Articles | Volume 22, issue 5
https://doi.org/10.5194/bg-22-1215-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1215-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mixing, spatial resolution and argon saturation in a suite of coupled general ocean circulation biogeochemical models off Mauritania
Heiner Dietze
CORRESPONDING AUTHOR
Department of Computer Science, Archaeoinformatics – Data Science, University of Kiel, Kiel, Germany
Department of Chemistry, King's College London, London, UK
Ulrike Löptien
Department of Computer Science, Archaeoinformatics – Data Science, University of Kiel, Kiel, Germany
Related authors
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Cited articles
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World ocean atlas 2009, Volume 2: Salinity, in: NOAA Atlas NESDIS 69, edited by: Levitus, S., vol. 2, US Government Printing Office, Washington DC, 184, 2009. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics, 17, 173–265, 1977. a
Banerjee, T., Danilov, S., and Klingbeil, K.: Discrete variance decay analsis of spurious mixing, Ocean Model., 192, 102460, https://doi.org/10.1016/j.ocemod.2024.102460, 2024. a
Barton, E. D.: Meanders, eddies and intrusions in the thermohaline fron off Northwest Africa, Oceanol. Acta, 10, 267–283, 1987. a
Bieri, R. H., Koide, M., and Goldberg, E. D.: The noble gas contents of pacific seawaters, J. Geophys. Res., 71, 5243–5265, https://doi.org/10.1029/JZ071i022p05243, 1966. a
Braghiere, R. K., Wang, Y., Gagné-Landmann, A., Brodrick, P. G., Bloom, A. A., Norton, A. J., Ma, A., Levine, P., Longo, M., Deck, K., Gentine, P., Worden, J. R., Frankenberg, C., and Schneider, T.: The importance of hyperspectral soil albedo information for improving Earth system model projections, AGU Advances, 4, e2023AV000910, https://doi.org/10.1029/2023AV000910, 2023. a
Brett, G. J., Whitt, D. B., Long, M. C., Bryan, F. O., Feloy, K., and Richards, K. J.: Submesoscale effects on changes to export production under global warming, Global Biogeochem. Cy., 37, e2022GB007619, https://doi.org/10.1029/2022GB007619, 2023. a, b
Burchard, H. and Rennau, H.: Comparative quantification of physically and numerically induced mixing in ocean models, Ocean Model., 20, 293–311, https://doi.org/10.1016/j.ocemod.2007.10.003, 2008. a, b, c
Camp, L. V. V., Nykjær, L., Mittelstaedt, E., and Schlittenhardt, P.: Upwelling and boundary circulation off Northwest Africa as depicted by infrared and visible satellite observations, Prog. Oceanogr., 26, 357–402, https://doi.org/10.1016/0079-6611(91)90012-B, 1991. a
Capet, X., Williams, J. C. M., Molemaker, M. J., and Shchepetkin, A. F.: Mesoscale to sub-mesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests, J. Phys. Oceanogr., 38, 29–43, https://doi.org/10.1175/2007JPO3671.1, 2008. a
Counillon, F., Keenlyside, N., Wang, S., Devilliers, M., Gupta, A., Koseki, S., and Shen, M.-L.: Framework for an ocean-connected supermodel of the Earth system, J. Adv. Model. Earth Sy., 15, e2022MS003310, https://doi.org/10.1029/2022MS003310, 2023. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. a
Dietze, H. and Löptien, U.: Effects of surface current–wind interactionconfiguration in an eddy-rich general ocean circulation simulation of the Baltic Sea, Ocean Sci., 12, 977–986, https://doi.org/10.5194/os-12-977-2016, 2016. a
Dietze, H. and Löptien, U.: Retracing hypoxia in Eckernförde Bight (Baltic Sea), Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, 2021. a
Dietze, H. and Löptien, U.: Argon Saturation in a Suite of Coupled General Ocean Circulation Biogeochemical Models off Mauretania, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5549894, 2023. a, b
Dietze, H. and Oschlies, A.: Modeling abiotic production of apparent oxygen utilisation in the oligotrophic subtropical North Atlantic, Ocean Dynam., 55, 28–33, https://doi.org/10.1007/s10236-005-0109-z, 2005a. a, b, c
