Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-1035-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1035-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling ozone-induced changes in wheat amino acids and protein quality using a process-based crop model
Department of Environment and Geography, University of York, YO10 5DD, York, UK
Durgesh Singh Yadav
Department of Botany, Govt. Raza Post Graduate College, Rampur, India
Felicity Hayes
UK Centre for Ecology & Hydrology, Environment Centre Wales, LL57 2UW, Bangor, Wales, UK
Nathan Booth
Department of Environment and Geography, University of York, YO10 5DD, York, UK
Sam Bland
Stockholm Environment Institute, University of York, YO10 5DD, York, UK
Pritha Pande
Stockholm Environment Institute, University of York, YO10 5DD, York, UK
Samarthia Thankappan
Department of Environment and Geography, University of York, YO10 5DD, York, UK
Lisa Emberson
Department of Environment and Geography, University of York, YO10 5DD, York, UK
Related authors
Gabriella Everett, Øivind Hodnebrog, Madhoolika Agrawal, Durgesh Singh Yadav, Connie O'Neill, Chubamenla Jamir, Jo Cook, Pritha Pande, Sam Bland, and Lisa Emberson
Biogeosciences, 22, 4203–4219, https://doi.org/10.5194/bg-22-4203-2025, https://doi.org/10.5194/bg-22-4203-2025, 2025
Short summary
Short summary
Ground-level ozone (O3), heat, and water stress (WS) reduce wheat yields, threatening food security in India. O3, heat, and WS interact as stressed plants close stomata, limiting O3 entry and damage. This study models O3 uptake under rainfed (WS) and irrigated conditions for current and future climates. Results show little O3-related yield loss under WS but higher losses with irrigation. Both climate scenarios increase O3-related losses, highlighting risks to India’s wheat productivity.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025, https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Short summary
The DO3SE-Crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, and it integrates into Earth system models for a comprehensive understanding of agriculture's interaction with global systems.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Gabriella Everett, Øivind Hodnebrog, Madhoolika Agrawal, Durgesh Singh Yadav, Connie O'Neill, Chubamenla Jamir, Jo Cook, Pritha Pande, Sam Bland, and Lisa Emberson
Biogeosciences, 22, 4203–4219, https://doi.org/10.5194/bg-22-4203-2025, https://doi.org/10.5194/bg-22-4203-2025, 2025
Short summary
Short summary
Ground-level ozone (O3), heat, and water stress (WS) reduce wheat yields, threatening food security in India. O3, heat, and WS interact as stressed plants close stomata, limiting O3 entry and damage. This study models O3 uptake under rainfed (WS) and irrigated conditions for current and future climates. Results show little O3-related yield loss under WS but higher losses with irrigation. Both climate scenarios increase O3-related losses, highlighting risks to India’s wheat productivity.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Per Erik Karlsson, Patrick Büker, Sam Bland, David Simpson, Katrina Sharps, Felicity Hayes, and Lisa D. Emberson
Biogeosciences, 22, 3563–3582, https://doi.org/10.5194/bg-22-3563-2025, https://doi.org/10.5194/bg-22-3563-2025, 2025
Short summary
Short summary
Stomatal ozone uptake and the negative impacts on forest growth rates were estimated for European forests. This was translated to annual increments in the forest living biomass carbon stocks, with and without ozone exposure. In the absence of O3 exposure, on average, European forest growth rates would increase by 9%, but the sequestration to the living-biomass carbon stocks would increase by 31% since the sequestration depends on the difference between growth and harvest rates.
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429, https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with 9 models at different land types worldwide. The input data stems from a database. The models estimated mostly reasonable summertime ozone deposition. The different results of the models varied by land cover which were mostly related to the moisture deficit. This is an important step for assessing the ozone impact on vegetation.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025, https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Short summary
The DO3SE-Crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, and it integrates into Earth system models for a comprehensive understanding of agriculture's interaction with global systems.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Lisa Emberson, Connie O'Neill, Frode Stordal, and Terje Koren Berntsen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-260, https://doi.org/10.5194/bg-2021-260, 2021
Revised manuscript not accepted
Short summary
Short summary
Subarctic vegetation is threatened by climate change and ozone. We assess essential climate variables in 2018/19. 2018 was warmer and brighter than usual in Spring with forest fires and elevated ozone in summer. Visible damage was observed on plant species in 2018. We find that generic parameterizations used in modeling ozone dose do not suffice. We propose a method to acclimate these parameterizations and find an ozone-induced biomass loss of 2.5 to 17.4 % (up to 6 % larger than default).
