Articles | Volume 22, issue 5
https://doi.org/10.5194/bg-22-1341-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1341-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Earth observation reveals reduced winter wheat growth and the importance of plant available water during drought
Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Lukas Valentin Graf
Crop Science, Institute for Agricultural Science, ETH Zurich, Zurich, Switzerland
Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
Tino Colombi
Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
Juliane Hirte
Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
Thomas Keller
Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
Helge Aasen
Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
Related authors
No articles found.
Sajjad Raza, Hannah V. Cooper, Nicholas T. Girkin, Matthew S. Kent, Malcolm J. Bennett, Sacha J. Mooney, and Tino Colombi
SOIL, 11, 363–369, https://doi.org/10.5194/soil-11-363-2025, https://doi.org/10.5194/soil-11-363-2025, 2025
Short summary
Short summary
Plant physiology has been addressed by less than 10 % of peer-reviewed soil organic carbon research published in the last century. Thus, our understanding of soil carbon dynamics is overwhelmingly built on research that neglects the fundamental processes underlying organic carbon inputs. Active engagement of plant scientists in soil carbon research is imperative for shedding light on this blind spot and developing holistic policies that support soil carbon sequestration.
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Abagandura, G. O., Nasr, G. E.-D. M., and Moumen, N. M.: Influence of Tillage Practices on Soil Physical Properties and Growth and Yield of Maize in Jabal al Akhdar, Libya, Open Journal of Soil Science, 7, 118–132, https://doi.org/10.4236/ojss.2017.77010, 2017.
Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., and Dai, T.: Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.), Sci. Rep., 8, 4615, https://doi.org/10.1038/s41598-018-21441-7, 2018.
Agenbag, G. A. and Maree, P. C. J.: Effect of tillage on some soil properties, plant development and yield of spring wheat (Triticum aestivum L.) in stony soil, Soil Till. Res., 21, 97–112, https://doi.org/10.1016/0167-1987(91)90008-L, 1991.
Alam, M. K., Islam, M. M., Salahin, N., and Hasanuzzaman, M.: Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat–Mungbean–Rice Cropping System under Subtropical Climatic Conditions, Sci. World J., 2014, e437283, https://doi.org/10.1155/2014/437283, 2014.
Ali, A. M., Savin, I., Poddubskiy, A., Abouelghar, M., Saleh, N., Abutaleb, K., El-Shirbeny, M., and Dokukin, P.: Integrated method for rice cultivation monitoring using Sentinel-2 data and Leaf Area Index, Egyptian Journal of Remote Sensing and Space Science, 24, 431–441, https://doi.org/10.1016/j.ejrs.2020.06.007, 2021.
Alnaimy, M., Zelenakova, M., Vranayova, Z., and Abu-Hashim, M.: Effects of Temporal Variation in Long-Term Cultivation on Organic Carbon Sequestration in Calcareous Soils: Nile Delta, Egypt, Sustainability, 12, 4514, https://doi.org/10.3390/su12114514, 2020.
Andersson, B.: Odlingstekniska försök med höstvete, Institutionen för Växtodling, Sveriges lantbruksuniversitet, Uppsala, 1983.
Atzberger, C., Richter, K., Vuolo, F., Darvishzadeh, R., and Schlerf, M.: Why confining to vegetation indices? Exploiting the potential of improved spectral observations using radiative transfer models, in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 2011/10/07, SPIE, Prague, 263–278, https://doi.org/10.1117/12.898479, 2011.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., and Makowski, D.: Impact of extreme weather conditions on European crop production in 2018, Philos. T. Roy. Soc. B, 375, 20190510, https://doi.org/10.1098/rstb.2019.0510, 2020.
Bengough, A. G., McKenzie, B. M., Hallett, P. D., and Valentine, T. A.: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits, J. Exp. Bot., 62, 59–68, https://doi.org/10.1093/jxb/erq350, 2011.
Berg, P., Norin, L., and Olsson, J.: Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden, J. Hydrol., 541, 6–13, https://doi.org/10.1016/j.jhydrol.2015.11.031, 2015.
Bhattacharya, A.: Chapter 3 – Water-Use Efficiency Under Changing Climatic Conditions, in: Changing Climate and Resource Use Efficiency in Plants, edited by: Bhattacharya, A., Academic Press, https://doi.org/10.1016/B978-0-12-816209-5.00003-9, 111–180, 2019.