Dietze, H., Löptien, U., and Getzlaff, K.: MOMBA 1.1 – a high-resolution Baltic Sea configuration of GFDL's Modular Ocean Model, Geosci. Model Dev., 7, 1713–1731, https://doi.org/10.5194/gmd-7-1713-2014, 2014. a, b, c
Dietze, H., Getzlaff, J., and Löptien, U.: Simulating natural carbon sequestration in the Southern Ocean: on uncertainties associated with eddy parameterizations and iron deposition, Biogeosciences, 14, 1561–1576, https://doi.org/10.5194/bg-14-1561-2017, 2017. a
Dietze, H., Löptien, U., and Getzlaff, J.: MOMSO 1.0 – an eddying Southern Ocean model configuration with fairly equilibrated natural carbon, Geosci. Model Dev., 13, 71–97, https://doi.org/10.5194/gmd-13-71-2020, 2020. a, b, c
Doumbouya, A., Camara, O. T., Mamie, J., Intchama, J. F., Jarra, A., Ceesay, S., Guéye, A., Ndiaye, D., Beibou, E., Padilla, A., and Belhabib, D.: Assessing the effectiveness of monitoring control and surveillance of illegal fishing: the case of West Africa, Frontiers in Marine Science, 4, 50, https://doi.org/10.3389/fmars.2017.00050, 2017. a
Eden, C. and Dietze, H.: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy, J. Geophys. Res., 114, https://doi.org/10.1029/2008JC005129, 2009. a
Ellison, E., Mashayek, A., and Mazloff, M.: The sensitivity of southern ocean air-sea carbon fluxes to background turbulent diapycnal mixing variability, J. Geophys. Res.-Oceans, 128, e2023JC019756, https://doi.org/10.1029/2023JC019756, 2023. a, b
Emerson, S., Ito, T., and Hamme, R. C.: Argon supersaturation indicates low decadal-scale vertical mixing in the ocean thermocline, Geophys. Res. Lett., 3, 19, https://doi.org/10.1029/2012GL053054, 2012. a, b, c
Faye, S., Lazar, A., Sow, B. A., and Gaye, A. T.: A model study of the seasonality of sea surface temperature and circulation in the Atlantic north-eastern tropical upwelling system, AIP Conf. Proc., 3, 76, https://doi.org/10.3389/fphy.2015.00076, 2015. a
Feng, E. Y., Koeve, W., Keller, D. P., and Oschlies, A.: Model-based assessment of the CO2 sequestration potential of coastal ocean alkalinization, Earth's Future, 5, 1252–1266, https://doi.org/10.1002/2017EF000659, 2017. a
Feng, E. Y., Su, B., and Oschlies, A.: Geoengineered ocean vertical water exchange can accelerate global deoxygenation, Geophys. Res. Lett., 47, e2020GL088263, https://doi.org/10.1029/2020GL088263, 2020. a
Flato, G. M.: Earth system models: an overview, WIREs Clim. Change, 2, 783–800, https://doi.org/10.1002/wcc.148, 2011. a
Foltz, G. R., Schmid, C., and Lumpkin, R.: Seasonal cycle of the mixed layer heat budget in the northeastern tropical Atlantic Ocean, J. Climate, 26, 8169–8188, https://doi.org/10.1175/JCLI-D-13-00037.1, 2013. a
Fratantoni, D. M.: North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters, J. Geophys. Res.-Oceans, 106, C10, 22067–22093, https://doi.org/10.1029/2000JC000730, 2001. a
Galbraith, E. D., Gnanadesikan, A., Dunne, J. P., and Hiscock, M. R.: Regional impacts of iron-light colimitation in a global biogeochemical model, Biogeosciences, 7, 1043–1064, https://doi.org/10.5194/bg-7-1043-2010, 2010. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., and Antonov, J. I.: World ocean atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), in: NOAA Atlas NESDIS 71, edited by: Levitus, S., vol. 4, US Government Printing Office, Washington DC, 398 pp., 2010a. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World ocean atlas 2009, Volume 3: Dissolved oxygen, apparent oxygen utilization, and oxygen saturation, in: NOAA Atlas NESDIS 70, edited by: Levitus, S., vol. 4, US Government Printing Office, Washington DC, 344 pp., 2010b. a
Gaspard, P. Y. G. and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site, J. Geophys. Res.-Oceans, 95, 16179–16193, https://doi.org/10.1029/JC095iC09p16179, 1990. a