Cited articles
Agrawal, S., Kim, R., Gausman, J., Sharma, S., Sankar, R., Joe, W., and Subramanian, S. V.: Socio-economic patterning of food consumption and dietary diversity among Indian children: evidence from NFHS-4, Eur. J. Clin. Nutr., 73, 1361–1372, https://doi.org/10.1038/s41430-019-0406-0, 2019.
Ali, Q., Athar, H.-R., Haider, M. Z., Shahid, S., Aslam, N., Shehzad, F., Naseem, J., Ashraf, R., Ali, A., and Hussain, S. M.: Role of Amino Acids in Improving Abiotic Stress Tolerance to Plants, in: Plant Tolerance to Environmental Stress, 175–204, https://doi.org/10.1201/9780203705315-12, 2019.
Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R., Young, P. J., Akiyoshi, H., Cox, R. A., Coyle, M., Derwent, R. G., Deushi, M., Finco, A., Frost, G. J., Galbally, I. E., Gerosa, G., Granier, C., Griffiths, P. T., Hossaini, R., Hu, L., Jöckel, P., Josse, B., Lin, M. Y., Mertens, M., Morgenstern, O., Naja, M., Naik, V., Oltmans, S., Plummer, D. A., Revell, L. E., Saiz-Lopez, A., Saxena, P., Shin, Y. M., Shahid, I., Shallcross, D., Tilmes, S., Trickl, T., Wallington, T. J., Wang, T., Worden, H. M., and Zeng, G.: Tropospheric ozone assessment report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100, Elementa, 8, 034, https://doi.org/10.1525/elementa.2020.034, 2020.
Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage, Atmos. Environ., 45, 2284–2296, https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011.
Balla, K., Karsai, I., Bónis, P., Kiss, T., Berki, Z., Horváth, Á., Mayer, M., Bencze, S., and Veisz, O.: Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress, PLoS One, 14, e0222639, https://doi.org/10.1371/journal.pone.0222639, 2019.
Baqasi, L. A., Qari, H. A., Nahhas, N. Al, Badr, R. H., Taia, W. K., El Dakkak, R., and Hassan, I. A.: Effects of low concentrations of ozone (O3) on metabolic and physiological attributes in wheat (Triticum aestivum L.) pants, Biomed. Pharmacol. J., 11, 929–934, https://doi.org/10.13005/bpj/1450, 2018.
Barillot, R., Chambon, C., and Andrieu, B.: CN-Wheat, a functional-structural model of carbon and nitrogen metabolism in wheat culms after anthesis. I. Model description, Ann. Bot., 118, 997–1013, https://doi.org/10.1093/aob/mcw143, 2016.
Bazargani, M. M., Sarhadi, E., Bushehri, A. A. S., Matros, A., Mock, H. P., Naghavi, M. R., Hajihoseini, V., Mardi, M., Hajirezaei, M. R., Moradi, F., Ehdaie, B., and Salekdeh, G. H.: A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat, J. Proteomics, 74, 1959–1973, https://doi.org/10.1016/j.jprot.2011.05.015, 2011.
Bland, S.: SEI-DO3SE/pyDO3SE-open: V4.39.16, Zenodo [code], https://doi.org/10.5281/zenodo.11620501, 2024.
Brestenský, M., Nitrayová, S., Patráš, P., and Nitray, J.: Dietary Requirements for Proteins and Amino Acids in Human Nutrition, Curr. Nutr. Food Sci., 15, 638–645, https://doi.org/10.2174/1573401314666180507123506, 2019.
Brewster, C., Fenner, N., and Hayes, F.: Chronic ozone exposure affects nitrogen remobilization in wheat at key growth stages, Sci. Total Environ., 908, 168288, https://doi.org/10.1016/j.scitotenv.2023.168288, 2024.
Broberg, M. C., Feng, Z., Xin, Y., and Pleijel, H.: Ozone effects on wheat grain quality – A summary, Environ. Pollut., 197, 203–213, https://doi.org/10.1016/j.envpol.2014.12.009, 2015.
Broberg, M. C., Uddling, J., Mills, G., and Pleijel, H.: Fertilizer efficiency in wheat is reduced by ozone pollution, Sci. Total Environ., 607–608, 876–880, https://doi.org/10.1016/j.scitotenv.2017.07.069, 2017.
