Articles | Volume 22, issue 9
https://doi.org/10.5194/bg-22-2225-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2225-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ecosystem leaf area, gross primary production, and evapotranspiration responses to wildfire in the Columbia River basin
Mingjie Shi
CORRESPONDING AUTHOR
Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Nate McDowell
Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
School of Biological Sciences, Washington State University, Pullman, Washington, USA
Huilin Huang
Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Faria Zahura
Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Lingcheng Li
Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Xingyuan Chen
Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Related authors
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025, https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Short summary
This study examined how water availability, climate dryness, and plant productivity interact at the catchment scale. Using various indices and statistical methods, we found a 0–2-month lag in these interactions. Strong correlations during peak-productivity months were observed, with a notable hysteresis effect in vegetation response to changes in water availability and climate dryness. The findings help better understand catchment responses to climate variability.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025, https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025, https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Short summary
This study examined how water availability, climate dryness, and plant productivity interact at the catchment scale. Using various indices and statistical methods, we found a 0–2-month lag in these interactions. Strong correlations during peak-productivity months were observed, with a notable hysteresis effect in vegetation response to changes in water availability and climate dryness. The findings help better understand catchment responses to climate variability.
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1109, https://doi.org/10.5194/egusphere-2025-1109, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water have variable contributions to respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase systematically moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients and suspended solids.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024, https://doi.org/10.5194/gmd-17-1327-2024, 2024
Short summary
Short summary
By comparing E3SM simulations with and without regional refinement, we find that model horizontal grid spacing considerably affects the simulated aerosol mass budget, aerosol–cloud interactions, and the effective radiative forcing of anthropogenic aerosols. The study identifies the critical physical processes strongly influenced by model resolution. It also highlights the benefit of applying regional refinement in future modeling studies at higher or even convection-permitting resolutions.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Hui Zheng, Wenli Fei, Zong-Liang Yang, Jiangfeng Wei, Long Zhao, Lingcheng Li, and Shu Wang
Earth Syst. Sci. Data, 15, 2755–2780, https://doi.org/10.5194/essd-15-2755-2023, https://doi.org/10.5194/essd-15-2755-2023, 2023
Short summary
Short summary
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP land surface model by perturbing model parameterization schemes. The data could be beneficial for monitoring and understanding the variability of water resources. Model developers could also gain insights by intercomparing the ensemble members.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Cited articles
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., Smith, A. M., and Huxman, T. E.: Ecohydrological consequences of drought-and infestation-triggered tree die-off: insights and hypotheses, Ecohydrology, 5, 145–159, https://doi.org/10.1002/eco.233, 2012.
Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H., Hansen, W. D., and Seidl, R.: Simulating forest resilience: A review, Global Ecol. Biogeogr., 29, 2082–2096, https://doi.org/10.1111/geb.13197, 2020.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., and Bachelet, D.: A human-driven decline in global burned area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Anderegg, W. R., Wu, C., Acil, N., Carvalhais, N., Pugh, T. A., Sadler, J. P., and Seidl, R.: A climate risk analysis of Earth's forests in the 21st century, Science, 377, 1099–1103, https://doi.org/10.1126/science.abp9723, 2022.
Asner, G. P. and Alencar, A.: Drought impacts on the Amazon forest: the remote sensing perspective, New Phytol., 187, 569–578, https://doi.org/10.1111/j.1469-8137.2010.03310.x, 2010.
Bart, R. R., Kennedy, M. C., Tague, C. L., and McKenzie, D.: Integrating fire effects on vegetation carbon cycling within an ecohydrologic model, Ecol. Model., 416, 108880, https://doi.org/10.1016/j.ecolmodel.2019.108880, 2020.
Bowman, D. M., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, G. R., and Flannigan, M.: Vegetation fires in the Anthropocene, Nature Reviews Earth & Environment, 1, 500–515, https://doi.org/10.1038/s43017-020-0085-3, 2020.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Burton, C., Lampe, S., Kelley, D. I., Thiery, W., Hantson, S., Christidis, N., Gudmundsson, L., Forrest, M., Burke, E., Chang, J., Huang, H., Ito, A., Kou-Giesbrecht, S., Lasslop, G., Li, W., Nieradzik, L., Li, F., Chen, Y., Randerson, J., Reyer, C. P. O., and Mengel, M.: Global burned area increasingly explained by climate change, Nat. Clim. Change, 14, 1186–1192, https://doi.org/10.1038/s41558-024-02140-w, 2024.
