Articles | Volume 22, issue 2
https://doi.org/10.5194/bg-22-499-2025
https://doi.org/10.5194/bg-22-499-2025
Research article
 | 
28 Jan 2025
Research article |  | 28 Jan 2025

Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton

Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre

Related authors

Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020,https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024,https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024,https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024,https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Reviews and syntheses: Biological indicators of low-oxygen stress in marine water-breathing animals
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024,https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024,https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary

Cited articles

Bach, L. T., Riebesell, U., Gutowska, M. A., Fegerwisch, L., and Schulz, K. G.: A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework, Prog. Oceanogr., 135, 125–138, https://doi.org/10.1016/j.pocean.2015.04.012, 2015. 
Badger, M. R. and Bek, E. J.: Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle, J. Exp. Bot., 59, 1525–1541, https://doi.org/10.1093/jxb/erm297, 2008. 
Beardall, J. and Raven, J. A.: Carbon Acquisition by Microalgae, in: The physiology of microalgae, Developments in Applied Phycology, edited by: Borowitzka, M., Beardall, J., and Raven, J. A., Springer, 6, 89–99, https://doi.org/10.1007/978-3-319-24945-2_4, 2016. 
Beardall, J. and Raven, J. A.: Acquisition of Inorganic Carbon by Microalgae and Cyanobacteria, in: Microbial Photosynthesis, edited by: Wang, Q, Springer Singapore, Singapore, 151–168, https://doi.org/10.1007/978-981-15-3110-1_8, 2020. 
Beardall, J., Mukerji, D., Glover, H. E., and Morris, I.: The path of carbon in photosynthesis by marine phytoplankton, J. Phycol., 12, 409–417, https://doi.org/10.1111/j.1529-8817.1976.tb02864.x, 1976. 
Download
Short summary
Ocean alkalinity enhancement (OAE) is a promising negative emission technology that results in the net sequestration of atmospheric carbon. In this paper, we assess the potential impact of OAE on phytoplankton through an analysis of prior studies and the effects of simulated OAE on photosynthetic competence. Our findings suggest that there may be little if any significant impact on most phytoplankton studied to date if OAE is conducted in well-flushed, nearshore environments.
Altmetrics
Final-revised paper
Preprint