Broberg, M. C., Hayes, F., Harmens, H., Uddling, J., Mills, G., and Pleijel, H.: Effects of ozone, drought and heat stress on wheat yield and grain quality, Agric. Ecosyst. Environ., 352, 108505, https://doi.org/10.1016/j.agee.2023.108505, 2023.
Chang-Espino, M., González-Fernández, I., Alonso, R., Araus, J. L., and Bermejo-Bermejo, V.: The effect of increased ozone levels on the stable carbon and nitrogen isotopic signature of wheat cultivars and landraces, Atmosphere (Basel)., 12, 883, https://doi.org/10.3390/atmos12070883, 2021.
CLRTAP: Chapter 3: Mapping critical levels for vegetation, in: Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends, https://unece.org/fileadmin/DAM/env/documents/2017/AIR/EMEP/Final__new_Chapter_3_v2__August_2017_.pdf (last access: 30 September 2024), 2017.
Cook, J.: JoCook1997/DO3SE-CropN: Initial release (v2.0), Zenodo [code], https://doi.org/10.5281/zenodo.13771475, 2024.
Cook, J., Brewster, C., Hayes, F., Booth, N., Bland, S., Pande, P., Thankappan, S., Pleijel, H., and Emberson, L.: New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat, Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, 2024.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J. F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., and Zbinden, R. M.: Tropospheric Ozone Assessment Report: Global distribution and trends of tropospheric ozone: An observation-based review, Elem. Sci. Anthr., 2, 000029, https://doi.org/10.12952/journal.elementa.000029, 2014.
Droutsas, I.: How do climate, ozone and crops interact to impact on health and nutrition?, University of Leeds, https://etheses.whiterose.ac.uk/id/eprint/27657/1/Droutsas_I_Earth_and_Environment_PhD_2020.pdf (last access: 30 September 2024), 2020.
Ebi, K. L., Anderson, C. L., Hess, J. J., Kim, S.-H., Loladze, I., Neumann, R. B., Singh, D., Ziska, L., and Wood, R.: Nutritional quality of crops in a high CO2 world: an agenda for research and technology development, Environ. Res. Lett., 16, 064045, https://doi.org/10.1088/1748-9326/abfcfa, 2021.
Elango, R., Ball, R. O., and Pencharz, P. B.: Indicator amino acid oxidation: Concept and application, J. Nutr., 138, 243–246, https://doi.org/10.1093/jn/138.2.243, 2008.
Elshorbany, Y., Ziemke, J. R., Strode, S., Petetin, H., Miyazaki, K., De Smedt, I., Pickering, K., Seguel, R. J., Worden, H., Emmerichs, T., Taraborrelli, D., Cazorla, M., Fadnavis, S., Buchholz, R. R., Gaubert, B., Rojas, N. Y., Nogueira, T., Salameh, T., and Huang, M.: Tropospheric ozone precursors: global and regional distributions, trends, and variability, Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, 2024.
Emberson, L.: Effects of ozone on agriculture, forests and grasslands: Improving risk assessment methods for O3, Philos. T. Roy. Soc. A, 378, 20190327, https://doi.org/10.1098/rsta.2019.0327, 2020.
Emberson, L., Bland, S., and Booth, N.: AgMIP Datahub [data set], https://agmipdatahub.wordpress.com/about/ (last access: 8 December 2022), 2021.
Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., and Tuovinend, J.: Modelling stomatal ozone flux across Europe, Environ. Pollut., 109, 403–413, 2000.
Emberson, L. D., Pleijel, H., Ainsworth, E. A., van den Berg, M., Ren, W., Osborne, S., Mills, G., Pandey, D., Dentener, F., Büker, P., Ewert, F., Koeble, R., and Van Dingenen, R.: Ozone effects on crops and consideration in crop models, Eur. J. Agron., 100, 19–34, https://doi.org/10.1016/j.eja.2018.06.002, 2018.
Faisal, S., Mujtaba, S. M., Khan, M. A., and Mahboob, W.: Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage, Pakistan J. Bot., 49, 445–452, 2017.
FAO: Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation, Rome, 1–66, ISBN 978-92-5-107417-6, 2013.
FAO, IFAD, UNICEF, WFP, and WHO: The State of Food Security and Nutrition in the World 2020, Transforming food systems for affordable healthy diets, FAO, Rome, 320 pp., ISBN 978-92-5-132901-6, 2020.
FAO, IFAD, UNICEF, WFP, and WHO: The state of food security and nutrition in the world, https://doi.org/10.1016/S2213-8587(22)00220-0, 2023.