Cansler, C. A. and McKenzie, D.: How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods, Remote Sensing, 4, 456–483, https://doi.org/10.3390/rs4020456, 2012.
Collar, N. M., Saxe, S., Rust, A. J., and Hogue, T. S.: A CONUS-scale study of wildfire and evapotranspiration: Spatial and temporal response and controlling factors, J. Hydrol., 603, 127162, https://doi.org/10.1016/j.jhydrol.2021.127162, 2021.
Cooper, C. E., Aparecido, L. M., Muir, J. P., Morgan, C. L., Heilman, J. L., and Moore, G. W.: Transpiration in recovering mixed loblolly pine and oak stands following wildfire in the Lost Pines region of Texas, Ecohydrology, 12, e2052, https://doi.org/10.1002/eco.2052, 2019.
DeBano, L. F., Neary, D. G., and Ffolliott, P. F.: Fire effects on ecosystem, John Wiley & Sons, ISBN 978-0-471-16356-5, 1998.
DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M. R., Aakala, T., Amoroso, M. M., Bigler, C., Camarero, J. J., and Čufar, K.: Low growth resilience to drought is related to future mortality risk in trees, Nat. Commun., 11, 545, https://doi.org/10.1038/s41467-020-14300-5, 2020.
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z. L., Quayle, B., and Howard, S.: A project for monitoring trends in burn severity, Fire Ecol., 3, 3–21, https://doi.org/10.4996/fireecology.0301003, 2007.
Frazier, A. E., Renschler, C. S., and Miles, S. B.: Evaluating post-disaster ecosystem resilience using MODIS GPP data, Int. J. Appl. Earth Obs., 21, 43–52, https://doi.org/10.1016/j.jag.2012.07.019, 2013.
Friedl, M. and Sulla-Menashe, D.: MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061, NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA [data set], https://doi.org/10.5067/MODIS/MCD12Q1.061, 2022.
Halofsky, J. E., Peterson, D. L., and Harvey, B. J.: Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA, Fire Ecol., 16, 1–26, https://doi.org/10.1186/s42408-019-0062-8, 2020.
Harris, R. M., Remenyi, T. A., Williamson, G. J., Bindoff, N. L., and Bowman, D. M.: Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?, Wires Clim. Change, 7, 910–931, https://doi.org/10.1002/wcc.428, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., and Simmons, A.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Holling, C. S.: Resilience and stability of ecological systems, Annu. Rev. Ecol. Syst., 4, 1–23, 1973.
Hu, Z., Yu, G., Fu, Y., Sun, X., Li, Y., Shi, P., Wang, Y., and Zheng, Z.: Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China, Glob. Change Biol., 14, 609–1619, https://doi.org/10.1111/j.1365-2486.2008.01605.x, 2008.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., De Luca, E., and Ebeling, A.: Biodiversity increases the resistance of ecosystem productivity to climate extremes, Nature, 526, 574–577, https://doi.org/10.1038/nature15374, 2015.
Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S., Loranty, M. M., and Goulden, M. L.: The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests, J. Geophys. Res.-Biogeo., 117, G01036, https://doi.org/10.1029/2011JG001886, 2012.
Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., New, S., Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., van der Werf, G. R., Veraverbeke, S., and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, 2024.
Jones, M. W., Smith, A., Betts, R., Canadell, J. G., Prentice, I. C., and Le Quéré, C.: Climate change increases the risk of wildfires, Science Brief Review, 116, 117, https://doi.org/10.5281/zenodo.4746013, 2020.
Juang, C. S., Williams, A. P., Abatzoglou, J. T., Balch, J. K., Hurteau, M. D., and Moritz, M. A.: Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States, Geophys. Res. Lett., 49, e2021GL097131, https://doi.org/10.1029/2021GL097131, 2022.
Juarez-Martinez, E. L., Sprengers, J. J., Cristian, G., Oranje, B., van Andel, D. M., Avramiea, A. E., Simpraga, S., Houtman, S. J., Hardstone, R., Gerver, C., and van der Wilt, G. J.: Prediction of behavioral improvement through resting-state electroencephalography and clinical severity in a randomized controlled trial testing bumetanide in autism spectrum disorder, Biol. Psychiat., 8, 251–261, https://doi.org/10.1016/j.bpsc.2021.08.009, 2023.