Bodner, G., Nakhforoosh, A., and Kaul, H.-P.: Management of crop water under drought: a review, Agron. Sustain. Dev., 35, 401–442, https://doi.org/10.1007/s13593-015-0283-4, 2015.
Boedhram, N., Arkebauer, T. J., and Batchelor, W. D.: Season-Long Characterization of Vertical Distribution of Leaf Area in Corn, Agron. J., 93, 1235–1242, https://doi.org/10.2134/agronj2001.1235, 2001.
Chen, S., Du, T., Wang, S., Parsons, D., Wu, D., Guo, X., and Li, D.: Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China, Agr. Water Manage., 244, 106535, https://doi.org/10.1016/j.agwat.2020.106535, 2021.
Chen, Y., Carver, B. F., Wang, S., Zhang, F., and Yan, L.: Genetic loci associated with stem elongation and winter dormancy release in wheat, Theor. Appl. Genet., 118, 881–889, https://doi.org/10.1007/s00122-008-0946-5, 2009.
Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M. Z., and Kim, G.-H.: Chapter Two – Role of cultural and nutrient management practices in carbon sequestration in agricultural soil, in: Advances in Agronomy, vol. 166, edited by: Sparks, D. L., Academic Press, https://doi.org/10.1016/bs.agron.2020.10.001, 131–196, 2021.
Clevers, J. G. P. W., Kooistra, L., and Van den Brande, M. M. M.: Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop, Remote Sens.-Basel, 9, 405, https://doi.org/10.3390/rs9050405, 2017.
Colombi, T., Torres, L. C., Walter, A., and Keller, T.: Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth – A vicious circle, Sci. Total Environ., 626, 1026–1035, https://doi.org/10.1016/j.scitotenv.2018.01.129, 2018.
Danner, M., Berger, K., Wocher, M., Mauser, W., and Hank, T.: Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops, ISPRS J. Photogramm., 173, 278–296, https://doi.org/10.1016/j.isprsjprs.2021.01.017, 2021.
de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O., and Williams, A.: Harnessing rhizosphere microbiomes for drought-resilient crop production, Science, 368, 270–274, https://doi.org/10.1126/science.aaz5192, 2020.
De Martonne, E.: L’indice d’aridité, Bulletin de l’Association de Géographes Français, 3, 3–5, https://doi.org/10.3406/bagf.1926.6321, 1926.
Ding, D. Y., Feng, H., Zhao, Y., He, J. Q., Zou, Y. F., and Jin, J. M.: Modifying Winter Wheat Sowing Date as an Adaptation to Climate Change on the Loess Plateau, Agron. J., 108, 53–63, https://doi.org/10.2134/agronj15.0262, 2016.
Dong, T., Liu, J., Qian, B., He, L., Liu, J., Wang, R., Jing, Q., Champagne, C., McNairn, H., Powers, J., Shi, Y., Chen, J. M., and Shang, J.: Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data, ISPRS J. Photogramm., 168, 236–250, https://doi.org/10.1016/j.isprsjprs.2020.08.003, 2020.
Doole, G., Tozer, K., Sauermann, C., Stevens, D., and Ward, J.: Challenges and opportunities for conducting on-farm research, Journal of New Zealand Grasslands, 85–93, https://doi.org/10.33584/jnzg.2023.85.3659, 2023.
Fageria, N. K.: Role of Soil Organic Matter in Maintaining Sustainability of Cropping Systems, Commun. Soil Sci. Plan., 43, 2063–2113, https://doi.org/10.1080/00103624.2012.697234, 2012.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., and Huang, J.: Crop Production under Drought and Heat Stress: Plant Responses and Management Options, Front. Plant Sci., 8, 1147, https://doi.org/10.3389/fpls.2017.01147, 2017.
Feng, W., Wu, Y., He, L., Ren, X., Wang, Y., Hou, G., Wang, Y., Liu, W., and Guo, T.: An optimized non-linear vegetation index for estimating leaf area index in winter wheat, Precis. Agric., 20, 1157–1176, https://doi.org/10.1007/s11119-019-09648-8, 2019.
Graf, L. V., Perich, G., and Aasen, H.: EOA-team/eodal_notebooks: EOdal Notebooks, Zenodo, https://doi.org/10.5281/ZENODO.7278252, 2022.