Feller, U. and Fischer, A.: Nitrogen metabolism in senescing leaves, CRC. Crit. Rev. Plant Sci., 13, 241–273, https://doi.org/10.1080/07352689409701916, 1994.
Feng, Z. and Kobayashi, K.: Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis, Atmos. Environ., 43, 1510–1519, https://doi.org/10.1016/j.atmosenv.2008.11.033, 2009.
Feng, Z., Kobayashi, K., and Ainsworth, E. A.: Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis, Glob. Chang. Biol., 14, 2696–2708, https://doi.org/10.1111/j.1365-2486.2008.01673.x, 2008.
Fowler, D., Amann, M., Anderson, R., Ashmore, M., Cox, P., Depledge, M., Derwent, D., Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M., Kelly, F., Liss, P., Pilling, M., Pyle, J., Slingo, J., and Stevenson, D.: Ground-level ozone in the 21st century: future trends, impacts and policy implications, 134 pp., ISBN 978-0-85403-713-1, 2008.
G A, N., Chitransh, A., Gampa, M., Goswami, S., Dalal, M., Kumar, S., Tyagi, A., and Kumar, R. R.: Unraveling the effect of drought and heat stresses on grain quality of wheat (Triticum aestivum), Indian J. Agric. Sci., 94, 489–494, https://doi.org/10.56093/ijas.v94i5.142783, 2024.
Gaju, O., Allard, V., Martre, P., Le Gouis, J., Moreau, D., Bogard, M., Hubbart, S., and Foulkes, M. J.: Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars, F. Crop. Res., 155, 213–223, https://doi.org/10.1016/j.fcr.2013.09.003, 2014.
Gao, M., Liu, Y., Dong, Y., and Song, Z.: Photosynthetic and antioxidant response of wheat to di(2-ethylhexyl) phthalate (DEHP) contamination in the soil, Chemosphere, 209, 258–267, https://doi.org/10.1016/j.chemosphere.2018.06.090, 2018.
Ghude, S. D., Jena, C., Chate, D. M., Beig, G., Pfister, G. G., Kumar, R., and Ramanathan, V.: Reductions in India's crop yield due to ozone, Geophys. Res. Lett., 41, 5685–5691, https://doi.org/10.1002/2014GL060930, 2014.
Gill, S. S. and Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48, 909–930, https://doi.org/10.1016/j.plaphy.2010.08.016, 2010.
Global Nutrition Report: Country Nutrition Profiles, https://globalnutritionreport.org/resources/nutrition-profiles/asia/southern-asia/india/ (last access: 30 September 2024), 2020..
Gonmei, Z. and Toteja, G. S.: Micronutrient status of Indian population, Indian J. Med. Res., 148, 511–521, https://doi.org/10.4103/ijmr.IJMR_1768_18, 2018.
Guarin, J. R., Emberson, L., Simpson, D., Hernandez-Ochoa, I. M., Rowland, D., and Asseng, S.: Impacts of tropospheric ozone and climate change on Mexico wheat production, Climatic Change, 155, 157–174, https://doi.org/10.1007/s10584-019-02451-4, 2019.
Guarin, J. R., Jägermeyr, J., Ainsworth, E. A., Oliveira, F. A. A., Asseng, S., Boote, K., Elliott, J., Emberson, L., Foster, I., Hoogenboom, G., Kelly, D., Ruane, A. C., and Sharps, K.: Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4.8.0, Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, 2024.
He, D., Wang, E., Wang, J., and Robertson, M. J.: Data requirement for effective calibration of process-based crop models, Agric. For. Meteorol., 234–235, 136–148, https://doi.org/10.1016/j.agrformet.2016.12.015, 2017.
Herforth, A., Bai, Y., Venkat, A., Mahrt, K., Ebel, A., and Masters, W. A.: Cost and affordability of nutritious diets across and within countries., Background paper for The State of Food Security and Nutrition in the World, Rome, 105 pp., https://openknowledge.fao.org/items/5c33ca33-53e8-4ec6-89c5-f398bcfbf3c3 (last access: 30 September 2024), 2020.
Jones, D. B.: Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins, United States Department of Agriculture, Washington, D.C., 1941.
Khanna-Chopra, R.: Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation, Protoplasma, 249, 469–481, https://doi.org/10.1007/s00709-011-0308-z, 2012.
Khatkar, B. S., Chaudhary, N., and Dangi, P.: Production and Consumption of Grains: India, 2nd edn., Elsevier Ltd., 367–373, https://doi.org/10.1016/B978-0-12-394437-5.00044-9, 2015.
