Articles | Volume 22, issue 5
https://doi.org/10.5194/bg-22-1413-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1413-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Selecting allometric equations to estimate forest biomass from plot- rather than individual-level predictive performance
Nicolas Picard
CORRESPONDING AUTHOR
GIP Ecofor, Paris, France
Noël Fonton
Faculty of Agronomic Science, University of Abomey-Calavi, Cotonou, Benin
Faustin Boyemba Bosela
Faculty of Science, University of Kisangani, Kisangani, Democratic Republic of the Congo
Adeline Fayolle
Forêts et Sociétés, Université de Montpellier, Cirad Montpellier, France
Cirad Forêts et Sociétés, Montpellier, France
Joël Loumeto
Faculty of Science and Technology, University Marien NGouabi, Brazzaville, Republic of the Congo
Gabriel Ngua Ayecaba
Instituto Nacional de Desarrollo Forestal y Manejo del Sistema Nacional de Areas Protegidas (INDEFOR), Bata, Equatorial Guinea
Bonaventure Sonké
École normale supérieure, University of Yaoundé 1, Yaounde, Cameroon
Olga Diane Yongo Bombo
Faculty of Science, University of Bangui, Bangui, Central African Republic
Hervé Martial Maïdou
Commission des Forêts d'Afrique Centrale (COMIFAC), Yaounde, Cameroon
Alfred Ngomanda
Centre National de la Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
Related authors
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025, https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Short summary
The creation of advanced mapping models for forest attributes, utilizing remote sensing data and incorporating machine or deep learning methods, has become a key area of interest in the domain of forest observation and monitoring. This paper introduces a method where we blend and collectively interpret five models dedicated to estimating forest canopy height. We achieve this through Bayesian model averaging, offering a comprehensive analysis of these remote-sensing-based products.
Cecilia Chavana-Bryant, Phil Wilkes, Wanxin Yang, Andrew Burt, Peter Vines, Amy C. Bennett, Georgia C. Pickavance, Declan L. M. Cooper, Simon L. Lewis, Oliver L. Phillips, Benjamin Brede, Alvaro Lau, Martin Herold, Iain McNicol, Edward T. A. Mitchard, David A. Coomes, Toby Jackson, Loic Makaga, Heddy O. Milamizokou Napo, Alfred Ngomanda, Stephan Ntie, Vincent Medjibe, Pacome Dimbonda, Luna Soenens, Virginie Daelemans, Laetitia Proux, Reuben Nilus, Nicolas Labriere, Kathryn Jeffery, David F. R. P. Burslem, Daniel Clewley, David Moffat, Lan Qie, Harm Bartholomeus, Vincent Gregoire, Nicolas Barbier, Geraldine Derroire, Katharine Abernethy, Klaus Scipal, and Mat Disney
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-67, https://doi.org/10.5194/essd-2025-67, 2025
Preprint under review for ESSD
Short summary
Short summary
The ForestScan project provides a comprehensive set of datasets of tropical forest 3D structural measurements using terrestrial, unpiloted aerial vehicle and aerial laser scanning, plus tree census data. Collected at three sites in French Guiana, Gabon, and Malaysia, these datasets are crucial for calibrating and validating earth observation-derived forest biomass estimates, therefore, expanding and enhancing their use, and aiding global conservation efforts.
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025, https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Short summary
The creation of advanced mapping models for forest attributes, utilizing remote sensing data and incorporating machine or deep learning methods, has become a key area of interest in the domain of forest observation and monitoring. This paper introduces a method where we blend and collectively interpret five models dedicated to estimating forest canopy height. We achieve this through Bayesian model averaging, offering a comprehensive analysis of these remote-sensing-based products.