Gerdes, R., Köberle, C., and Willebrand, J.: The influence of numerical advection schemes on the results of ocean general circulation models, Clim. Dynam., 5, 211–226, 1991. a
Getzlaff, J., Nurser, G., and Oschlies, A.: Diagnostics of diapycnal diffusion in z-level ocean models. Part II: 3-dimensional OGCM, Ocean Model., 45–46, 27–37, https://doi.org/10.1016/j.ocemod.2011.11.006 2012. a, b
Getzlaff, J., Dietze, H., and Löptien, U.: Tracing net diapycnal mixing in ocean circulation models with argon saturation, 7–12 April 2019, Vienna, Geophysical Research Abstracts, 21, EGU2019–11174, 2019. a
Gibson, A. H., Hogg, A. M., Kiss, A. E., Shakespeare, C. J., and Adcroft, A.: Attribution of horizontal and vertical contributions to spurious mixing in an arbitrary Lagrangian–Eulerian ocean model, Ocean Model., 119, 45–56, https://doi.org/10.1016/j.ocemod.2017.09.008, 2017. a
Gnanadesikan, A., Pradal, A.-A., and Abernathey, R.: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake, Geophys. Res. Lett., 42, 4249–4255, https://doi.org/10.1002/2015GL064100, 2015. a
Griffies, S. M. and Hallberg, R. W.: Biharmonic friction with a Smagorinsky-like viscosity for use in largescale eddy-permitting ocean models, Mon. Weather Rev., 128, 2935–2946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2, 2000. a
Griffies, S. M., Pacanowski, R. C., and Hallberg, R. W.: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model, Mon. Weather Rev., 128, 538–564, https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2, 2000. a, b
Gulev, S., Jung, T., and Ruprecht, E.: Estimation of the impact of sampling errors in the VOS observations on air-sea fluxes. Part II: impacts on trends and interannual variability, J. Climate, 20, 302–315, https://doi.org/10.1175/JCLI4008.1, 2007. a
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. a
Hamme, R. C., Emerson, S. R., Severinghaus, J. P., Long, M. C., and Yashayaev, I.: Using noble gas measurements to derive air-sea process information and predict physical gas saturations, Geophys. Res. Lett., 44, 9901–9909, https://doi.org/10.1002/2017GL075123, 2017. a, b, c
Hauss, H., Christiansen, S., Schütte, F., Kiko, R., Edvam Lima, M., Rodrigues, E., Karstensen, J., Löscher, C. R., Körtzinger, A., and Fiedler, B.: Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies, Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, 2016. a
Hecht, M. W.: Cautionary tales of persistent accumulation of numerical error: dispersive centered advection, Ocean Model., 35, 270–276, https://doi.org/10.1016/j.ocemod.2010.07.005, 2010. a
Henning, C. C., Archer, D., and Fung, I.: Argon as a tracer of cross-isopycnal mixing in the thermocline, J. Phys. Oceanogr., 36, 2090–2105, https://doi.org/10.1175/JPO2961.1, 2011. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E., Chassignet, E. P., Fox-Kemper, B., Hyder, P., Marshall, D. P., Treguier, E. P. A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M., Kuhlbrodt, T., Arsouze, T., Belluci, A., Castuccio, F., Gan, B., Putrasahan, D., Roberts, C. D., Roekel, L. V., and Zhang, Q.: Resolving and parameterising the ocean mesoscale in Earth system models, Current Climate Change Reports, 6, 137–152, https://doi.org/10.1007/s40641-020-00164-w, 2020. a
Hill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R., and Barrie, N.: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models – insights from virtual deliberate tracer release experiments, Ocean Model., 45/46, 14–26, https://doi.org/10.1016/j.ocemod.2011.12.001, 2012. a
Hundsdorfer, W. and Trompert, R.: Methods of lines and direct discretization: a comparison for linear advection, Appl. Numer. Math., 13, 469–490, https://doi.org/10.1016/0168-9274(94)90009-4, 1994. a
Ilicak, M.: Quantifying spatial distribution of spurious mixing in ocean models, Ocean Model., 108, 30–38, https://doi.org/10.1016/j.ocemod.2016.11.002, 2016. a, b