Kumar, R., Barth, M. C., Pfister, G. G., Delle Monache, L., Lamarque, J. F., Archer-Nicholls, S., Tilmes, S., Ghude, S. D., Wiedinmyer, C., Naja, M., and Walters, S.: How Will Air Quality Change in South Asia by 2050?, J. Geophys. Res.-Atmos., 123, 1840–1864, https://doi.org/10.1002/2017JD027357, 2018.
Kurpad, A. V. and Thomas, T.: Protein Quality and its Food Source in the Diets of Young Indian Children, J. Nutr., 150, 1350–1351, https://doi.org/10.1093/jn/nxaa100, 2020.
Lal, S., Venkataramani, S., Naja, M., Kuniyal, J. C., Mandal, T. K., Bhuyan, P. K., Kumari, K. M., Tripathi, S. N., Sarkar, U., Das, T., Swamy, Y. V., Gopal, K. R., Gadhavi, H., and Kumar, M. K. S.: Loss of crop yields in India due to surface ozone: an estimation based on a network of observations, Environ. Sci. Pollut. Res., 24, 20972–20981, https://doi.org/10.1007/s11356-017-9729-3, 2017.
Li, G., Wei, J., Li, C., Fu, K., Li, C., and Li, C.: Amino acid metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development, Environ. Exp. Bot., 218, 105577, https://doi.org/10.1016/j.envexpbot.2023.105577, 2024.
Li, H., Yang, Y., Jin, J., Wang, H., Li, K., Wang, P., and Liao, H.: Climate-driven deterioration of future ozone pollution in Asia predicted by machine learning with multi-source data, Atmos. Chem. Phys., 23, 1131–1145, https://doi.org/10.5194/acp-23-1131-2023, 2023.
Li, J., Guo, X., Zhang, S., Zhang, Y., Chen, L., Zheng, W., and Xue, X.: Effects of light quality on growth, nutritional characteristics, and antioxidant properties of winter wheat seedlings (Triticum aestivum L.), Front. Plant Sci., 13, 1–15, https://doi.org/10.3389/fpls.2022.978468, 2022.
Liu, J., Feng, H., He, J., Chen, H., and Ding, D.: The effects of nitrogen and water stresses on the nitrogen-to-protein conversion factor of winter wheat, Agric. Water Manag., 210, 217–223, https://doi.org/10.1016/j.agwat.2018.07.042, 2018.
Liu, J., Feng, H., He, J., Chen, H., Ding, D., Luo, X., and Dong, Q.: Modeling wheat nutritional quality with a modified CERES-wheat model, Eur. J. Agron., 109, 125901, https://doi.org/10.1016/j.eja.2019.03.005, 2019.
Lu, X., Zhang, L., Liu, X., Gao, M., Zhao, Y., and Shao, J.: Lower tropospheric ozone over India and its linkage to the South Asian monsoon, Atmos. Chem. Phys., 18, 3101–3118, https://doi.org/10.5194/acp-18-3101-2018, 2018.
Mariem, S. Ben, Soba, D., Zhou, B., Loladze, I., Morales, F., and Aranjuelo, I.: Climate Change, Crop Yields, and Grain Quality of C3 Cereals: A Meta-Analysis of [CO2], Temperature , and Drought Effects, Plants, 10, 1052, https://doi.org/10.3390/plants10061052, 2021.
Mariotti, F., Tomé, D., and Mirand, P. P.: Converting nitrogen into protein – Beyond 6.25 and Jones' factors, Crit. Rev. Food Sci. Nutr., 48, 177–184, https://doi.org/10.1080/10408390701279749, 2008.
Martre, P., Jamieson, P. D., Semenov, M. A., Zyskowski, R. F., Porter, J. R., and Triboi, E.: Modelling protein content and composition in relation to crop nitrogen dynamics for wheat, Eur. J. Agron., 25, 138–154, https://doi.org/10.1016/j.eja.2006.04.007, 2006.
Medek, D. E., Schwartz, J., and Myers, S. S.: Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region, Environ. Health Perspect., 125, 1–8, https://doi.org/10.1289/EHP41, 2017.
Meybodi, N. M., Mirmoghtadaie, L., Sheidaei, Z., and Mohammad, A.: Wheat Bread: Potential Approach to Fortify its Lysine Content, Curr. Nutr. Food Sci., 15, 630–637, https://doi.org/10.2174/1573401315666190228125241, 2019.
Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, W. J., Dentener, F., Van den Berg, M., Agrawal, M., Agrawal, S. B., Ainsworth, E. A., Büker, P., Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., and Van Dingenen, R.: Ozone pollution will compromise efforts to increase global wheat production, Glob. Change Biol., 24, 3560–3574, https://doi.org/10.1111/gcb.14157, 2018a.
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health, Elem. Sci. Anthr., 6, 47, https://doi.org/10.1525/elementa.302, 2018b.
Ministry of Agriculture & Farmers Welfare: Agricultural Statistics at a Glance 2021, New Delhi, 431 pp., https://desagri.gov.in/wp-content/uploads/2021/07/Agricultural-Statistics-at-a-Glance-2021-English-version.pdf (last access: 30 September 2024), 2022.
Minocha, S., Thomas, T., and Kurpad, A. V.: Dietary protein and the health-nutrition-agriculture connection in India, J. Nutr., 147, 1243–1250, https://doi.org/10.3945/jn.116.243980, 2017.
Mishra, A. K., Rai, R., and Agrawal, S. B.: Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system, Indian J. Biochem. Biophys., 50, 139–149, 2013.
Naaz, S., Rai, R., Adhikari, D., Kannaujia, R., Jamal, R., Ansari, M. A., Ansari, I., Pandey, V., and Barik, S. K.: Bioclimatic modeling and FACE study forecast a bleak future for wheat production in India, Environ. Monit. Assess., 195, 48, https://doi.org/10.1007/s10661-022-10551-5, 2022.
Naidu, B. P., Paleg, L. G., Aspinall, D., Jennings, A. C., and Jones, G. P.: Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings, Phytochemistry, 30, 407–409, https://doi.org/10.1016/0031-9422(91)83693-F, 1991.
Nayyar, H. and Walia, D. P.: Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid, Biol. Plantarum, 46, 275–279, https://doi.org/10.1023/A:1022867030790, 2003.
Nehe, A. S., Misra, S., Murchie, E. H., Chinnathambi, K., Singh Tyagi, B., and Foulkes, M. J.: Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars, F. Crop. Res., 251, 107778, https://doi.org/10.1016/j.fcr.2020.107778, 2020.
Nguyen, T. H., Cappelli, G. A., Emberson, L., Ignacio, G. F., Irimescu, A., Francesco, S., Fabrizio, G., Booth, N., Boldeanu, G., Bermejo, V., Bland, S., Frei, M., Ewert, F., and Gaiser, T.: Assessing the spatio-temporal tropospheric ozone and drought impacts on leaf growth and grain yield of wheat across Europe through crop modeling and remote sensing data, Eur. J. Agron., 153, 127052, https://doi.org/10.1016/j.eja.2023.127052, 2024.
Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., and Wheeler, T.: JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator, Geosci. Model Dev., 8, 1139–1155, https://doi.org/10.5194/gmd-8-1139-2015, 2015.
Pande, P., Bland, S., Booth, N., Cook, J., Feng, Z., and Emberson, L.: Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield, Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025, 2025.
Pandey, A. K., Ghosh, A., Agrawal, M., and Agrawal, S. B.: Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality, Ecotoxicol. Environ. Saf., 158, 59–68, https://doi.org/10.1016/j.ecoenv.2018.04.014, 2018.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python Fabian, J. Mach. Learn. Res., 12, 2825–2830, https://doi.org/10.48550/arXiv.1201.0490, 2011.
Piikki, K., De Temmerman, L., Ojanperä, K., Danielsson, H., and Pleijel, H.: The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure, Eur. J. Agron., 28, 245–254, https://doi.org/10.1016/j.eja.2007.07.004, 2008.
Pleijel, H., Danielsson, H., and Broberg, M. C.: Benefits of the Phytotoxic Ozone Dose (POD) index in dose-response functions for wheat yield loss, Atmos. Environ., 268, 118797, https://doi.org/10.1016/j.atmosenv.2021.118797, 2022.
Rai, R. and Agrawal, M.: Impact of tropospheric ozone on crop plants, P. Natl. A. Sci. India B, 82, 241–257, https://doi.org/10.1007/s40011-012-0032-2, 2012.
Rathore, A., Gopikrishnan, G. S., and Kuttippurath, J.: Changes in tropospheric ozone over India: Variability, long-term trends and climate forcing, Atmos. Environ., 309, 119959, https://doi.org/10.1016/j.atmosenv.2023.119959, 2023.