Graf, L. V., Merz, Q. N., Walter, A., and Aasen, H.: Insights from field phenotyping improve satellite remote sensing based in-season estimation of winter wheat growth and phenology, Remote Sens. Environ., 299, 113860, https://doi.org/10.1016/j.rse.2023.113860, 2023.
Gray, S. B. and Brady, S. M.: Plant developmental responses to climate change, Dev. Biol., 419, 64–77, https://doi.org/10.1016/j.ydbio.2016.07.023, 2016.
Groemping, U. and Lehrkamp, M.: Relative Importance for Linear Regression in R: The Package relaimpo, J. Stat. Softw., 17, 1–27, https://cran.r-project.org/web/packages/relaimpo/index.html (last access: 20 December 2023), 2006.
He, J., Shi, Y., Zhao, J., Yu, Z., He, J., Shi, Y., Zhao, J., and Yu, Z.: Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling, Crop Journal, 8, 327–340, 2020.
He, L., Wang, R., Mostovoy, G., Liu, J., Chen, J. M., Shang, J., Liu, J., McNairn, H., and Powers, J.: Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale Using High Resolution Sentinel-2 Data, Remote Sens.-Basel, 13, 806, https://doi.org/10.3390/rs13040806, 2021.
He, M. and Dijkstra, F. A.: Drought effect on plant nitrogen and phosphorus: a meta-analysis, New Phytol., 204, 924–931, https://doi.org/10.1111/nph.12952, 2014.
Hirooka, Y., Homma, K., Maki, M., Sekiguchi, K., Shiraiwa, T., and Yoshida, K.: Evaluation of the dynamics of the leaf area index (LAI) of rice in farmer's fields in Vientiane Province, Lao PDR, J. Agric. Meteorol., 73, 16–21, https://doi.org/10.2480/agrmet.D-14-00021, 2017.
Huang, Z., Liu, Y., Tian, F.-P., and Wu, G.-L.: Soil water availability threshold indicator was determined by using plant physiological responses under drought conditions, Ecol. Indic., 118, 106740, https://doi.org/10.1016/j.ecolind.2020.106740, 2020.
Ihsan, M. Z., El-Nakhlawy, F. S., Ismail, S. M., Fahad, S., and daur, I.: Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment, Front. Plant Sci., 7, 795, https://doi.org/10.3389/fpls.2016.00795, 2016.
IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009325844, 2022.
Jacquemoud, S., Ustin, S. L., Verdebout, J., Schmuck, G., Andreoli, G., and Hosgood, B.: Estimating leaf biochemistry using the PROSPECT leaf optical properties model, Remote Sens. Environ., 56, 194–202, https://doi.org/10.1016/0034-4257(95)00238-3, 1996.
Kane, D. A., Bradford, M. A., Fuller, E., Oldfield, E. E., and Wood, S. A.: Soil organic matter protects US maize yields and lowers crop insurance payouts under drought, Environ. Res. Lett., 16, 044018, https://doi.org/10.1088/1748-9326/abe492, 2021.
Kang, S., Zhang, F., Hu, X., and Zhang, J.: Benefits of CO2 enrichment on crop plants are modified by soil water status, Plant Soil, 238, 69–77, https://doi.org/10.1023/A:1014244413067, 2002.
Kang, Y., Özdoğan, M., Zipper, S. C., Román, M. O., Walker, J., Hong, S. Y., Marshall, M., Magliulo, V., Moreno, J., Alonso, L., Miyata, A., Kimball, B., and Loheide, S. P.: How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment, Remote Sens.-Basel, 8, 597, https://doi.org/10.3390/rs8070597, 2016.
Kirchmann, H., Börjesson, G., Bolinder, M. A., Kätterer, T., and Djodjic, F.: Soil properties currently limiting crop yields in Swedish agriculture – An analysis of 90 yield survey districts and 10 long-term field experiments, Eur. J. Agron., 120, 126132, https://doi.org/10.1016/j.eja.2020.126132, 2020.
Krauss, M., Berner, A., Perrochet, F., Frei, R., Niggli, U., and Mäder, P.: Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years, Sci. Rep., 10, 4403, https://doi.org/10.1038/s41598-020-61320-8, 2020.
Krueger, E. S. and Ochsner, T. E.: Traditional matric potential thresholds underestimate soil moisture at field capacity across Oklahoma, Soil Sci. Soc. Am. J., 88, 1678–1690, https://doi.org/10.1002/saj2.20733, 2024.