Ilicak, M., Adcroft, A., Griffies, S. M., and Hallberg, R. W.: Spurious dianeutral mixing and the role of momentum closure, Ocean Model., 45–46, 37–58, https://doi.org/10.1016/j.ocemod.2011.10.003, 2012. a
Ito, T. and Deutsch, C.: Understanding the saturation state of argon in the thermocline: the role of air-sea gas exchange and diapycnal mixing, Global Biogeochem. Cy., 20, GB3019, https://doi.org/10.1029/2005GB002655, 2006. a, b
Ito, T., Deutsch, C., Emerson, S., and Hamme, R. C.: Impact of diapycnal mixing on the saturation state of argon in the subtropical North Pacific, Geophys. Res. Lett., 34, L09602, https://doi.org/10.1029/2006GL029209, 2007. a, b
Jenkins, W. J., Seltzer, A. M., Gebbie, G., and German, C. R.: Noble gas evidence of a millennial-scale deep North Pacific palaeo-barometric anomaly, Nat. Geosci., 17, 114–117, https://doi.org/10.1038/s41561-023-01368-z, 2023. a
Karleskind, P., Lévy, M., and Mémery, L.: Modifications of mode water properties by sub-mesoscales in a biophysical model of the Northeast Atlantic, Ocean Model., 39, 47–60, https://doi.org/10.1016/j.ocemod.2010.12.003, 2011. a, b
Karstensen, J., Fiedler, B., Schütte, F., Brandt, P., Körtzinger, A., Fischer, G., Zantopp, R., Hahn, J., Visbeck, M., and Wallace, D.: Open ocean dead zones in the tropical North Atlantic Ocean, Biogeosciences, 12, 2597–2605, https://doi.org/10.5194/bg-12-2597-2015, 2015. a, b
Keller, D. P., Feng, E. Y., and Oschlies, A.: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario, Nat. Commun., 5, 3304, https://doi.org/10.1038/ncomms4304, 2014. a
Khatiwala, S.: Efficient spin-up of Earth System Models using sequence acceleration, Science Advances, 10, eadn2839, https://doi.org/10.1126/sciadv.adn2839, 2024. a
Klenz, T., Dengler, M., and Brandt, P.: Seasonal Variability of the Mauretania Current and Hydrography at 18° N, J. Geophys. Res.-Oceans, 123, 8122–8137, https://doi.org/10.1029/2018JC014264, 2018. a
Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., and Burchard, H.: Quantification of spurious dissipation and mixing – Discrete variance decay in a Finite-Volume framework, Ocean Model., 81, 49–64, https://doi.org/10.1016/j.ocemod.2014.06.001, 2014. a
Klingbeil, K., Burchard, H., Danilov, S., Goetz, C., and Iske, A.: Reducing spurious diapycnal mixing in ocean models, in: Energy Transfers in Atmosphere and Ocean. Mathematics of Planet Earth, edited by: Carsten, C. and Iske, A., vol. 1, Springer, https://doi.org/10.1007/978-3-030-05704-6_8, 2019. a
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and Rahmstorf, S.: On the driving process of the Atlantic meridional overturning circulation, Rev. Geophys., 45, RG2001, https://doi.org/10.1029/2004RG000166, 2007. a
Kunze, E.: Internal-Wave-Driven Mixing: Global geography and budgets, J. Phys. Oceanogr., 47, 1325–1345, https://doi.org/10.1175/JPO-D-16-0141.1, 2017. a, b
Lachkar, Z. and Gruber, N.: A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network, Biogeosciences, 9, 293–308, https://doi.org/10.5194/bg-9-293-2012, 2012. a
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, 2004. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air-sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2008. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Ocean vertical mixing: a review and a model with a nonlocal boundary layer paramterization, Rev. Geophys, 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a, b
Ledwell, J. R., Watson, A., and Law, C. S.: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment, Nature, 364, 701–703, https://doi.org/10.1038/364701a0, 1993. a
Lee, M.-M., Coward, A. C., and Nurser, A. J. G.: Spurious diapycnal mixing of the deep waters in an eddy-permitting global ocean model, J. Phys. Oceanogr., 32, 1522–1535, https://doi.org/10.1175/1520-0485(2002)032<1522:SDMOTD>2.0.CO;2, 2002. a
Leonard, B. P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Method. Appl. M., 19, 59–98, https://doi.org/10.1016/0045-7825(79)90034-3, 1979. a