Karavani, A., Boer, M. M., Baudena, M., Colinas, C., Díaz-Sierra, R., Pemán, J., de Luis, M., Enríquez-de-Salamanca, Á., and Resco de Dios, V.: Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities, Ecol. Monogr., 88, 41–169, https://doi.org/10.1002/ecm.1285, 2018.
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020.
Knauer, J., Zaehle, S., De Kauwe, M. G., Haverd, V., Reichstein, M., and Sun, Y.: Mesophyll conductance in land surface models: effects on photosynthesis and transpiration, Plant J., 101, 858–873, https://doi.org/10.1111/tpj.14577, 2020.
Kumar, N., Singh, H., Kumar, A., Singh, A. K., Pandey, P. K., and Kumar, A.: Forest-Fire-Induced Land Degradation, in: Sustainable Land Management in India, Springer, Singapore, 51–68, https://doi.org/10.1007/978-981-97-5223-2, 2024.
Lasslop, G., Hantson, S., Harrison, S. P., Bachelet, D., Burton, C., Forkel, M., Forrest, M., Li, F., Melton, J.R., Yue, C., and Archibald, S.: Global ecosystems and fire: Multi-model assessment of fire-induced tree-cover and carbon storage reduction, Glob. Change Biol., 26, 5027–5041, https://doi.org/10.1111/gcb.15160, 2020.
Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016.
Li, Y., Shi, H., Zhou, L., Eamus, D., Huete, A., Li, L., Cleverly, J., Hu, Z., Harahap, M., Yu, Q., and He, L.: Disentangling climate and LAI effects on seasonal variability in water use efficiency across terrestrial ecosystems in China, J. Geophys. Res.-Biogeo., 123, 2429–2443, https://doi.org/10.1029/2018JG004482, 2018.
Lu, J. and Yan, F.: The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration, Land, 12, 1672, https://doi.org/10.3390/land12091672, 2023.
Marcos, B., Gonçalves, J., Alcaraz-Segura, D., Cunha, M., and Honrado, J. P.: Assessing the resilience of ecosystem functioning to wildfires using satellite-derived metrics of post-fire trajectories, Remote Sens. Environ., 286, 113441, https://doi.org/10.1016/j.rse.2022.113441, 2023.
Mather, J. R. and Yoshioka, G. A.: The role of climate in the distribution of vegetation, Ann. Assoc. Am. Geogr., 58, 29–41, 1968.
McDowell, N. G., Anderson-Teixeira, K., Biederman, J. A., Breshears, D. D., Fang, Y., Fernandez-de-Una, L., Graham, E. B., Mackay, D. S., McDonnell, J. J., Moore, G. W., and Nehemy, M. F.: Ecohydrological decoupling under changing disturbances and climate, One Earth, 6, 251–266, https://doi.org/10.1016/j.oneear.2023.02.001, 2023.
Mills, D., Jones, R., Carney, K., St. Juliana, A., Ready, R., Crimmins, A., Martinich, J., Shouse, K., DeAngelo, B., and Monier, E.: Quantifying and monetizing potential climate change policy impacts on terrestrial ecosystem carbon storage and wildfires in the United States, Climatic Change, 131, 163–178, https://doi.org/10.1007/s10584-014-1118-z, 2015.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., and Lotsch, A.: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens, Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Nolan, R. H., Mitchell, P. J., Bradstock, R. A., and Lane, P. N.: Structural adjustments in resprouting trees drive differences in post-fire transpiration, Tree Physiol., 34, 123–136, https://doi.org/10.1093/treephys/tpt115, 2014.
Parks, S. A. and Abatzoglou, J. T.: Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017, Geophys. Res. Lett., 47, e2020GL089858, https://doi.org/10.1029/2020GL089858, 2020.
Partington, D., Thyer, M., Shanafield, M., McInerney, D., Westra, S., Maier, H., Simmons, C., Croke, B., Jakeman, A.J., Gupta, H., and Kavetski, D.: Predicting wildfire induced changes to runoff: A review and synthesis of modeling approaches, Wiley Interdisciplinary Reviews: Water, 9, e1599, https://doi.org/10.1002/wat2.1599, 2022.
Pechony, O. and Shindell, D. T.: Driving forces of global wildfires over the past millennium and the forthcoming century, P. Natl. Acad. Sci. USA, 107, 19167–19170, https://doi.org/10.1073/pnas.1003669107, 2010.