Cited articles
Brede, B., Terryn, L., Barbier, N., Bartholomeus, H. M., Bartolo, R., Calders, K., Derroire, G., Moorthy, S. M. K., Lau, A., Levick, S. R., Raumonen, P., Verbeeck, H., Wang, D., Whiteside, T., van der Zee, J., and Herold, M.: Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning, Remote Sens. Environ., 280, 113180, https://doi.org/10.1016/j.rse.2022.113180, 2022. a
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., and Perez, R.: Error propagation and scaling for tropical forest biomass estimates, Philos. T. Roy. Soc. B, 359, 409–420, https://doi.org/10.1098/rstb.2003.1425, 2004. a, b, c
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry and improved estimation of carbon stocks and balance in tropical forests, Oecologia, 145, 87–99, https://doi.org/10.1007/s00442-005-0100-x, 2005. a
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical trees, Glob. Change Biol., 20, 3177–3190, https://doi.org/10.1111/gcb.12629, 2014 (data available at: https://jeromechave.github.io/pantropical_allometry.htm, last access: 11 March 2025). a, b, c, d, e, f, g
Clark, D. B. and Kellner, J. R.: Tropical forest biomass estimation and the fallacy of misplaced concreteness, J. Veg. Sci., 23, 1191–1196, https://doi.org/10.1111/j.1654-1103.2012.01471.x, 2012. a
Fang, J., Guo, Z., Piao, S., and Chen, A.: Terrestrial vegetation carbon sinks in China, 1981–2000, Sci. China Ser. D, 50, 1341–1350, https://doi.org/10.1007/s11430-007-0049-1, 2007. a, b
Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., and Son, Y.: Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth, Glob. Change Biol., 20, 2019–2030, https://doi.org/10.1111/gcb.12512, 2014. a
Fayolle, A., Ngomanda, A., Mbasi, M., Barbier, N., Bocko, Y., Boyemba, F., Couteron, P., Fonton, N., Kamdem, N., Katembo, J., Kondaoule, H. J., Loumeto, J., Maïdou, H. M., Mankou, G., Mengui, T., Mofack, G. I., Moundounga, C., Moundounga, Q., Nguimbous, L., Nchama, N. N., Obiang, D., Asue, F. O. M., Picard, N., Rossi, V., Senguela, Y. P., Sonké, B., Viard, L., Yongo, O. D., Zapfack, L., and Medjibe, V. P.: A regional allometry for the Congo basin forests based on the largest ever destructive sampling, Forest Ecol. Manag., 430, 228–240, https://doi.org/10.1016/j.foreco.2018.07.030, 2018. a, b, c, d, e
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M., Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M. O., Iida, Y., Salim, K. A., Kassim, A. R., Keller, M., Kemp, J., King, D. A., Lovett, J. C., Marimon, B. S., Marimon-Junior, B. H., Lenza, E., Marshall, A. R., Metcalfe, D. J., Mitchard, E. T. A., Moran, E. F., Nelson, B. W., Nilus, R., Nogueira, E. M., Palace, M., Patiño, S., Peh, K. S.-H., Raventos, M. T., Reitsma, J. M., Saiz, G., Schrodt, F., Sonké, B., Taedoumg, H. E., Tan, S., White, L., Wöll, H., and Lloyd, J.: Height-diameter allometry of tropical forest trees, Biogeosciences, 8, 1081–1106, https://doi.org/10.5194/bg-8-1081-2011, 2011. a