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, S. G.: World ocean atlas 2009, Volume 1: Temperature, in: NOAA Atlas NESDIS 69, edited by: Levitus, S., vol. 1, 184 pp., US Government Printing Office, Washington DC, 2010. a
Löptien, U. and Dietze, H.: Constraining parameters in marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks?, Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, 2015. a
Löptien, U. and Dietze, H.: Effects of parameter indeterminacy in pelagic biogeochemical modules of Earth system models on projections into a warming future: the scale of the problem, Global Biogeochem. Cy., 31, 1155–1172, https://doi.org/10.1002/2017GB005690, 2017. a
Löptien, U. and Dietze, H.: Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing, Biogeosciences, 16, 1865–1881, https://doi.org/10.5194/bg-16-1865-2019, 2019. a, b
Löptien, U., Dietze, H., Preuss, R., and Toussaint, U. V.: Mapping manifestations of parametric uncertainty in projected pelagic oxygen concentrations back to contemporary local model fidelity, Sci. Rep.-UK, 11, 20949, https://doi.org/10.1038/s41598-021-00334-2, 2021. a, b, c
Luecke, C. A., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Ansong, J. K., Bassette, S. L., Buijsman, M. C., and Menemenlis, D.: Statistical comparisons of temperature variance and kinetic energy in global ocean models and observations: results from mesoscale to internal wave frequencies, J. Geophys. Res.-Oceans, 125, e2019JC015306, https://doi.org/10.1029/2019JC015306, 2020. a
MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., Laurent, L. C. S., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M., Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S., Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb, B. P., Barna, A., Arbic, B. K., Ansong, J. K., and Alford, M. H.: Climate Process Team on Internal Wave–Driven Ocean Mixing, B. Am. Meteorol. Soc., 98, 2429–2454, https://doi.org/10.1175/BAMS-D-16-0030.1, 2017. a
Mahadevan, A. and Archer, D.: Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean, J. Geophys. Res., 105, 1209–1225, https://doi.org/10.1029/1999JC900216, 2000. a, b, c, d
Mahadevan, A. and Tandon, A.: An analysis of mechanisms for submesoscale vertical motion at ocean fronts, Ocean Model., 14, 241–256, https://doi.org/10.1016/j.ocemod.2006.05.006, 2006. a, b, c
Martin, A. and Pondaven, P.: On estimates for the vertical nitrate flux due to eddy pumping, J. Geophys. Res, 108, 3359, https://doi.org/10.1029/2003JC001841, 2003. a, b, c
Martin, A. P. and Richards, K. J.: Mechanisms for the vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. Pt. II, 48, 757–773, https://doi.org/10.1016/S0967-0645(00)00096-5, 2001. a
Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Blaker, S. A. C. A. T., and Coward, A. C.: The North Atlantic subpolar circulation in an eddy-resolving global ocean model, J. Marine Syst., 142, 126–143, https://doi.org/10.1016/j.jmarsys.2014.10.007, 2015. a
McGraw, R., Yang, F., and Fierce, L. M.: Preserving tracer correlations in moment based atmospheric transport models, J. Adv. Model. Earth Sy., 16, e2023MS003621, https://doi.org/10.1029/2023MS003621, 2024. a
Megann, A.: Estimating the numerical diapycnal mixing in an eddy-permitting ocean model, Ocean Model., 121, 19–33, https://doi.org/10.1016/j.ocemod.2017.11.001, 2018. a, b
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982. a
Messié, M., Ledesma, J., Kolber, D. D., Michisaki, R. P., Foley, D. G., and Chavez, F. P.: Potential new production estimates in four eastern boundary upwelling ecosystems, Prog. Oceanogr., 83, 151–158, https://doi.org/10.1016/j.pocean.2009.07.018, 2009. a
National Geophysical Data Center: 5-minute Gridded Global Relief Data (ETOPO5), National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5D798BF (last access: June 2010), 1993. a