Lal, R.: Challenges and opportunities in soil organic matter research, Eur. J. Soil Sci., 60, 158–169, https://doi.org/10.1111/j.1365-2389.2008.01114.x, 2009.
Lambert, M.-J., Traoré, P. C. S., Blaes, X., Baret, P., and Defourny, P.: Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt, Remote Sens. Environ., 216, 647–657, https://doi.org/10.1016/j.rse.2018.06.036, 2018.
Lawal, S., Sitch, S., Lombardozzi, D., Nabel, J. E. M. S., Wey, H.-W., Friedlingstein, P., Tian, H., and Hewitson, B.: Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations , Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, 2022.
Lipiec, J., Håkansson, I., Tarkiewicz, S., and Kossowski, J.: Soil physical properties and growth of spring barley as related to the degree of compactness of two soils, Soil Till. Res., 19, 307–317, https://doi.org/10.1016/0167-1987(91)90098-I, 1991.
Mahmood, S., Nunes, M. R., Kane, D. A., and Lin, Y.: Soil health explains the yield-stabilizing effects of soil organic matter under drought, Soil & Environmental Health, 1, 100048, https://doi.org/10.1016/j.seh.2023.100048, 2023.
Matiu, M., Ankerst, D. P., and Menzel, A.: Interactions between temperature and drought in global and regional crop yield variability during 1961–2014, PLOS ONE, 12, e0178339, https://doi.org/10.1371/journal.pone.0178339, 2017.
Meinke, H., Hammer, G. L., van Keulen, H., Rabbinge, R., and Keating, B. A.: Improving wheat simulation capabilities in Australia from a cropping systems perspective: water and nitrogen effects on spring wheat in a semi-arid environment, in: Developments in Crop Science, vol. 25, edited by: van Ittersum, M. K. and van de Geijn, S. C., Elsevier, 99–112, https://doi.org/10.1016/S0378-519X(97)80012-8, 1997.
Microsoft Open Source, McFarland, M., Emanuele, R., Morris, D., and Augspurger, T.: microsoft/PlanetaryComputer: October 2022, last access: 26 September 2023, Zenodo [data set], https://doi.org/10.5281/ZENODO.7261897, 2022.
Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A., and Müller, C.: Global crop yields can be lifted by timely adaptation of growing periods to climate change, Nat. Commun., 13, 7079, https://doi.org/10.1038/s41467-022-34411-5, 2022.
Myneni, R. B. and Williams, D. L.: On the relationship between FAPAR and NDVI, Remote Sens. Environ., 49, 200–211, https://doi.org/10.1016/0034-4257(94)90016-7, 1994.
Myneni, R. B., Ramakrishna, R., Nemani, R., and Running, S. W.: Estimation of global leaf area index and absorbed par using radiative transfer models, IEEE T. Geosci. Remote, 35, 1380–1393, https://doi.org/10.1109/36.649788, 1997.
Oldfield, E. E., Bradford, M. A., and Wood, S. A.: Global meta-analysis of the relationship between soil organic matter and crop yields, SOIL, 5, 15–32, https://doi.org/10.5194/soil-5-15-2019, 2019.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peng, Y., Zhu, T., Li, Y., Dai, C., Fang, S., Gong, Y., Wu, X., Zhu, R., and Liu, K.: Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications, Agr. Forest Meteorol., 271, 116–125, https://doi.org/10.1016/j.agrformet.2019.02.032, 2019.
Petcu, E., Ion, T., Pompiliu, M., and Petcu, V.: Effect of organic and conventional farming systems on some physiological indicators of winter wheat, Romanian Agricultural Research, 28, 131–135, 2011.
Porter, J. R. and Gawith, M.: Temperatures and the growth and development of wheat: a review, Eur. J. Agron., 10, 23–36, https://doi.org/10.1016/S1161-0301(98)00047-1, 1999.
Prabhakara, K., Hively, W. D., and McCarty, G. W.: Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States, Int. J. Appl. Earth Obs., 39, 88–102, https://doi.org/10.1016/j.jag.2015.03.002, 2015.
Punalekar, S. M., Verhoef, A., Quaife, T. L., Humphries, D., Bermingham, L., and Reynolds, C. K.: Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model, Remote Sens. Environ., 218, 207–220, https://doi.org/10.1016/j.rse.2018.09.028, 2018.