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L. E. O. C., Araujo Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C., G. A., Baker, T. R., Bánki, O. S., Berry, N. J., Cardozo, N., Chave, J., Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T. F., Erwin, T. L., Fearnside, P. M., França, M. B., Freitas, M. A., Higuchi, N., E. Honorio C., Iida, Y., Jiménez, E., Kassim, A. R., Killeen, T. J., Laurance, W. F., Lovett, J. C., Malhi, Y., Marimon, B. S., Marimon-Junior, B. H., Lenza, E., Marshall, A. R., Mendoza, C., Metcalfe, D. J., Mitchard, E. T. A., Neill, D. A., Nelson, B. W., Nilus, R., Nogueira, E. M., Parada, A., Peh, K. S.-H., Pena Cruz, A., Peñuela, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H., Reitsma, J. M., Rudas, A., Saiz, G., Salomão, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Sonké, B., Stropp, J., Taedoumg, H. E., Tan, S., ter Steege, H., Terborgh, J., Torello-Raventos, M., van der Heijden, G. M. F., Vásquez, R., Vilanova, E., Vos, V. A., White, L., Willcock, S., Woell, H., and Phillips, O. L.: Tree height integrated into pantropical forest biomass estimates, Biogeosciences, 9, 3381–3403, https://doi.org/10.5194/bg-9-3381-2012, 2012. a, b, c
Gibbs, H. K., Brown, S., Niles, J. O., and Foley, J. A.: Monitoring and estimating tropical forest carbon stocks: making REDD a reality, Environ. Res. Lett., 2, 1–13, https://doi.org/10.1088/1748-9326/2/4/045023, 2007. a
Goodman, R. C., Phillips, O. L., and Baker, T. R.: The importance of crown dimensions to improve tropical tree biomass estimates, Ecol. Appl., 24, 680–698, https://doi.org/10.1890/13-0070.1, 2014. a, b
Gould, S. J.: Allometry and size in ontogeny and phylogeny, Biol. Rev., 41, 587–638, https://doi.org/10.1111/j.1469-185X.1966.tb01624.x, 1966. a
Guo, Z., Fang, J., Pan, Y., and Birdsey, R.: Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods, Forest Ecol. Manag., 259, 1225–1231, https://doi.org/10.1016/j.foreco.2009.09.047, 2010. a
Huxley, J. S. and Teissier, G.: Terminology of relative growth, Nature, 137, 780–781, https://doi.org/10.1038/137780b0, 1936. a
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A., and Koch, A.: Restoring natural forests is the best way to remove atmospheric carbon, Nature, 568, 25–28, https://doi.org/10.1038/d41586-019-01026-8, 2019. a
Lines, E. R., Fischer, F. J., Owen, H. J. F., and Jucker, T.: The shape of trees: Reimagining forest ecology in three dimensions with remote sensing, J. Ecol., 110, 1730–1745, https://doi.org/10.1111/1365-2745.13944, 2022. a
MacFarlane, D. W.: Allometric scaling of large branch volume in hardwood trees in Michigan, USA: Implications for aboveground forest carbon stock inventories, Forest Sci., 57, 451–459, https://doi.org/10.1093/forestscience/57.6.451, 2011. a
Manso, R., Price, A., Ash, A., and Macdonald, E.: Volume prediction of young improved Sitka spruce trees in Great Britain through Bayesian model averaging, Forestry, cpae010, https://doi.org/10.1093/forestry/cpae010, 2024. a
McRoberts, R. E. and Westfall, J. A.: Effects of uncertainty in model predictions of individual tree volume on large area volume estimates, Forest Sci., 60, 34–42, https://doi.org/10.5849/forsci.12-141, 2014. a
McRoberts, R. E., Moser, P., Zimermann Oliveira, L., and Vibrans, A. C.: A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration, Can. J. Forest Res., 45, 44–51, https://doi.org/10.1139/cjfr-2014-0266, 2015. a
Momo Takoudjou, S., Ploton, P., Sonké, B., Hackenberg, J., Griffon, S., De Coligny, F., Kamdem, N. G., Libalah, M., Mofack, G. I., Le Moguédec, G., Pélissier, R., and Barbier, N.: Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach, Methods Ecol. Evol., 9, 905–916, https://doi.org/10.1111/2041-210X.12933, 2018. a