Picotte, J. J., Bhattarai, K., Howard, D., Lecker, J., Epting, J., Quayle, B., Benson, N., and Nelson, K.: Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products, Fire Ecol., 16, 1–12, https://doi.org/10.1186/s42408-020-00076-y, 2020.
Poulos, H. M., Barton, A. M., Koch, G. W., Kolb, T. E., and Thode, A. E.: Wildfire severity and vegetation recovery drive post-fire evapotranspiration in a southwestern pine-oak forest, Arizona, USA, Remote Sensing in Ecology and Conservation, 7, 579–591, https://doi.org/10.1002/rse2.210, 2021.
Proença, V., Pereira, H. M., and Vicente, L.: Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation, Acta Oecol., 36, 626–633, https://doi.org/10.1016/j.actao.2010.09.008, 2010.
Rammer, W., Braziunas, K. H., Hansen, W. D., Ratajczak, Z., Westerling, A. L., Turner, M. G., and Seidl, R.: Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire, Glob. Change Biol., 27, 4339–4351, https://doi.org/10.1111/gcb.15726, 2021.
Ratajczak, Z., Nippert, J. B., Briggs, J. M., and Blair, J. M.: Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of North America, J. Ecol., 102, 1374–1385, https://doi.org/10.1111/1365-2745.12311, 2014.
Rifai, S. W., De Kauwe, M. G., Gallagher, R. V., Cernusak, L. A., Meir, P., and Pitman, A. J.: Burn severity and post-fire weather are key to predicting time-to-recover from Australian forest fires, Earth's Future, 12, e2023EF003780, https://doi.org/10.1029/2023EF003780, 2024.
Rodman, K. C., Veblen, T. T., Andrus, R. A., Enright, N. J., Fontaine, J. B., Gonzalez, A. D., Redmond, M. D., and Wion, A. P.: A trait-based approach to assessing resistance and resilience to wildfire in two iconic North American conifers, J. Ecol., 109, 313–326, https://doi.org/10.1111/1365-2745.13480, 2021.
Running, S. W., Mu, Q., Zhao, M., and Moreno, A.: MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (for collection 6), National Aeronautics and Space Administration, Washington, DC, USA [data set], https://doi.org/10.5067/MODIS/MOD16A2.006, 2019.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.: A continuous satellite-derived measure of global terrestrial primary productivity: Future science and applications, Bioscience, 56, 547–560, https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Running, S. W. and Zhao, M.: Daily GPP and annual NPP (MOD17A2H/A3H) and year-end gap-filled (MOD17A2HGF/A3HGF) products NASA Earth Observing System MODIS land algorithm, MOD17 [data set], https://doi.org/10.5067/MODIS/MOD17A2H.006, 2019.
Sadler, J. M., Goodall, J. L., Morsy, M. M., and Spencer, K.: Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest, J. Hydrol., 559, 43–55, https://doi.org/10.1016/j.jhydrol.2018.01.044, 2018.
Samanta, A., Knyazikhin, Y., Xu, L., Dickinson, R. E., Fu, R., Costa, M. H., Saatchi, S. S., Nemani, R. R., and Myneni, R. B.: Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission, J. Geophys. Res.-Biogeo., 117, G01015, https://doi.org/10.1029/2011JG001818, 2013.
Saigusa, N., Yamamoto, S., Murayama, S., and Kondo, H.: Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements, Agr. Forest Meteorol., 134, 4–16, https://doi.org/10.1016/j.agrformet.2005.08.016, 2005.
Schoennagel, T., Balch, J. K., Brenkert-Smith, H., Dennison, P. E., Harvey, B. J., Krawchuk, M. A., Mietkiewicz, N., Morgan, P., Moritz, M. A., Rasker, R., and Turner, M. G.: Adapt to more wildfire in western North American forests as climate changes, P. Natl. Acad. Sci., 114, 4582–4590, https://doi.org/10.1073/pnas.1617464114, 2017.
Seidl, R., Schelhaas, M. J., Rammer, W., and Verkerk, P. J.: Increasing forest disturbances in Europe and their impact on carbon storage, Nat. Clim. Change, 4, 806–810, https://doi.org/10.1038/nclimate2318, 2014.
Shi, M., Liu, J., Zhao, M., Yu, Y., and Saatchi, S.: Mechanistic processes controlling persistent changes of forest canopy structure after 2005 Amazon drought, J. Geophys. Res.-Biogeo., 122, 3378–3390, https://doi.org/10.1002/2017JG003966, 2017.