O'Kane, T., Matear, R., Chamberlain, M., and Oke, P.: ENSO regimes and the late 1970's climate regime shift: the role of synoptic weather and South Pacific ocean spiciness, J. Comput. Phys., 271, 19–38, https://doi.org/10.1016/j.jcp.2013.10.058, 2014. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
ould Dedah, S.: Wind, surface water temperature, surface salinity and pollution in the area of the Banc d'Arguin, Mauritania, Hydrobiologica, 258, 9–19, https://doi.org/10.1007/978-94-011-1986-3_2, 1993. a
Pacanowski, R. C. and Philander, S. G. H.: Parameterization of vertical mixing in numerical models of the tropical oceans, J. Phys. Oceanogr., 11, 1443–1451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2, 2981. a
Pöppelmeier, F., Baggenstos, D., Grimmer, M., Liu, Z., Schmitt, J., Fischer, H., and Stocker, T. F.: The effect of past saturation changes on noble gas reconstructions of mean ocean temperature, Geophys. Res. Lett., 50, e2022GL102055, https://doi.org/10.1029/2022GL102055, 2023. a
Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U., Mohrholz, V., Nausch, G., Umlauf, L., and Wieczorek, G.: Vertical mixing in the Baltic Sea and consequences for eutrophication – a review, Prog. Oceanogr., 82, 47–80, https://doi.org/10.1016/j.pocean.2007.10.004, 2009. a
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets, U., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., and Zaehle, S.: A roadmap for improving the representation of photosynthesis in Earth system models, New Phytol., 213, 22–42, https://doi.org/10.1111/nph.14283, 2017. a
Ruan, X., Couespel, D., Lévy, Mak, L. J., and Wang, Y.: Combined physical and biogeochemical assessment of mesoscale eddy parameterisations in ocean models: Eddy induced advection at non-eddying resolutions, Ocean Model., 183, 102204, https://doi.org/10.1016/j.ocemod.2023.102204, 2023. a, b
Sallée, J.-B., Matear, R. J., Rintoul, S. R., and Lenton, A.: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans, Nat. Geosci., 5, 579–584, https://doi.org/10.1038/ngeo1523, 2012. a
Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal-induced mixing and diapycnal nutrient fluxes in the Mauritanian upwelling region, J. Geophys. Res.-Oceans, 115, C10, https://doi.org/10.1029/2009JC005940, 2010. a
Schlichting, D., Qu, L., Kobashi, D., and Hetland, R.: Quantification of physical and numerical mixing in a coastal ocean model using salinity variance budgets, J. Adv. Model. Earth Sy., 15, e2022MS003380, https://doi.org/10.1029/2022MS003380, 2023. a
Schmittner, A., Urban, N. M., Keller, K., and Matthews, D.: Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate-carbon cycle projections, Global Biogeochem. Cy., 23, GB4009, https://doi.org/10.1029/2008GB003421, 2009. a, b
Seltzer, A. M., Nicholson, D. P., Smethie, W. M., Tyne, R. L., Roy, E. L., Stanley, R. H. R., Stute, M., Barry, P. H., McPaul, K., Davidson, P. W., Chang, B. X., Rafter, P. A., Lethaby, P., Johnson, R. J., Khatiwala, S., and Jenkins, W. J.: Dissolved gases in the deep North Atlantic track ocean ventilation processes, P. Natl. Acad. Sci. USA, 120, e2217946120, https://doi.org/10.1073/pnas.2217946120, 2023. a
Semmler, T., Jungclaus, J., Danek, C., Goessling, H. F., Koldunov, N. V., Rackow, T., and Sidorenko, D.: Ocean model formulation influences transient climate response, J. Geophys. Res.-Oceans, 126, e2021JC017633, https://doi.org/10.1029/2021JC017633, 2021. a
Shapiro, R.: Smoothing, filtering, and boundary effects, Rev. Geophys. Space GE, 8, 359–387, https://doi.org/10.1029/RG008i002p00359, 1970. a
Shcherbina, A. Y., D'Asaro, E. A., Lee, C. M., Klymak, J. M., Molemaker, M. J., and McWilliams, J. C.: Statistics of vertical vorticity, divergence, and strain in a developed sub-mesoscale turbulence field, Geophys. Res. Lett., 40, 4706–4711, https://doi.org/10.1002/grl.50919, 2013. a