Muller-Landau, H. C., Condit, R. S., Harms, K. E., Marks, C. O., Thomas, S. C., Bunyavejchewin, S., Chuyong, G., Co, L., Davies, S., Foster, R., Gunatilleke, S., Gunatilleke, N., Hart, T., Hubbell, S. P., Itoh, A., Kassim, A. R., Kenfack, D., Lafrankie, J. V., Lagunzad, D., Lee, H. S., Losos, E., Makana, J. R., Ohkubo, T., Samper, C., Sukumar, R., Sun, I.-f., Nur Supardi, M. N., Tan, S., Thomas, D., Thompson, J., Valencia, R., Vallejo, M. I., Villa Muñoz, G., Yamakura, T., Zimmerman, J. K., Dattaraja, H. S., Esufali, S., Hall, P., He, F., Hernandez, C., Kiratiprayoon, S., Suresh, H. S., Wills, C., and Ashton, P.: Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models, Ecol. Lett., 9, 589–602, https://doi.org/10.1111/j.1461-0248.2006.00915.x, 2006. a
Pan, Y., Luo, T., Birdsey, R., Hom, J., and Melillo, J.: New estimates of carbon storage and sequestration in China's forests: effects of age–class and method on inventory-based carbon estimation, Climatic Change, 67, 211–236, https://doi.org/10.1007/s10584-004-2799-5, 2004. a
Paul, K. I., Roxburgh, S. H., Chave, J., England, J. R., Zerihun, A., Specht, A., Lewis, T., Bennett, L. T., Baker, T. G., Adams, M. A., Huxtable, D., Montagu, K. D., Falster, D. S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., Hobbs, T., Larmour, J., Waterworth, R., Stewart, H. T. L., Jonson, J., Forrester, D. I., Applegate, G., Mendham, D., Bradford, M., O'grady, A., Green, D., Sudmeyer, R., Rance, S. J., Turner, J., Barton, C., Wenk, E. H., Grove, T., Attiwill, P. M., Pinkard, E., Butler, D., Brooksbank, K., Spencer, B., Snowdon, P., O'brien, N., Battaglia, M., Cameron, D. M., Hamilton, S., McAuthur, G., and Sinclair, J.: Testing the generality of above-ground biomass allometry across plant functional types at the continent scale, Glob. Change Biol., 22, 2106–2124, https://doi.org/10.1111/gcb.13201, 2016. a
Picard, N.: R code to compute the performance statistics of allometric equations at plot level, Zenodo [code], https://doi.org/10.5281/zenodo.12748213, 2024. a
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., and Henry, M.: Should tree biomass allometry be restricted to power models?, Forest Ecol. Manag., 353, 156–163, https://doi.org/10.1016/j.foreco.2015.05.035, 2015. a
Picard, N., Henry, M., Fonton, N. H., Kondaoulé, J., Fayolle, A., Birigazzi, L., Sola, G., Poultouchidou, A., Trotta, C., and Maïdou, H.: Error in the estimation of emission factors for forest degradation in central Africa, J. For. Res., 21, 23–30, https://doi.org/10.1007/s10310-015-0510-5, 2016. a
Picard, N., Mortier, F., Ploton, P., Liang, J., Derroire, G., Bastin, J. F., Ayyappan, N., Bénédet, F., Boyemba Bosela, F., Clark, C. J., Crowther, T. W., Engone Obiang, N. L., Forni, É., Harris, D., Ngomanda, A., Poulsen, J. R., Sonké, B., Couteron, P., and Gourlet-Fleury, S.: Using model analysis to unveil hidden patterns in tropical forest structures, Front. Ecol. Evol., 9, 599200, https://doi.org/10.3389/fevo.2021.599200, 2021. a, b
Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., Mermoz, S., Saatchi, S., Chave, J., de Boissieu, F., Féret, J. B., Momo Takoudjou, S., and Pélissier, R.: Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them, Surv. Geophys., 40, 881–911, https://doi.org/10.1007/s10712-019-09532-0, 2019. a
