Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment, Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, 2020.
Wu, L., Chen X., Wei, W., Liu, Y., Wang, D., and Ni, B.: A critical review on nitrous oxide production by ammonia-oxidizing archaea, Environ. Sci. Technol., 54, 9175–9190, https://doi.org/10.1021/acs.est.0c03948, 2020.
Yevenes, M. A., Bello, E., Sanhueza-Guevara, S., and Farías, L.: Spatial distribution of nitrous oxide (N2O) in the Reloncaví estuary–sound and adjacent sea (41–43 S), Chilean Patagonia, Estuar. Coast., 40, 807–821, https://doi.org/10.1007/s12237-016-0184-z, 2017.
Yoshinari, T.: Nitrous oxide in the sea, Mar. Chem., 2, 189–202, https://doi.org/10.1016/0304-4203(76)90007-4, 1976.
Zappa, C. J., Raymond, P. A., Terray, E. A., and McGillis, W. R.: Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary, Estuaries, 26, 1401–1415, https://doi.org/10.1007/BF02803649, 2003.
Zhang, G.-L., Zhang, J., Liu, S.-M., Ren, J.-L., and Zhao, Y.-C.: Nitrous oxide in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes, Biogeosciences, 7, 3505–3516, https://doi.org/10.5194/bg-7-3505-2010, 2010.
Zhang, W., Li, H., Xiao, Q., Jiang, S., and Li, X.: Surface nitrous oxide (N2O) concentrations and fluxes from different rivers draining contrasting landscapes: Spatio-temporal variability, controls, and implications based on IPCC emission factor, Environ. Pollut., 263, 114457, https://doi.org/10.1016/j.envpol.2020.114457, 2020.
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere....
Altmetrics
Final-revised paper
Preprint