Rijal, B., Baduwal, P., Chaudhary, M., Chapagain, S., Khanal, S., Khanal, S., and Poudel, P. B.: Drought Stress Impacts on Wheat and Its Resistance Mechanisms, Malaysian J. Sustain. Agric., 5, 67–76, https://doi.org/10.26480/mjsa.02.2021.67.76, 2020.
Sarkar, A. and Agrawal, S. B.: Elevated ozone and two modern wheat cultivars: An assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters, Environ. Exp. Bot., 69, 328–337, https://doi.org/10.1016/j.envexpbot.2010.04.016, 2010.
Sarkar, A., Rakwal, R., Agrawal, S. B., Shibato, J., Ogawa, Y., Yoshida, Y., Kumar Agrawal, G., and Agrawal, M.: Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches, J. Proteome Res., 9, 4565–4584, https://doi.org/10.1021/pr1002824, 2010.
Schauberger, B., Rolinski, S., Schaphoff, S., and Müller, C.: Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects, Agric. For. Meteorol., 265, 1–15, https://doi.org/10.1016/j.agrformet.2018.11.004, 2019.
Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., Von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M., Hjellbrekke, A. G., Hong, Y. D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M. T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agulló, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K. S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xiaobin, X., Xue, L., and Zhiqiang, M.: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations, Elem. Sci. Anthr., 5, 58, https://doi.org/10.1525/elementa.244, 2017.
Shaheen, N., Islam, S., Munmun, S., Mohiduzzaman, M., and Longvah, T.: Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh, Food Chem., 213, 83–89, https://doi.org/10.1016/j.foodchem.2016.06.057, 2016.
Sharma, A., Ojha, N., Pozzer, A., Beig, G., and Gunthe, S. S.: Revisiting the crop yield loss in India attributable to ozone, Atmos. Environ. X, 1, 100008, https://doi.org/10.1016/j.aeaoa.2019.100008, 2019.
Shewry, P. R. and Hey, S. J.: The contribution of wheat to human diet and health, Food Energy Secur., 4, 178–202, https://doi.org/10.1002/FES3.64, 2015.
Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., and Muricho, G.: Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security, Food Secur., 5, 291–317, https://doi.org/10.1007/s12571-013-0263-y, 2013.
Siddiqi, R. A., Singh, T. P., Rani, M., Sogi, D. S., and Bhat, M. A.: Diversity in Grain, Flour, Amino Acid Composition, Protein Profiling, and Proportion of Total Flour Proteins of Different Wheat Cultivars of North India, Front. Nutr., 7, 141, https://doi.org/10.3389/fnut.2020.00141, 2020.
Simon-Sarkadi, L. and Galiba, G.: Reflection of Environmental Stresses, Period. Polytech. Chem. Eng., 40, 79–86, 1996.
Singh, N., Dey, S., and Knibbs, L. D.: Spatio-temporal patterns of tropospheric NO2 over India during 2005–2019, Atmos. Pollut. Res., 14, 101692, https://doi.org/10.1016/j.apr.2023.101692, 2023.
Sinha, B., Singh Sangwan, K., Maurya, Y., Kumar, V., Sarkar, C., Chandra, B. P., and Sinha, V.: Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements, Atmos. Chem. Phys., 15, 9555–9576, https://doi.org/10.5194/acp-15-9555-2015, 2015.
Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., and Archibald, A.: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 3063–3085, https://doi.org/10.5194/acp-13-3063-2013, 2013.
Swaminathan, S., Vaz, M., and Kurpad, A. V.: Protein intakes in India, Br. J. Nutr., 108, 50–58, https://doi.org/10.1017/S0007114512002413, 2012.
Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y., and Feng, Z.: Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2, Front. Sustain. Food Syst., 5, 534616, https://doi.org/10.3389/fsufs.2021.534616, 2021.
Tao, F., Feng, Z., Tang, H., Chen, Y., and Kobayashi, K.: Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination, Atmos. Environ., 153, 182–193, https://doi.org/10.1016/j.atmosenv.2017.01.032, 2017.
Tian, H., Ren, W., Tao, B., Sun, G., Chappelka, A., Wang, X., Pan, S., Yang, J., Liu, J., Felzer, B. S., Melillo, J. M., and Reilly, J.: Climate extremes and ozone pollution: a growing threat to China' s food security, Ecosyst. Heal. Sustain., 2, e01203, https://doi.org/10.1002/ehs2.1203, 2015.