Pużyńska, K., Synowiec, A., Pużyński, S., Bocianowski, J., Klima, K., and Lepiarczyk, A.: The Performance of Oat-Vetch Mixtures in Organic and Conventional Farming Systems, Agriculture, 11, 332, https://doi.org/10.3390/agriculture11040332, 2021.
R Core Team: R: The R Project for Statistical Computing, RStudio, PBC, Boston, https://www.r-project.org/ (last access: 22 December 2023), 2022.
Ray, R. L., Fares, A., and Risch, E.: Effects of Drought on Crop Production and Cropping Areas in Texas, Agricultural & Environmental Letters, 3, 170037, https://doi.org/10.2134/ael2017.11.0037, 2018.
Revill, A., Florence, A., MacArthur, A., Hoad, S. P., Rees, R. M., and Williams, M.: The Value of Sentinel-2 Spectral Bands for the Assessment of Winter Wheat Growth and Development, Remote Sens.-Basel, 11, 2050, https://doi.org/10.3390/rs11172050, 2019.
Rockström, J.: Resilience building and water demand management for drought mitigation, Phys. Chem. Earth Pts. A/B/C, 28, 869–877, https://doi.org/10.1016/j.pce.2003.08.009, 2003.
Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G., and Daffonchio, D.: Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait, Environ. Microbiol., 17, 316–331, https://doi.org/10.1111/1462-2920.12439, 2015.
Ru, C., Hu, X., Chen, D., Wang, W., Zhen, J., and Song, T.: Individual and combined effects of heat and drought and subsequent recovery on winter wheat (Triticum aestivum L.) photosynthesis, nitrogen metabolism, cell osmoregulation, and yield formation, Plant Physiol. Bioch., 196, 222–235, https://doi.org/10.1016/j.plaphy.2023.01.038, 2023.
Rubin, R. L., van Groenigen, K. J., and Hungate, B. A.: Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis, Plant Soil, 416, 309–323, https://doi.org/10.1007/s11104-017-3199-8, 2017.
SCB: Jordbruksstatistisk årsbok 1993, Statistiska centralbyrån, Bulls Tryckeriaktiebolag, Halmstad, 1993.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., and Battaglia, M. L.: Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects, Plants, 10, 259, https://doi.org/10.3390/plants10020259, 2021.
Shankar, T., Banerjee, M., Malik, G. C., Dutta, S., Maiti, D., Maitra, S., Alharby, H., Bamagoos, A., Hossain, A., Ismail, I. A., and EL Sabagh, A.: The Productivity and Nutrient Use Efficiency of Rice–Rice–Black Gram Cropping Sequence Are Influenced by Location Specific Nutrient Management, Sustainability, 13, 3222, https://doi.org/10.3390/su13063222, 2021.
Sjulgård, H.: The potential of agricultural management to alleviate extreme weather impacts on Swedish crop production, Acta Universitatis Agriculturae Sueciae,84, https://doi.org/10.54612/a.107ri2j3pt, 2024.
Sjulgård, H., Colombi, T., and Keller, T.: Spatiotemporal patterns of crop diversity reveal potential for diversification in Swedish agriculture, Agriculture, Ecosystems & Environment, 336, 108046, https://doi.org/10.1016/j.agee.2022.108046, 2022.
Sjulgård, H., Keller, T., Garland, G., and Colombi, T.: Relationships between weather and yield anomalies vary with crop type and latitude in Sweden, Agr. Syst., 211, 103757, https://doi.org/10.1016/j.agsy.2023.103757, 2023.
Skakun, S., Vermote, E., Franch, B., Roger, J.-C., Kussul, N., Ju, J., and Masek, J.: Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models, Remote Sens.-Basel, 11, 1768, https://doi.org/10.3390/rs11151768, 2019.
SMHI: Maj 2018 – Sommarväder med rekordvärme, Swedish Meteorological and Hydrological Institute, https://www.smhi.se/klimat/klimatet-da-och-nu/manadens-vader-och-vatten-sverige/manadens-vader-i-sverige/maj-2018-sommarvader-med-rekordvarme-1.134781 (last access: 3 October 2024), 2018.