Rodda, S. R., Fararoda, R., Gopalakrishnan, R., Jha, N., Réjou-Méchain, M., Couteron, P., Barbier, N., Alfonso, A., Bako, O., Bassama, P., Behera, D., Bissiengou, P., Biyiha, H., Brockelman, W. Y., Chanthorn, W., Chauhan, P., Dadhwal, V. K., Dauby, G., Deblauwe, V., Dongmo, N., Droissart, V., Jeyakumar, S., Jha, C. S., Kandem, N. G., Katembo, J., Kougue, R., Leblanc, H., Lewis, S., Libalah, M., Manikandan, M., Martin-Ducup, O., Mbock, G., Memiaghe, H., Mofack, G., Mutyala, P., Narayanan, A., Nathalang, A., Ndjock, G. O., Ngoula, F., Nidamanuri, R. R., Pélissier, R., Saatchi, S., Sagang, L. B., Salla, P., Simo-Droissart, M., Smith, T. B., Sonké, B., Stevart, T., Tjomb, D., Zebaze, D., Zemagho, L., and Ploton, P.: LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa, Scientific Data, 11, 334, https://doi.org/10.1038/s41597-024-03162-x, 2024. a
Sullivan, M. J. P., Lewis, S. L., Hubau, W., Qie, L., Baker, T. R., Banin, L. F., Chave, J., Cuni-Sanchez, A., Feldpausch, T. R., Lopez-Gonzalez, G., Arets, E., Ashton, P., Bastin, J. F., Berry, N. J., Bogaert, J., Boot, R., Brearley, F. Q., Brienen, R., Burslem, D. F. R. P., de Canniere, C., Chudomelová, M., Dancák, M., Ewango, C., Hédl, R., Lloyd, J., Makana, J. R., Malhi, Y., Marimon, B. S., Junior, B. H. M., Metali, F., Moore, S., Nagy, L., Vargas, P. N., Pendry, C. A., Ramírez-Angulo, H., Reitsma, J., Rutishauser, E., Salim, K. A., Sonké, B., Sukri, R. S., Sunderland, T., Svátek, M., Umunay, P. M., Martinez, R. V., Vernimmen, R. R. E., Torre, E. V., Vleminckx, J., Vos, V., and Phillips, O. L.: Field methods for sampling tree height for tropical forest biomass estimation, Methods Ecol. Evol., 9, 1179–1189, https://doi.org/10.1111/2041-210X.12962, 2018. a
Vorster, A. G., Evangelista, P. H., Stovall, A. E. L., and Ex, S.: Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations, Carbon Balance Manag., 15, 8, https://doi.org/10.1186/s13021-020-00143-6, 2020. a
Weiskittel, A. R., MacFarlane, D. W., Radtke, P. J., Affleck, D. L. R., Temesgen, H., Woodall, C. W., Westfall, J. A., and Coulston, J. W.: A call to improve methods for estimating tree biomass for regional and national assessments, J. Forest., 113, 414–424, https://doi.org/10.5849/jof.14-091, 2015. a, b
White, J. F. and Gould, S. J.: Interpretation of the coefficient in the allometric equation, Am. Nat., 99, 5–18, http://www.jstor.org/stable/2459251 (last access: 27 December 2024), 1965. a
Wolf, A., Field, C. B., and Berry, J. A.: Allometric growth and allocation in forests: a perspective from FLUXNET, Ecol. Appl., 21, 1546–1556, https://doi.org/10.1890/10-1201.1, 2011. a
Xu, D., Wang, H., Xu, W., Luan, Z., and Xu, X.: LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives, Forests, 12, 550, https://doi.org/10.3390/f12050550, 2021. a
Yang, M., Zhou, X., Liu, Z., Li, P., Liu, C., Huang, H., Tang, J., Zhang, C., Zou, Z., Xie, B., and Peng, C.: Dynamic carbon allocation trade-off: A robust approach to model tree biomass allometry, Methods Ecol. Evol., 15, 886–899, https://doi.org/10.1111/2041-210X.14315, 2024. a, b, c
Short summary
Allometric equations predict tree biomass and are crucial for estimating forest carbon storage, thus assessing the role of forests in climate change mitigation. Usually, these equations are selected based on tree-level predictive performance. However, we evaluated the model performance at plot and forest levels, finding it varies with plot size. This has significant implications for reducing uncertainty in biomass estimates at these levels.
Allometric equations predict tree biomass and are crucial for estimating forest carbon storage,...
Altmetrics
Final-revised paper
Preprint