Tiwari, S. and Agrawal, M.: Tropospheric Ozone and its Impacts on Crop Plants, Springer International Publishing, Cham, Switzerland, https://doi.org/10.1007/978-3-319-71873-6, 2018.
Tomer, R., Bhatia, A., Kumar, V., Kumar, A., Singh, R., Singh, B., and Singh, S. D.: Impact of elevated ozone on growth, yield and nutritional quality of two wheat species in northern india, Aerosol Air Qual. Res., 15, 329–340, https://doi.org/10.4209/aaqr.2013.12.0354, 2015.
Tripathi, A. and Mishra, A. K.: The Wheat Sector in India: Production, Policies and Food Security, in: The Eurasian Wheat Belt and Food Security: Global and Regional Aspects, 275–296, https://doi.org/10.1007/978-3-319-33239-0_17, 2017.
United States Department of Agriculture: China Wheat: MY 2022/23 production projected down from last year, Commodity Intelligence Report: Foreign Agricultural Service Report, 1–9, https://ipad.fas.usda.gov/highlights/2022/05/China/index.pdf (last access: 30 September 2024), 2022.
Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and Cofala, J.: The global impact of ozone on agricultural crop yields under current and future air quality legislation, Atmos. Environ., 43, 604–618, https://doi.org/10.1016/j.atmosenv.2008.10.033, 2009.
Wallach, D.: Crop model calibration: A statistical perspective, Agron. J., 103, 1144–1151, https://doi.org/10.2134/agronj2010.0432, 2011.
Wang, P., Liu, D., Mukherjee, A., Agrawal, M., Zhang, H., Agathokleous, E., Qiao, X., Xu, X., Chen, Y., Wu, T., Zhu, M., Saikawa, E., Agrawal, S. B., and Feng, Z.: Air pollution governance in China and India: Comparison and implications, Environ. Sci. Policy, 142, 112–120, https://doi.org/10.1016/j.envsci.2023.02.006, 2023.
Wang, X., Hou, L., Lu, Y., Wu, B., Gong, X., Liu, M., Wang, J., Sun, Q., Vierling, E., and Xu, S.: Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress, J. Exp. Bot., 69, 5531–5545, https://doi.org/10.1093/jxb/ery303, 2018.
Xu, B., Wang, T., Gao, L., Ma, D., Song, R., Zhao, J., Yang, X., Li, S., Zhuang, B., Li, M., and Xie, M.: Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060, Environ. Pollut., 317, 120715, https://doi.org/10.1016/j.envpol.2022.120715, 2023.
Yadav, D. S., Rai, R., Mishra, A. K., Chaudhary, N., Mukherjee, A., Agrawal, S. B., and Agrawal, M.: ROS production and its detoxification in early and late sown cultivars of wheat under future O3 concentration, Sci. Total Environ., 659, 200–210, https://doi.org/10.1016/j.scitotenv.2018.12.352, 2019.
Yadav, D. S., Mishra, A. K., Rai, R., Chaudhary, N., Mukherjee, A., Agrawal, S. B., and Agrawal, M.: Responses of an old and a modern Indian wheat cultivar to future O3 level: Physiological, yield and grain quality parameters, Environ. Pollut., 259, 113939, https://doi.org/10.1016/j.envpol.2020.113939, 2020.
Yadav, D. S., Agrawal, S. B., and Agrawal, M.: Ozone flux-effect relationship for early and late sown Indian wheat cultivars: Growth, biomass, and yield, F. Crop. Res., 263, 108076, https://doi.org/10.1016/j.fcr.2021.108076, 2021.
Yang, Q., Zhao, D., and Liu, Q.: Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example, Front. Plant Sci., 11, 928, https://doi.org/10.3389/fpls.2020.00928, 2020.
Zhang, D., Liu, J., Li, D., Batchelor, W. D., Wu, D., Zhen, X., and Ju, H.: Future climate change impacts on wheat grain yield and protein in the North China Region, Sci. Total Environ., 902, 166147, https://doi.org/10.1016/j.scitotenv.2023.166147, 2023.
Zhou, S. S., Tai, A. P. K., Sun, S., Sadiq, M., Heald, C. L., and Geddes, J. A.: Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health, Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, 2018.
Zulfiqar, F. and Ashraf, M.: Proline Alleviates Abiotic Stress Induced Oxidative Stress in Plants, J. Plant Growth Regul., 42, 4629–4651, https://doi.org/10.1007/s00344-022-10839-3, 2023.
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential...
Altmetrics
Final-revised paper
Preprint