SMHI: Nedladdning av griddad nederbörd – och temperaturdata (PTHBV), Swedish Meteorological and Hydrological Institute, SMHI [data set], https://www.smhi.se/data/ladda-ner-data/griddade-nederbord-och-temperaturdata-pthbv (last access: 8 March 2023), 2023.
Stenberg, M., Bjurling, E., Gruvaeus, I., and Gustafsson, K.: Gödslingsrekommendationer och optimala kvävegivor för lönsamhet och kväveeffektivitet i praktisk spannmålsodling, SLU, Skara, 2005.
Stockdale, E. a., Shepherd, M. a., Fortune, S., and Cuttle, S. p.: Soil fertility in organic farming systems – fundamentally different?, Soil Use Manage., 18, 301–308, https://doi.org/10.1111/j.1475-2743.2002.tb00272.x, 2002.
Sun, Q., Gilgen, A. K., Wittwer, R., von Arx, G., van der Heijden, M. G. A., Klaus, V. H., and Buchmann, N.: Drought effects on trait space of winter wheat are independent of land management, New Phytol., 243, 591–606, https://doi.org/10.1111/nph.19851, 2024.
Verhoef, W.: Theory of radiative transfer models applied in optical remote sensing of vegetation canopies: e-book, Landbouwuniversiteit Wageningen (LUW), ISBN: 90-5485-804-4, 1998.
Villegas, D., Aparicio, N., Blanco, R., and Royo, C.: Biomass Accumulation and Main Stem Elongation of Durum Wheat Grown under Mediterranean Conditions, Ann. Bot.-London, 88, 617–627, https://doi.org/10.1006/anbo.2001.1512, 2001.
Wang, B., Liu, D. L., Asseng, S., Macadam, I., and Yu, Q.: Modelling wheat yield change under CO2 increase, heat and water stress in relation to plant available water capacity in eastern Australia, Eur. J. Agron., 90, 152–161, https://doi.org/10.1016/j.eja.2017.08.005, 2017.
Wang, E., Cresswell, H., Xu, J., and Jiang, Q.: Capacity of soils to buffer impact of climate variability and value of seasonal forecasts, Agr. Forest Meteorol., 149, 38–50, https://doi.org/10.1016/j.agrformet.2008.07.001, 2009.
Wasaya, A., Rehman, I., Mohi Ud Din, A., Hayder Bin Khalid, M., Ahmad Yasir, T., Mansoor Javaid, M., El-Hefnawy, M., Brestic, M., Rahman, M. A., and El Sabagh, A.: Foliar application of putrescine alleviates terminal drought stress by modulating water status, membrane stability, and yield- related traits in wheat (Triticum aestivum L.), Front. Plant Sci., 13, 2023.
Watson, D. J.: Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years, Ann. Bot.-London, 11, 41–76, https://doi.org/10.1093/oxfordjournals.aob.a083148, 1947.
Wocher, M., Berger, K., Danner, M., Mauser, W., and Hank, T.: RTM-based dynamic absorption integrals for the retrieval of biochemical vegetation traits, Int. J. Appl. Earth Obs., 93, 102219, https://doi.org/10.1016/j.jag.2020.102219, 2020.
Yamamoto, S., Hashimoto, N., and Homma, K.: Evaluation of LAI Dynamics by Using Plant Canopy Analyzer and Its Relationship to Yield Variation of Soybean in Farmer Field, Agriculture, 13, 609, https://doi.org/10.3390/agriculture13030609, 2023.
Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., and Jin, J.: Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis, Int. J. Env. Res. Pub. He., 15, 839, https://doi.org/10.3390/ijerph15050839, 2018.
Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes, Environ. Res. Lett., 11, 094021, https://doi.org/10.1088/1748-9326/11/9/094021, 2016.
Zuber, V. and Strimmer, K.: High-Dimensional Regression and Variable Selection Using CAR Scores, Stat. Appl. Genet. Mo. B., 10, 1, https://doi.org/10.2202/1544-6115.1730, 2011.
Short summary
Our study showed that stress-related crop response to changing environmental conditions can be detected by monitoring crops using satellite images at the landscape level. This could be useful for farmers to identify when stresses occur. Our results also suggest that satellite imagery can be used to discover soil impacts on crop development at farm fields. The inclusion of soil properties in satellite image analyses could further improve the accuracy of the prediction of drought stress on crops.
Our study showed that stress-related crop response to changing environmental conditions can be...
Altmetrics
Final-revised paper
Preprint