Siedler, G., Zangenberg, N., and Onken, R.: Seasonal changes in the tropical atlantic circulation: observation and simulation of the Guinea Dome, J. Geophys. Res, 97, 703–715, https://doi.org/10.1029/91JC02501, 1992. a
Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1993a. a
Smagorinsky, J.: Some historical remarks on the use of nonlinear viscosities, in: Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by: Galperin, B. and Orszag, S. A., Cambridge University Press, 3–36, ISBN 9780521131339, 1993b. a
Spitzer, W. S. and Jenkins, W. J.: Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda, J. Mar. Res., 47, 169–196, 1989. a
Stewart, K. D., Hogg, A. M., Griffies, S. M., Heerdegen, A. P., Ward, M. L., Spence, P., and England, M. H.: Vertical resolution of baroclinic modes in global ocean models, Ocean Model., 113, 50–65, https://doi.org/10.1016/j.ocemod.2017.03.012, 2017. a
Sweby, P.: High-resolution schemes using flux limiters for hyperbolic conservation-laws, SIAM J. Numer, Anal., 21, 995–1011, https://doi.org/10.1137/0721062, 1984. a
Tomczak, M. J.: De l'origine et la distribution de l'eau remontée à la surface au large de la côte Nor-Ouest Africaine, Annales Hydrographiques, Série 5, 6, 5–14, 1978. a
Tomczak, M. J. and Hughes, P.: Three dimensional variability of water masses and currents in the Canary upwelling region, Meteor. Forschungsergebnisse, 21, 1–24, 1980. a
Trossman, D. S., Whalen, C. B., Haine, T. W. N., Waterhouse, A. F., Nguyen, A. T., Bigdeli, A., Mazloff, M., and Heimbach, P.: Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate, Ocean Sci., 18, 729–759, https://doi.org/10.5194/os-18-729-2022, 2022. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Dias, F. B., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Sommer, J. L., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a
von Appen, W.-J., Strass, V. H., Bracher, A., Xi, H., Hörstmann, C., Iversen, M. H., and Waite, A. M.: High-resolution physical–biogeochemical structure of a filament and an eddy of upwelled water off northwest Africa, Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, 2020. a
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., Laurent, L. C. S., Sun, O. M., Pinkel, R., Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Garabato, A. C. N., Sanford, T. B., and Lee, C. M.: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate, J. Phys. Oceanogr., 44, 1854–1872, https://doi.org/10.1175/JPO-D-13-0104.1, 2014. a
Whalen, C. B., MacKinnon, J. A., Talley, L. D., and Waterhouse, A. F.: Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization, J. Phys. Oceanogr., 45, 1174–1188, https://doi.org/10.1175/JPO-D-14-0167.1, 2015. a
Wolff, W. J., van der Land, J., Nienhuis, P. H., and de Wilde, P. A. W. J.: The functioning of the ecosystem of the Banc d'Arguin, Mauretania, Hydrobiologica, 258, 211–222, https://doi.org/10.1007/BF00006198, 1993. a
Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314, https://doi.org/10.1146/annurev.fluid.36.050802.122121, 2004. a
Zenk, W., Klein, B., and Schroder, M.: Cape Verde frontal zone, Oceanographic Research Papers, 38, S505–S530, https://doi.org/10.1016/S0198-0149(12)80022-7, 1991. a
Zhu, Y., Zhang, R.-H., and Sun, J.: North Pacific upper-ocean cold temperature biases in CMIP6 simulations and the role of regional vertical mixing, J. Climate, 33, 7523–7538, https://doi.org/10.1175/JCLI-D-19-0654.1, 2020. a
Short summary
We introduce argon saturation as a prognostic variable in a suite of coupled general ocean circulation biogeochemical models off Mauritania. Our results indicate that the effect of increasing the spatial horizontal model resolutions from 12 km to 1.5 km leads to changes comparable to other infamous spurious effects of state-of-the-art numerical advection numerics.
We introduce argon saturation as a prognostic variable in a suite of coupled general ocean...
Altmetrics
Final-revised paper
Preprint