Shi, M., Mcdowell, N. G., Huang, H.; Zahura, F., Li, L., Forbes, B., Powers-McCormack, B., and Chen, X.: Data and Scripts associated with a manuscript on ecosystem responses to wildfires in the Columbia River Basin. River Corridor and Watershed Biogeochemistry SFA, ESS-DIVE repository [data set], https://doi.org/10.15485/2507048, 2025.
Shi, M., Parazoo, N. C., Jeong, S. J., Birch, L., Lawrence, P., Euskirchen, E. S., and Miller, C. E.: Exposure to cold temperature affects the spring phenology of Alaskan deciduous vegetation types, Environ. Res. Lett., 15, 025006, https://doi.org/10.1088/1748-9326/ab6502, 2020.
Shrestha, S., Williams, C. A., Rogers, B. M., Rogan, J., and Kulakowski, D.: Divergent biophysical responses of western United States forests to wildfire driven by eco-climatic gradients, Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024, 2024.
Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., Klosterhalfen, A., Liu, S., Miralles, D. G., Perez-Priego, O., Rigden, A. J., Skaggs, T. H., Wohlfahrt, G., Anderson, R. G., Coenders-Gerrits, A. M. J., Jung, M., Maes, W. H., Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J. A., Poyatos, R., Reichstein, M., Scott, R. L., and Wolf, S.: Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities, Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, 2019.
Sulla-Menashe, D. and Friedl, M. A.: User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product, USGS: Reston, VA, USA, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2018.
Sun, Q., Meyer, W. S., Koerber, G. R., and Marschner, P.: Rapid recovery of net ecosystem production in a semi-arid woodland after a wildfire. Agr. Forest Meteorol., 291, 108099, https://doi.org/10.1016/j.agrformet.2020.108099, 2020.
Turner, M. G.: Disturbance and landscape dynamics in a changing world, Ecology, 91, 2833–2849, https://doi.org/10.1890/10-0097.1, 2010.
Turner, M. G., Braziunas, K. H., Hansen, W. D., and Harvey, B. J.: Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests, P. Natl. Acad. Sci. USA, 116, 11319–11328, https://doi.org/10.1073/pnas.1902841116, 2019.
Westerling, A. L.: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring, Philos. T. R. Soc. B, 371, 20150178, https://doi.org/10.1098/rstb.2015.0178, 2016.
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed impacts of anthropogenic climate change on wildfire in California, Earth's Future, 7, 892–910, https://doi.org/10.1029/2019EF001210, 2019.
Wimberly, M. C. and Liu, Z.: Interactions of climate, fire, and management in future forests of the Pacific Northwest, Forest Ecol. Manag., 327, 270–279, https://doi.org/10.1016/j.foreco.2014.06.026, 2014.
Wu, J. and Liang, S.: Assessing terrestrial ecosystem resilience using satellite leaf area index, Remote Sensing, 12, 595, https://doi.org/10.3390/rs12040595, 2020.
Xu, L., Samanta, A., Costa, M. H., Ganguly, S., Nemani, R. R., and Myneni, R. B.: Widespread decline in greenness of Amazonian vegetation due to the 2010 drought, Geophys. Res. Lett., 38, L07402, https://doi.org/10.1029/2011GL046824, 2011.
Yang, B., Heagy, L. J., Morgenroth, J., and Elmo, D.: Algorithmic Geology: Tackling Methodological Challenges in Applying Machine Learning to Rock Engineering, Geosciences, 14, 67, https://doi.org/10.3390/geosciences14030067, 2024.
Yildirim, M. O., Gok, E. C., Hemasiri, N. H., Eren, E., Kazim, S., Oksuz, A. U., and Ahmad, S.: A machine learning approach for metal oxide-based polymer composites as charge selective layers in perovskite solar cells, Chem Plus Chem, 86, 785–793, https://doi.org/10.1002/cplu.202100196, 2021.
Yu, L., Fan, L., Ciais, P., Sitch, S., Fensholt, R., Xiao, X., Yuan, W., Chen, J., Zhang, Y., Wu, X., and Qin, Y.: Carbon dynamics of Western North American boreal forests in response to stand-replacing disturbances, Int. J. Appl. Earth Obs., 122, 103410, https://doi.org/10.1016/j.jag.2023.103410, 2023.
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate...
Altmetrics
Final-revised paper
Preprint